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Preface

This book grew out of many years of involvement with the practical applications
of extreme value analysis to measured or simulated data. This is a fascinating area
of research because of the fundamental dichotomy inherent in this problem area. On
the one hand, you have beautiful mathematical results for asymptotic extreme value
distributions. On the other hand, you have real-life data, which are hardly asymptotic.
So, the unavoidable question becomes: To what extent can you use the asymptotic
distributions to analyze real-life data? Personally, I have always felt uncomfortable
with the use of the parametric classes of asymptotic extreme value distributions in
applications. This was largely due to the fact that the justification for applying them
generally seemed dubious, and amazingly enough, the problem of justification is rarely
discussed at all in papers using asymptotic distributions on real-life data. The prob-
lems of justification and other issues related to the fundamental dichotomy, are dis-
cussed in Chapter 1.

Of course, I was not the only one who disliked asymptotics for use on real-life data.
A consequence of this situation was that alternative procedures for extreme value
analysis were developed in several engineering disciplines. Some of these alternative
procedures were based on ideas similar to those developed in Chapter 4. This chapter
contains what was largely my world view on applied extreme value statistics for quite
some time, and to some extent, it still is. However, the development of the ACER
method, which is a central theme in this book, cf. Chapter 5, allows for a much wider
perspective. Its use in practice basically involves two separate steps. The first step
is based exclusively on the data and ends up with a nonparametric representation
of the extreme value distribution inherent in the data. This is the crucial element
of the ACER method. The second step consists of an optimization procedure to fit
a parametric function to the nonparametric distribution. This step is necessary in
order to be able to predict extremes larger than those contained in the data, which is
typically demanded by applications. To develop a rational method of optimized fitting,
the asymptotic extreme value theory by necessity becomes an essential ingredient
which guides the construction of the parametric functions used in the optimization
procedure. It is therefore necessary to identify the correct asymptotic extreme value
distribution, since the fitted extreme value distribution by necessity must approach
the relevant asymptotic form in the limit.

Even if my own work in developing methods for use in applied extreme value
analysis more or less avoided direct use of the asymptotic extreme value distributions,
I have always clearly understood their importance as an unavoidable foundation.
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viii Preface

The publication in 1983 of the important book ’Extremes and Related Properties of
Random Sequences and Processes’ by Leadbetter, Lindgren and Rootzén, happened
when my own interest in extreme value analysis more or less started. I, therefore, read
this book very carefully, and it gave me a very good grip on the asymptotic extreme
value theory. Of course, I also read parts of the seminal book by E. J. Gumbel,
published in 1958, which also has a focus on asymptotic results. However, by the
mid-1980s, that book, which was written in a pre-computer era, appeared as more or
less obsolete when compared to the book by Leadbetter et al.

I have written this book, not because I want to convince people to abandon the
classical asymptotic approaches, which, unfortunately, too often in practice are re-
duced to blindfolded curve fitting exercises to asymptotic parametric distributions
with no real analysis to back it up. No, I have written the book because I would also
like to show that it is now possible to make a more rationally based extreme value
analysis of observed data. I want to show that the ACER method very often provides
a unique practical diagnostic tool for a rational extreme value analysis. If, as a result,
asymptotic distributions turn out to be more or less acceptable, then their use would
at least have a reasonable justification.

It is also important to emphasize that the book is not a comprehensive treatment
of methods for applied extreme value analyses, but to a large extent a collection of
methods that I have personally worked with on and off over a period of three decades,
and which I have found to be relevant and useful. I have made an effort to write
the book as much as possible like an introduction to extreme value statistics with
emphasis on applications. Therefore, the book also contains introductory chapters
to the classical asymptotic theories and the threshold exceedance models, as well
as many illustrative examples. The mathematical level is elementary, and detailed
mathematical proofs have been avoided in favour of heuristic arguments to increase
readability. Hopefully, this makes the book useful and appealing to a large audience
of people representing a wide range of diverse applications.

Since the topic of this book is applied extreme value statistics, an inevitable com-
ponent to go along with it, is access to computer programs for carrying out the
analysis of available data. For the methods based on the asymptotic results described
in Chapters 2 and 3, there are several excellent programs easily available. Specific
recommendations are not given here. Whichever program is chosen, good results can
be obtained within the framework of asymptotic distributions. On the other hand,
the ACER method has not yet attained a comparable level of software development.
References to computer programs for univariate and bivariate analyses by the ACER
method, has therefore been given in this book. These programs can be freely down-
loaded.

Writing on the technical level necessary for this book, requires a lot of attention
to details. It is in practice impossible to avoid errors and mistakes, poorly formulated
explanations or misprints in initial versions of such a book. Fortunately, I have some
very good friends and colleagues who have helped me identify and correct many
such shortcomings, and for this, I am forever thankful. Any mistakes, that may still
remain, are entirely my own responsibility. The first group of people that I would like
to mention for their important contributions to improving the book, are Professors
Bernt J. Leira, Bo H. Lindqvist, Sverre Haver, and Dr. Karl W. Breitung. Previous
collaborators and PhD students that have been important in helping me in various
ways, are Professors Torgeir Moan, Oleg Gaidai, Sjur Westgaard, Marc Maes, Nilanjan
Saha, Wei Chai, Arild Brandrud Næss, and Drs. Oleksandr Batsevich, Oleh Karpa,



Preface ix

Ali Cetin, Hans K. Karlsen, Kai Erik Dahlen, and MSc Morten Skjong. I am also very
grateful to my many good students that I have had the pleasure of working with over
the years, who have also inevitably been part of my own never-ending education as a
researcher.

Trondheim, March 2023 Arvid Naess
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Chapter 1

Challenges of Applied Extreme Value Statistics

1



2 1 Challenges of Applied Extreme Value Statistics

1.1 Introduction

This book provides an introduction to the calculation of extreme value statistics
for measured or simulated data. ”Extreme” here means ”the largest”, interpreted in a
way that follows from the context. As opposed to books on asymptotic extreme value
statistics, the focus is also on methods specifically developed to work for real-life data.
A consequence of this, is that the book contains much less theoretical issues about
the asymptotic properties of extreme value statistics than is usual. However, the most
important elements from the asymptotic extreme value statistics will be discussed,
since they are still widely used in practical applications.

Although two of the asymptotic methods described in this book have been used
extensively over several decades for prediction of the extreme value statistics of many
natural phenomena, the prerequisites for their application are often not satisfied, and
in some cases, not even approximately. Under such circumstances, there would appear
to be a problem. It is this situation that will be highlighted in this chapter.

1.2 A Brief Summary of Status, Problems and Challenges

Statistical distributions of the extreme values of large samples of data were derived
almost one hundred years ago by Fisher and Tippet (1928), cf. also Fréchet (1927);
Gnedenko (1943); de Haan (1970). The main prerequisite for the existence of the
derived results were that the data could be considered as outcomes of independent
and identically distributed random variables. As it turned out, in non-degenerate
cases there are only three possible types of limiting extreme value distributions with
increasing amounts of data. It means that these results are asymptotic, as the technical
term goes. On the positive side, the fact that we know explicitly what the possible
distributions look like, even if only in the limit of large samples increasing indefinitely,
is very satisfactory. And there are criteria that can tell us which type of distribution
applies if the underlying distribution of the data is known (Leadbetter et al., 1983).
However, on the negative side, it is not possible to know to what extent one of the
three types of limiting distributions actually applies to a real-life case with only a
limited amount of data, even though there may be reasons to expect that the true
extreme value distribution should not deviate too much from one of the limiting
forms. Unfortunately, there are no useful convergence results that are precise enough
to really help us decide quantitatively on this issue. Still, the common practice has
been to assume an appropriate limiting form as the extreme value distribution to use.
This can easily be understood from the simple fact that the limiting distributions are
known explicitly, while the exact extreme value distributions inherent in the data, are
largely unknown. The procedure to identify the appropriate limiting distribution is to
optimize the fit of the extreme values derived from the observed data to the asymptotic
forms. Typically, the extreme values from the data are taken as the maxima of specified
blocks of data, e.g. annual maxima.

The three asymptotic types of extreme value distributions are essentially charac-
terized by the value of one parameter, γ say, called the shape parameter. As will
be seen later, the most important case for us in this book is when γ = 0. This is
called a Type I, or Gumbel, distribution. For positive values of γ, Type II, or Fréchet,
distributions are obtained, while for negative values of γ, the distributions are of
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Type III, or Weibull (for maxima). As it turns out, all three distribution types may
be expressed in terms of one parametric form called the generalized extreme value
(GEV) distribution. A standard recommendation is then to use the GEV parametric
form for the sake of optimized fitting of the obtained extreme value sample. There
is, however, one serious flaw with this procedure. The extreme value sample being
extracted from limited amounts of data, are hardly a sample from an asymptotic dis-
tribution. Hence, one cannot expect that the estimated parameters will point to the
correct asymptotic distribution. This is an issue of importance for extrapolation to
out-of-sample long return period levels. For example, a practical task may be to say
something about a 100 year return period level on the basis of 25 years of measured
data. Then the correct asymptotic distribution is of paramount importance because
the different types of extreme value distribution may lead to quite different extrap-
olation results. An additional issue is, of course, that with limited amounts of data
follows considerable uncertainty on the estimated quantities. It may, in fact, happen
that the estimated value of γ is slightly negative, pointing to a Type III distribution,
but with the confidence interval accounted for, also γ = 0, or even γ > 0 are possible
candidates for the value of γ. Hence, all three types of extreme value distributions
seems to be possible alternatives in such a case. Since these asymptotic distributions
have very different behaviour when extrapolated to high quantile values, the previous
comments on the importance of this aspect, would often necessitate a more careful
analysis of the situation to decide which asymptotic distribution to apply.

The peaks-over-threshold (POT) method for extreme value analysis will be dis-
cussed to some extent in this book. This method is also based on asymptotics. The
data extracted for its use, are the exceedances above high thresholds. Asymptotically,
these data are assumed to follow a generalized Pareto (GP) distribution, which is then
the equivalent of the GEV for the block maxima method. The POT method also has
three classes of distributions, again characterized by the γ parameter. For example,
the singular case γ = 0 corresponds to the exponential distribution. It is a rather pop-
ular method, mainly because it uses more of the data for inference. Unfortunately, it
has certain deficiencies, which will be highlighted in this book.

There is an important and interesting observation to be made at this initial stage
of our exposition of extreme value statistics. As already been stated, for all negative
values of the shape parameter γ, the Type III class of extreme value distributions
apply, while for all positive values of γ, it is the Type II class of extreme value distri-
butions that is obtained. This would seem to indicate that there are two huge classes
of extreme value distributions that would tend to make the singular case γ = 0 a rather
special and maybe uninteresting case. The fact of the matter is quite the opposite.
For almost all environmental processes that will be dealt with in this book, it is the
Gumbel distribution that has prevailed as the correct asymptotic extreme value dis-
tribution. There has over the years been some suggestions to the other types as well,
but these have almost all been finally rejected in the face of overwhelming evidence
for Type I distributions. Of course, it is impossible to fully answer the fundamental
question: To what extent do our statistical models apply to real-life data? But so
far, it seems that these statistical methods work rather well on such data, but being
overconfident in these methods is perhaps an unwarranted position to take.

One important reason that the singular asymptotic Gumbel case is so important
in practice, is that from the perspective of a sub-asymptotic world, the picture of
the size of the extreme value distribution classes looks very different. When only
limited amounts of data are available, the asymptotic limiting distributions, strictly
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speaking, do not apply, except in very special cases. Hence, we are in a sub-asymptotic
situation. As will be seen in large parts of this book, there is a huge class of extreme
value distributions that apply to a range of different problems, which all end up at the
Gumbel distribution asymptotically. So, the apparent singularity of the Gumbel case
is an artefact of the asymptotic limiting process, and does not reflect the situation in
the sub-asymptotic regime.

In an effort to resolve the inconsistency between real-life data and asymptotic
distributions, a new method has been developed that is based on the concept of the
average conditional exceedance rate (ACER). The method proceeds by establishing
a cascade of empirical, non-parametric distribution functions that converge to the
extreme value distribution inherent in the data. The advantages of the method is that
no assumptions about independent and stationary data have to be made. For example,
seasonal variations of the data do not require special modelling. The method also has
a unique diagnostic feature in how it displays the effect of dependence between the
data on the extreme value distribution. This may be of significance for the choice of
which data can be included in the analysis. The ACER method will be discussed in
detail in this book.

Whatever method of extreme value statistics is chosen for the analysis of the avail-
able data, the goal is almost always to predict extreme values with return periods
larger, and often much larger, than the period of data collection. This inevitably
requires extrapolation techniques to be used. The seemingly stochastic mechanism
generating the sampled data is often sufficiently well understood to support the as-
sumption of the validity of extrapolation. Unfortunately, this may not always be the
situation. Ideally, in such cases, the predicted extreme values obtained by extrapola-
tion should then be accompanied by a cautionary note. However, this is rarely done,
simply because more credible alternatives for the prediction process are not available.

The extrapolation procedure is, in general, based on obtaining estimates of the
parameters that determine the extreme value distribution type adopted for the data
at hand. If an asymptotic approach is used, the GEV distribution is often preferred for
parameter estimation in the case of the block maxima method, or the GP distribution
for the POT method. Since these are parametrized forms covering all three types of
asymptotic extreme value distributions, it is often recommended to use these forms,
allowing the data to determine which type of extreme value distribution to use. As
already mentioned, such a procedure may not always be a good idea. Also for the
ACER method, a parametrized family of functions is proposed for the purpose of
extrapolation, which is tailored to reflect the sub-asymptotic character of the data.

The parameter estimates calculated for the examples in this book, are based on
either the method of moments or the maximum likelihood method in the case of
the GEV or the GP distributions. For the ACER method, the optimized fitting is
obtained by using a Levenberg-Marquardt method on an objective function expressed
as a weighted mean square deviation measure between the empirical and the proposed
parametric ACER functions on the log level. Uncertainty quantification is also a very
important aspect of any statistical inference. In this book, the use of bootstrapping
will serve to illustrate this issue, since it has some attractive properties.
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Classical Extreme Value Theory
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2.1 Introduction

Classical extreme value statistics is concerned with the distributional properties of
the maximum of a number of independent and identically distributed (iid) random
variables when the number of variables becomes large. A partial result was obtained
by Fréchet (1927), while Fisher and Tippet (1928) discovered that there are three
types of possible limiting or asymptotic distributions, which are now contained in
the Extremal Types Theorem, which is discussed in the next section. These three
asymptotic distributions are typically referred to as the Gumbel, Fréchet and Weibull
distributions. It is also common practice to refer to them as Type I, Type II and
Type III, in the same order. Important contributions to this theory were later made
by Gnedenko (1943), Gumbel (1958) and de Haan (1970).

2.2 The Asymptotic Limits of Extreme Value Distributions

The classical extreme value theory starts by looking at a sequence of indepen-
dent and identically distributed (iid) random variables X1,X2, . . . with common dis-
tribution function FX (x). The extreme value of a finite number X1, . . . ,Xn is then
Mn = max{X1, . . . ,Xn}. The distribution of Mn can be easily derived as

FMn(x) = Prob(Mn ≤ x) = Prob(X1 ≤ x, . . . ,Xn ≤ x)

= Prob(X1 ≤ x) · . . . ·Prob(Xn ≤ x) =
(
FX (x)

)n
. (2.1)

This relation is not very helpful in practice, because in most cases the distribution
function FX (x) is not known exactly. Therefore, it would have to be estimated from
recorded data. However, small discrepancies in the estimates of FX (x) can lead to
substantial discrepancies, in a relative sense, in the values of

(
FX (x)

)n
for large val-

ues of n. In classical extreme value theory, one proceeds by studying the behaviour
of
(
FX (x)

)n
as n→ ∞, but with a twist. Obviously, for any x such that FX (x) < 1,(

FX (x)
)n→ 0 as n→ ∞. This necessitates a rescaling. Specifically, instead of studying

Mn, one introduces a renormalized version of Mn:

M∗n =
Mn−bn

an
(2.2)

for suitable sequences of constants an > 0 and bn that are chosen to stabilize the
location and scale of M∗n as n→∞. It is then proven that there are, in fact, only three
types of limiting distributions for this renormalized M∗n . This is the famous Extremal
Types Theorem (Leadbetter et al., 1983), which can be expressed as follows.

If there exist sequences of constants an > 0 and bn such that

Prob
(Mn−bn

an
≤ x
)
→ G(x) , n→ ∞, (2.3)

where G(x) is a nondegenerate distribution function, then G(x) belongs to one of the
following three families,
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I G(x) = exp
{
−exp

[
−
(x−b

a

)]}
, −∞ < x < ∞ ; (2.4)

II G(x) =

0 , x≤ b ,

exp
{
−
(

x−b
a

)−c
}

, x > b ; (2.5)

III G(x) =

{
exp
{
−
(

b−x
a

)c}
, x < b ,

1 , x≥ b ;
(2.6)

for parameters a > 0, b and for families II and III, c > 0.

These three types of extreme value distributions are also commonly referred to as
Gumbel, Fréchet, and Weibull, respectively. Note that the Weibull distribution given
here is not the same as the commonly known Weibull distribution, which corresponds
to the type III extreme value distribution for minima. Also, carefully note that even
if the Weibull distribution is the only type of extreme value distribution with a finite
upper limit on its values, this does not mean that extremes of limited data must follow
this distribution. For such data, it may very well happen that the rescaling constants
an→ 0 as n increases. Hence, even the Gumbel distribution may be the appropriate
asymptotic limit for the extreme values of bounded data.

It may be verified that it is, in fact, possible to express all three types of extreme
value distributions in a common form, which is known as the generalized extreme
value (GEV) distribution. This is achieved as follows:

G(x) = exp

{
−
[

1 + γ

(x−µ

σ

)]−1/γ
}

, (2.7)

defined on the set {x : 1+γ
(
(x−µ)/σ

)
> 0}, where the parameters satisfy−∞< µ <∞,

σ > 0, −∞ < γ < ∞. This distribution has three parameters: a location parameter µ,
a scale parameter σ , and a shape parameter γ. The type II distributions correspond
to γ > 0, while type III corresponds to γ < 0. The case γ = 0 must be interpreted as a
limiting case when γ → 0, which leads to the Gumbel distribution:

G(x) = exp
{
−exp

[
−
(x−µ

σ

)]}
, −∞ < x < ∞. (2.8)

The statistical moments of the GEV distributions can now be calculated based on the
explicit formulas of Eqs. (2.7) and (2.8). Denoting the random variable determined
by a GEV distribution by M, its first two moments are,

E(M) = µ +(e1−1)
σ

γ
, γ 6= 0,γ < 1, (2.9)

and

Var(M) =
(
e2− e2

1
) σ2

γ2 , γ 6= 0,γ < 1/2, (2.10)
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where ek = Γ (1− kγ), k = 1,2, and Γ (·) is the gamma function. For γ ≥ 1, E(M) = ∞,
while E(M) = µ + λE σ when γ = 0, that is, for the Gumbel case. Here, λE = 0.5772..
denotes Euler’s constant. For γ ≥ 1/2, Var(M) = ∞, while Var(M) = σ2π2/6, when
γ = 0.

For statistical inference on experimental data, the unified form expressed by
Eq. (2.7) has the advantage that the data themselves determine which type of distri-
bution is appropriate, thereby avoiding a prior subjective judgment about any specific
tail behaviour. The uncertainty in the estimated value of γ is also a reflection of the
uncertainty about the correct distribution for the data. Unfortunately, in practice, it
may very well happen that the uncertainty in γ may cover all three types of extreme
value distribution, which would necessitate a more careful analysis of the data. Also
note that the data used for estimation purposes are never truly asymptotic, thereby
introducing additional uncertainty when trying to identify the correct asymptotic dis-
tribution. Since the results of extrapolation to determine long return period design
values may depend very much on the asymptotic extreme value distribution used,
identifying the correct one is clearly important in such cases.

2.3 The Block Maxima Method

In practical application of the GEV distributions to a long time series of observed
data it is assumed that the maximum observation of a reasonably large chunk of the
time series follows a GEV distribution. This is recognized by observing that from (2.3)
we would assume that for large n,

Prob
(Mn−bn

an
≤ x
)
≈ G(x) , (2.11)

But this may be rewritten as (y = anx + bn),

Prob
(
Mn ≤ y

)
≈ G

(y−bn

an

)
= G∗(y) , (2.12)

where G∗ is also a member of the GEV family of distributions. Hence, if the main
theorem applies, that is, by (2.3), M∗n = (Mn− bn)/an approximately follows a GEV
distribution, then Mn itself will approximately follow a GEV distribution, but with
different parameters. Anyway, in practice, it is the parameters of G∗ that would be of
most interest.

This leads to the following approach, which is often referred to as the block maxima
method. Assume that a sequence of independent observations x1,x2, . . . from a station-
ary time series is long enough to allow segmenting it into blocks of data of length n,
for some large value of n, generating a series of m block maxima, Mn,1, . . . ,Mn,m, say,
to which a GEV distribution is tentatively fitted. A typical application of the block
maxima method would be to yearly extreme value observations of an environmental
parameter, e.g. wind speed. In such a case it is also often referred to as an annual
maxima method. There is a practical argument behind extracting the maximum over
the period of one year, because by choosing shorter periods, the assumption that the
sampled maxima are outcomes of a common distribution would easily be violated due
to seasonal variations. Still, of course, the underlying assumption that the block max-
ima are extracted from a set of iid random variables is clearly violated. Fortunately,
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by experience, this does not seem to pose a serious obstacle to the practical use of the
block maxima method.

A quantity of specific interest in applications is the return period level xp, where
G(xp) = 1− p. For the annual maxima method, xp has a return period of 1/p years.
That is, xp would be exceeded on the average every 1/p years. Inverting (2.7), it is
found that for γ 6= 0,

xp = µ− (σ/γ)
[
1−
(
− log(1− p)

)−γ]
, (2.13)

while for γ = 0,

xp = µ−σ log
(
− log(1− p)

)
, (2.14)

Coles (2001) discusses how to estimate confidence intervals on xp using profile
likelihood methods, which seem to provide reasonable accuracy. In this book the
focus is on the bootstrap method, cf. Section 2.8.

2.4 Outline Proof of the Extremal Types Theorem

The proof of the Extremal Types Theorem is not a very complicated proof, but it
is rather lengthy and technical (Leadbetter et al., 1983). Since it is not central to the
focus of this book, only a sketch will be given here to illustrate the main ingredients.
The concept of max-stability is needed. It is defined as follows,

A distribution G is called max-stable if, for every m = 2,3, . . ., there are constants
αm > 0 and βm such that

Gm(αmx + βm) = G(x) , (2.15)

Gm is the distribution function of Mm = max{Z1, . . . ,Zm}, where the Zi are iid random
variables with distribution function G. Therefore, max-stability is a property satisfied
by distributions that are invariant under the operation of taking sample maxima,
except for a change of scale and location. The following result brings forward the
connection between max-stability and extreme value distributions (Leadbetter et al.,
1983),

A distribution is max-stable if, and only if, it is a GEV distribution.

To check that a GEV distribution is max-stable, is a straightforward exercise in
algebra. The converse is much harder. Anyway, this result can now be used to prove
the Extremal Types Theorem. Consider first Mnk = max{X1, . . . ,Xnk} of a sample of nk
iid random variables Xi, for some large value of n. This large sample can be divided
into k subsamples of n variables in each. Hence, there will be k iid random variables
like Mn = max{X1, . . . ,Xn}. n is chosen large enough to claim that,

Prob
(Mn−bn

an
≤ x
)
≈ G(x) , (2.16)
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for suitable constants an and bn and for the limiting distribution G. Hence, for any
integer k ≥ 2, since nk > n,

Prob
(Mnk−bnk

ank
≤ x
)
≈ G(x) , (2.17)

Eq. (2.16) leads to Prob
(
Mn ≤ z

)
≈G

(
(z−bn)/an

)
, while Eq. (2.17) gives Prob

(
Mnk ≤

z
)
≈ G

(
(z− bnk)/ank

)
. However, Mnk is obviously the maximum of k variables having

the same distribution as Mn. But, then,

Prob
(
Mnk ≤ z

)
=
[
Prob

(
Mn ≤ z

)]k
, (2.18)

From this, it is deduced that (in the limit),

G
( z−bnk

ank

)
= Gk

( z−bn

an

)
, (2.19)

From this it follows that G and Gk are identical apart from location and scale param-
eters. Hence, G is max-stable, and by the result above, it is a member of the GEV
family of distributions.

2.5 Domains of Attraction for the Extreme Value
Distributions

In practice, the exact statistical distribution of the data being analyzed, is rarely
known. However, in many cases there may be rather strong evidence as to what type of
distribution to expect. For instance, average wind speeds over periods of 10 minutes in
northern Europe have been found to follow a Weibull type distribution. Then it would
be useful to know what kind of extreme value distribution to expect for such data.
The answer to such questions is the subject of the theory of domains of attraction for
extreme value distributions. It is beyond the scope of our treatment of this topic here
to go into much details, but some useful results seem worthwhile presenting. A more
thorough discussion is given by Gnedenko (1943) and Leadbetter et al. (1983).

A time series X1,X2, . . . of iid random variables with distribution function F with
a density function f , is considered. xF is defined be the right endpoint of F by xF =
sup{x;F(x) < 1} (xF ≤ ∞). Then the following sufficient conditions due to von Mises
apply:

Suppose that F is absolutely continuous with density f . Then sufficient conditions
for F to belong to each of the three possible domains of attractions are:

Type I: f has a negative derivative f ′ for all x in some interval (x0,xF), (xF ≤ ∞),
and

lim
x↗xF

f ′(x)(1−F(x))

f 2(x)
=−1.

Type II: f (x) > 0 for x≥ x0 finite, and for some constant α > 0,
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lim
x→∞

x f (x)

1−F(x)
= α.

Type III: f (x) > 0 for all x in some finite interval (x0,xF), f (x) = 0 for x > xF , and
for some constant α > 0,

lim
x↗xF

(xF − x) f (x)

1−F(x)
= α.

Using these results, it is straightforward to verify that the following list of dis-
tributions belong to the domain of attraction of the Type I (Gumbel) case, just to
mention a few well-known cases: Normal, lognormal, exponential, Weibull, gamma,
and, of course, the Gumbel distribution itself.

Distributions belonging to the domain of attraction of Type II are e.g. the Pareto,
the Generalized Pareto for positive shape parameter, and the Type II extreme value
distribution itself. For Type III may be mention e.g. the uniform distributions, dis-
tributions truncated on the upper side (provided a smooth density function), and the
Type III extreme value distribution itself.

2.6 Parameter Estimation for the GEV Distributions

The practical application of the block maxima method involves the need to decide
on how to divide the observed data into blocks. Obviously, there will be two con-
flicting issues that have to be dealt with. The desire to have large blocks so that the
distribution of the block maxima will approximate a GEV distribution, may easily
lead to a sample of few block maxima. Statistical inference on small samples may
entail large uncertainties. On the other hand, increasing the sample of block maxima
by choosing smaller blocks, may violate the asymptotic approximation by assuming
a GEV distribution for the block maxima. These issues may be further complicated
by the issues of independence and stationarity, which were discussed in Section 2.3.
While establishing general rules for the choice of block size relative to the amount of
data available is hardly feasible, for some practical cases the accumulated experience
has lead to what may be called a consensus. For example, in wind engineering, the
choice of one year as a block size has become very close to a standard procedure.
An important consideration for this choice is that the data may then reasonably be
assumed to belong to the same population since seasonal effects have been removed.

When the sample of block maxima has been determined, the next step would be
to estimate the parameters of the GEV model, or one of the three types, if that can
be ascertained a priori. In this book the focus is on two rather popular estimation
methods, which is the method of moments (primarily for the Gumbel model) and
the maximum likelihood method. The probability weighted moments method has also
been used to some extent. For this method, please cf. Hosking et al. (1985).

To simplify notation, the block maxima are denoted by Z1, . . . ,Zk, assuming k blocks.
These random variables are assumed to be iid with a common GEV distribution the
parameters of which are to be estimated from the outcomes of the block maxima, that
is, the observed data.
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2.6.1 Estimation by the method of moments

The exposition of the method of moments for parameter estimation is limited to
the Gumbel model. It is for this case that it seems to be most popular, maybe due
to its simplicity in this case. The general Gumbel model has two parameters. Since
the first two statistical moments m1 = E(Z) and m2 = E(Z2) of a Gumbel distributed
variable Z can be expressed in term of the these two parameters, for estimation the
following two empirical moments are calculated:

m̂ j = (1/k)
k

∑
i=1

z j
i , j = 1,2, (2.20)

where z1, . . . ,zk are the observed data.
Assuming that Z has the general Gumbel distribution G(z) = exp{−exp[−(z−

µ)/σ ]}, then m1 = E(Z) = µ +0.5772σ and m2 = E(Z2) = m2
1 +π2σ2/6, cf. Section 2.2.

Denote by µk and σk the estimated values of the parameters based on the k observa-
tions of block maxima. It is then obtained that,

µk = m̂1−0.5772σk (2.21)

and

σk = (
√

6/π)
√

m̂2− m̂2
1 (2.22)

2.6.2 Maximum likelihood estimation

The maximum likelihood (ML) method is very popular and has widespread use in
almost every branch of statistics. It turns out that the application of the ML methods
for estimation on GEV models requires some caution. Fortunately, it seems that for the
applications relevant for this book, the restrictions that need to be observed are rarely
an issue. Specifically, for values of the shape parameter γ >−0.5, the ML estimators
behave regularly. The only thing to note is that there are some small sample issues
related to the use of ML estimators also for GEV models, cf. Coles and Dixon (1999).

Based on the assumption that Z1, . . . ,Zk are iid random variables having a common
GEV distribution, then the log-likelihood function for the GEV parameters when
γ 6= 0 has the following expression:

`(µ,σ ,γ) =−k logσ − (1 + 1/γ)
k

∑
i=1

log
[

1 + γ

( zi−µ

σ

)]
−

k

∑
i=1

[
1 + γ

( zi−µ

σ

)]−1/γ

,

(2.23)
provided that

1 + γ

( zi−µ

σ

)
> 0, for i = 1, . . . ,k. (2.24)

If the last condition is violated, the likelihood becomes zero, and the log-likelihood
therefore −∞. The case γ = 0 needs to be considered separately, using the Gumbel
model. In this case the log-likelihood becomes
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`(µ,σ) =−k logσ −
k

∑
i=1

( zi−µ

σ

)
−

k

∑
i=1

exp
{
−
( zi−µ

σ

)}
. (2.25)

To obtain the numerical maximum likelihood estimates from the observed data by
using (2.23) and (2.25), standard numerical optimization programs may be utilized.
If (2.23) is used, care must be exercised to avoid numerical problems in cases where
the optimization algorithms tend to parameter estimates in the close vicinity of γ = 0.
Then it is strongly advisable to use (2.25).

Confidence intervals on the estimated parameter values can be calculated exploiting
that the approximate distribution of the estimators (µ̂, σ̂ , γ̂) is multivariate normal
with mean value (µ,σ ,γ). This is discussed by Coles (2001).

2.7 Model Validation

As is well known from basic courses in statistics, the use of probability (or PP) plots
and quantile (or QQ) plots may reveal very useful information about the extent of
agreement between an assumed or estimated probability distribution and the empirical
distribution of the data. These are also highly useful tools for a visual check of fitted
GEV models in particular cases. For a thorough discussion of the use of these plots,
cf. Beirlant et al. (2004).

A probability or PP plot is a direct comparison of the fitted distribution model to
the empirical distribution. Assume that the sample of block maxima has been ordered
by increasing value: z(1) ≤ z(2) ≤ . . .≤ z(k). The empirical distribution function, G̃ say,
evaluated at z(i) is given by,

G̃(z(i)) = i/(k + 1). (2.26)

The proposed GEV model distribution is obtained by substituting the parameter
estimates into (2.7),

Ĝ(z(i)) = exp

{
−
[

1 + γ̂

( z(i)− µ̂

σ̂

)]−1/γ̂
}
, (2.27)

provided γ̂ 6= 0. If γ̂ = 0, the plot is constructed using the Gumbel distribution. If the
GEV model is a good approximation, then

Ĝ(z(i))≈ G̃(z(i)) (2.28)

for each index i, so that the PP plot consisting of the points(
Ĝ(z(i)), G̃(z(i))

)
i = 1, . . . ,k, (2.29)

should follow approximately the unit diagonal.
For the case of extreme value distributions, a quantile or QQ plot is usually con-

sidered to be more informative than a PP plot because it shows more clearly the
agreement at high values of the observed data which is of primary concern when fit-
ting extreme value models. Assuming again that γ̂ 6= 0, the QQ plot is traced out by
the point graph, (

Ĝ−1(i/(k + 1)),z(i)
)
, i = 1, . . . ,k, (2.30)
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where

Ĝ−1(i/(k + 1)) = µ̂− σ̂

γ̂

[
1−
{
− log

(
i/(k + 1)

)}−γ̂
]
. (2.31)

This graph should also approximately follow a straight line. These procedures are
discussed at greater length in Chapter 9.

2.8 Estimating Confidence Intervals by Bootstrapping

The bootstrapping method is a statistical technique of fairly recent origin that can
be used for estimating confidence intervals on quantities derived from a statistical
distribution on the basis of a limited sample generated by that same distribution
(Efron and Tibshirani, 1993; Davison and Hinkley, 1997). It is based on resampling
from a distribution determined by the available sample of data. Despite the fact that
the name of the method alludes to lifting oneself up by the bootstraps (Baron von
Munchausen), the method appears to be reasonably effective for the specific purpose of
estimating confidence bands. For convenience, a brief discussion of some basic features
of the bootstrapping method is provided here.

Assume that z = (z1,z2, . . . ,zn) is a sample or vector consisting of n independent
observations of a random variable Z, and that this is the only empirical information
available about Z. Confidence intervals for a statistical quantity require the estima-
tion of quantiles from the distribution of a relevant estimator. There are in principle
two available options for obtaining bootstrap estimates of such quantiles. One is the
nonparametric approach, where a purely empirical distribution function is established
for Z on the basis of the observed data by allocating a probability of 1/n to each of
the observed data points. The other is the parametric bootstrap, which is obtained
by assuming that Z has a specified distribution function FZ(z;θ) = Prob(Z ≤ z), where
θ denotes a vector of unknown parameters, which determine the distribution. These
parameters are then estimated from the observed data z, giving θ̂ , and FZ(z; θ̂) is
adopted as the distribution of Z.

In this section on the block maxima method using GEV models, only the parametric
bootstrap is used. The goal is to estimate some statistical quantity V , e.g. a high
quantile like 100(1−α)% (0 < α << 1), given by the unknown distribution. Let V̂
denote the estimate of V obtained from the fitted model distribution FZ(z; θ̂), which is a
GEV distribution. The parametric bootstrapping technique for estimating confidence
intervals on V is based on resampling from the GEV model obtained.

This is done as follows: Let Z∗ denote the random variable with distribution func-
tion FZ(z; θ̂). ` bootstrap samples z∗j , j = 1, . . . , `, with n independent observations of
Z∗ in each sample are now generated. Each sample z∗j is used to fit a new GEV model
from which an estimate V ∗j of V is obtained.

Simple estimates for confidence intervals on V are derived by calculating the sample
standard deviation s∗V :

s∗V =

√√√√ 1
`−1

`

∑
j=1

(V ∗j −V̄ ∗)2, (2.32)

where V̄ ∗ = (1/`) ∑
`
j=1 V ∗j . An approximate confidence interval at level 1− q is then

obtained as,
(V̂ −wq/2 s∗V , V̂ + wq/2 s∗V ), (2.33)
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where wq/2 denotes the 100(1−q/2)% standard normal fractile. To get stable results
for this method, usually 20-30 bootstrap samples are sufficient. However, to avoid
making the assumption that the bootstrap estimates V ∗j are generated by a normal
distribution, which is the basis for Eq. (2.33), the true distribution may be approxi-
mated by generating a large number of bootstrap samples, usually several thousand
are needed, especially for small values of q. If ` samples were generated, the V ∗j are
rearranged in increasing order V ∗(1)≤V ∗(2)≤ . . .≤V ∗(`). A 100(1−q)% confidence interval

for V is then,
(V ∗(L) ,V ∗(M) ), (2.34)

where (L) = [q`/2] and (M) = [(1− q/2)`] ([a] means the integer part of a). Such
estimates may be further improved as described by Davison and Hinkley (1997).
However, such details will not be discussed here.

2.9 The Asymptotic Extreme Value Distributions for
Dependent Sequences

The assumed sequence of iid random variables underlying the classical approach to
extreme value distributions is obviously not a very practical model for many physical
phenomena where dependence effects are obvious. Fortunately, it turns out that the
extremal types theorem still applies provided some conditions are satisfied. These
conditions relate to the long range dependence structure of the sequence of random
variables. The typical model adopted is one of a stationary time series X1,X2, . . ..
Stationarity means that the joint probability law of a group of random variables from
the sequence is invariant with respect to time shifts. That is, e.g. X1,X2 has the same
joint distribution as X51,X52.

The condition that has to be satisfied by the long range dependence of the sta-
tionary time series to allow for an extremal types theorem, can be formulated as
follows:

A stationary time series X1,X2, . . . is said to satisfy the D(un) condition if, for all
i1 < .. . < ip < j1 < .. . < jq with j1− ip > l,

∣∣∣Prob
(

Xi1 ≤ un, . . . ,Xip ≤ un,X j1 ≤ un, . . . ,X jq ≤ un

)
−

Prob
(

Xi1 ≤ un, . . . ,Xip ≤ un

)
Prob

(
X j1 ≤ un, . . . ,X jq ≤ un

)∣∣∣≤ α(n, l), (2.35)

where α(n, ln)→ 0 for some sequence ln such that ln/n→ 0 as n→ ∞.

A scrutiny of this condition conveys the understanding that it is required that
block maxima tend to become independent random variables if the blocks are suf-
ficiently far apart. Provided that this condition is satisfied, the following theorem
applies (Leadbetter et al., 1983):

Let X1,X2, . . . be a stationary time series, and define Mn = max{X1, . . . ,Xn}. If there
exist sequences of constants an > 0 and bn such that



16 2 Classical Extreme Value Theory

Prob
(Mn−bn

an
≤ x
)
→ G(x) , n→ ∞, (2.36)

where G(x) is a nondegenerate distribution function, and the D(un) condition is sat-
isfied with un = anz + bn for every real z, and G(z) > 0, then G(x) belongs to the class
of generalized extreme value distributions.

The practical significance of this theorem is, in fact, substantial since very few
time series met in practice would consist of independent data. Hence, without it, the
application of GEV distributions to practical problems, would be very hard to justify.
Its application, of course, presupposes that the D(un) condition is satisfied, which
may seem like a highly nontrivial criterion to check for a given stationary time series.
Fortunately, it turns out that for most applications it may be routinely assumed to
be satisfied. E.g. a stationary Gaussian time series X1,X2, . . . with an autocovariance
function ρn = E [(Xi−µ)(Xi+n−µ)], where µ = EXi, will satisfy D(un) if ρn logn→ 0
when n→∞. Time series of measured data in engineering applications where ρn decays
slower that 1/ logn is actually very hard to imagine. However, it should be clearly
understood that the convergence to the appropriate asymptotic limit may depend
very much on the dependence structure of the time series. For instance, if there is
strong dependence between consecutive data points of the time series, the convergence
to the asymptotic limit may be very slow.

From the original time series X1,X2, . . ., a time series of independent variables
X̃1, X̃2, . . . may be constructed. Let M̃n = max{X̃1, . . . , X̃n}. Then the following theorem
has been proved by Leadbetter (1983),

If there exist sequences of constants an > 0 and bn, and a nondegenerate distribution
function G̃(x) such that,

Prob
(M̃n−bn

an
≤ x
)
→ G̃(x) , n→ ∞, (2.37)

if the D(un) condition is satisfied with un = anz+bn for every real z, and G(z) > 0, and
if Prob

(
(Mn−bn)/an ≤ x

)
converges for some x, then

Prob
(Mn−bn

an
≤ x
)
→ G(x) =

(
G̃(x)

)θ
, n→ ∞, (2.38)

for some constant θ ∈ [0,1].

The constant θ is called the extremal index, and unless it is equal to one, the
limiting distributions for the independent and the original stationary sequences, are
not the same. If θ > 0, then G(x) is an extreme value distribution, but with different
parameters than G̃(x). If (µ,σ ,γ) are the parameters of G(x), and (µ̃, σ̃ , γ̃) are the
parameters of G̃(x), then their relationship is

γ = γ̃, µ = µ̃− σ̃

γ
(1−θ

γ), σ = σ̃ θ
γ , (2.39)

or, if γ = 0, taking limits, it is obtained that µ = µ̃ +σ logθ and σ = σ̃ . Note that the
shape parameter γ remains the same.

The results cited previously are derived under the assumption of a sequence of
random variables. For many applications in this book, a sequence of random variables
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X1,X2, . . . is initially not considered, but rather a stochastic process in continuous time
X(t). To fit into the framework discussed in this section, one could envisage sampling
the considered process at discrete time points and obtaining a sequence X j = X(t j),
j = 1,2, . . .. In practice, this is often done by extracting local peak values from an
observed realization of the process. As has been seen, if the obtained time series is
stationary, then, under suitable conditions, the extremal types theorem still holds true.
Unfortunately, no satisfactory general theory of extremes is available for the case of
continuous time stochastic processes, but some results have been proven (Leadbetter
et al., 1983). Of course, in order for a realization of a stochastic process to be stored
in computer memory, it has to be sampled. In that sense, what is available for further
analysis is, in fact, a time series of outcomes of random variables. Hence, the sampling
frequency relative to the characteristics of the stochastic process determines to what
extent one may consider the stored time series to be a good replica of the realization of
the stochastic process, which may then be used for further processing, like extraction
of peak values.
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3.1 Introduction

A common approach to practical extreme value analysis is to use the GEV form of
the asymptotic extreme value distributions to fit to the observed extreme values. The
typical data that are used in this process are the extreme values observed over specified
periods of time, e.g. over one year periods. Such a procedure, extracting only extremes
over blocks of data, would immediately appear to be wasteful, since potentially very
useful data might be discarded. The Peaks-Over-Threshold method, or simply the
POT method, represents an approach to extreme value analysis that tries to avoid
this waste of data by considering all data that exceed a prescribed high threshold.
It will be shown that also for the POT method there are three limiting forms of the
exceedance probability distributions corresponding to The Extremal Types Theorem.
The Generalized Pareto (GP) distribution will take the place of the GEV distribution.

3.2 The Peaks-Over-Threshold Method

The basic assumption of the POT method is that the observed time series x1,x2, . . .
are the outcomes of a sequence of independent and identically distributed (iid) random
variables X1,X2, . . . with common distribution function FX (x). Instead of extracting the
extreme observations over blocks of data, the focus of the POT method is on all data
that exceed a given high threshold. If the chosen threshold u is high enough, it would
be natural to consider also the data exceeding u as extremes. Denoting an arbitrary
term of the Xi sequence by X , the exceedance probability essential to the POT method,
is the following conditional probability:

Prob(X > u + y | X > u) =
1−F(u + y)

1−F(u)
, y > 0, (3.1)

where y denotes the size of the exceedance above the threshold u.
If the parent distribution F were fully known, the distribution of the threshold

exceedances in Eq. (3.1) would also be known. However, in practical applications this
is rarely the case. Typically, only estimated approximations to the parent distribution
based on the observed data would be available. A consequence of this is that the
estimates of F(x) for x ≤ u in general becomes very uncertain for large to extreme
values of u. This makes the direct application of Eq. (3.1) useless for practical purposes.
Hence, limiting forms that would parallel the GEV distributions for extremes are
sought.

The main result needed is expressed by the following theorem:

Let X1,X2, . . . be a sequence of iid random variables with common distribution
function F , and let Mn = max{X1, . . . ,Xn}. Assume that the conditions of the Extremeal
Types Theorem are satisfied, so that for large n,

Prob(Mn ≤ z)≈ G(z),

where

G(x) = exp

{
−
(

1 + γ

(x−µ

σ

))−1/γ
}

, (3.2)
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defined on the set {x : 1+γ
(
(x−µ)/σ

)
> 0}, where the parameters satisfy−∞< µ <∞,

σ > 0, −∞ < γ < ∞. Then, for large enough u,

H(y) = Prob(X ≤ u + y | X > u)≈ 1−
(

1 + γ
y
σ̃

)−1/γ

, (3.3)

defined on {y : y > 0 and (1 + γy/σ̃) > 0}, where σ̃ = σ + γ(u−µ).
Note that the special case γ = 0 has to be interpreted as a limit, in analogy with

the GEV case γ = 0, viz.

H(y) = 1− exp
(
− y

σ̃

)
, y > 0, (3.4)

which corresponds to an exponential distribution with parameter 1/σ̃ .

The family of distribution functions defined by Eq. (3.3) is called the Generalized
Pareto (GP) distributions. The theorem above implies that if the block extremes have
the limiting distribution G, then threshold excesses have a corresponding limiting dis-
tribution within the GP family of distributions. And it follows from this theorem that
the parameters of the GP distribution of threshold excesses are uniquely determined
by those of the associated GEV distribution of block extremes. In particular, the
shape parameter γ of the GP distribution is identical to that of the corresponding
GEV distribution. It is important to note, however, that this statement is valid only
asymptotically. The practical significance of this is that, in general, the γ-parameter
estimated on the basis of a finite set of data rarely equals that of the correct asymp-
totic extreme value distribution. Also relevant in this context is the observation made
by Fisher and Tippet (1928) that the best fit to a finite set of extreme value data
from a stationary Gaussian process is provided by a Type III distribution and not by
the asymptotically correct Type I distribution.

A full proof of the theorem above will not be given here, but a sketch of the
proof may serve to illustrate the main ideas. A more precise argument is provided by
Leadbetter et al. (1983).

For large n, and for suitable values of the argument z,

Prob(Mn ≤ z) = Fn(z)≈ exp

{
−
(

1 + γ

( z−µ

σ

))−1/γ
}

,

Hence,

n logF(z)≈−
(

1 + γ

( z−µ

σ

))−1/γ

, (3.5)

By a Taylor expansion, it is found that log(1− ε) ≈ −ε for small positive ε. Conse-
quently, for large values of z, it follows that logF(z)≈−(1−F(z)). Substituting into
Eq. (3.5), followed by a rearrangement, leads to

1−F(u)≈ 1
n

(
1 + γ

(u−µ

σ

))−1/γ

,

for large values of u. Similarly, for y > 0,

1−F(u + y)≈ 1
n

(
1 + γ

(u + y−µ

σ

))−1/γ

,
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Hence, it follows that,

Prob
(

X > u + y | X > u
)
≈
(

1 + γ(u + y−µ)/σ

1 + γ(u−µ)/σ

)−1/γ

=
(

1 + γ
y
σ̃

)−1/γ

(3.6)

where σ̃ = σ + γ(u−µ), as required by Eq. (3.3).

3.3 Threshold Selection

Selection of an appropriate threshold to use when applying the POT method on
measured data is an essential ingredient. Its importance is reflected by the fact that
the predicted extreme values will in many cases show a significant dependence on this
choice. Unfortunately, in practice, there are no fully reliable methods to guide the
selection of an appropriate threshold. In spite of this, a couple of methods have seen
extensive use. These two methods will be discussed in this section.

The practical application of the POT method would typically proceed as follows.
The observed data x1,x2, . . . ,xn are assumed to be outcomes of independent and identi-
cally distributed random variables X1,X2, . . . ,Xn, which, of course, would require some
degree of justification. The extreme events to be used are the observed exceedances
above a high threshold u, that is, the data xi : xi > u. Denote these exceedances as
x(1),x(2), . . . ,x(k), and define the threshold excesses by y j = x( j)−u for j = 1, . . . ,k. Ac-
cording to our main result in the previous section, the excess data y j may be regarded
as independent realizations of a random variable whose distribution function is ap-
proximately of the GP type. By fitting the excess data to the GP distribution, an
approximate distribution of the excess variable is obtained.

In the choice of threshold, there are clearly two conflicting issues that have to
be dealt with. Choosing a high threshold is desirable from the point of view of not
violating too much the asymptotic basis for the theory. However, if too few data
are retained, there will be high uncertainty in every estimate. On the other hand, if
the threshold is too low, the apparent uncertainty of estimates may be reduced, but
the assumption that the excess values follow a GP distribution may be seriously in
error. Hence, in practice, there is a need to balance the two issues. There seems to
be two procedures that are used for this purpose. One is carried out prior to model
estimation by investigating how a diagnostic follows an expected pattern. The other
is an assessment of the stability of parameter estimates based on the fitting of models
for a range of different thresholds.

The first of the two methods uses the expected value of a GP variable Y with
distribution function

H(y) = 1−
(

1 + γy/σ

)−1/γ

, (3.7)

The expected value is then,

E[Y ] =
σ

1− γ
, (3.8)
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provided γ < 1, otherwise the mean value is infinite. Assume that the GP distribution
is a valid model for the excesses of a fixed threshold u0. Let X denote an arbitrary
term among X1,X2, . . . ,Xn. Then, by (3.8),

E[X−u0 | X > u0] =
σu0

1− γ
, (3.9)

provided γ < 1, where the convention of using σu to denote the scale parameter cor-
responding to excesses of the threshold u has been adopted. If the GP model holds
for the threshold u0, by necessity it also holds for any u > u0. Hence, for u > u0, it is
obtained that,

E[X−u | X > u] =
σu

1− γ
=

σu0 + γ(u−u0)

1− γ
, (3.10)

where the last equation follows from the main result of the previous section. This tells
us that for u > u0, E[X −u | X > u] is a linear function of u. This can then be verified
by calculating the mean value of the excesses for a range of thresholds. Thus, a plot
of the following empirical point estimates,{(

u,
1
nu

nu

∑
i=1

(x(i)−u)
)

: u < xmax

}
, (3.11)

where x(1),x(2), . . . ,x(nu) consist of the nu observations that exceed u, and xmax denotes
the largest observation, should be an approximately straight line for a range of u-
values where the GP model is applicable. This empirical graph is commonly called
the mean residual life plot. Confidence intervals can be added to the graph by using
the approximate normality of the sample means. We shall have occasion to illustrate
this diagnostic for the applicability of the POT method for real-life data, and it will
be clear that it is not always of much help.

3.4 Return Periods

The return period R of a given wind speed, in years, is defined as the inverse of
the probability that the specified wind speed will be exceeded in any one year. If λ

denotes the mean crossing rate of the threshold u per year (i.e., the average number
of data points above the threshold u per year), the return period R of the value of X
corresponding to the level xR = u + yR is given by the relation

R =
1

λ Prob(X > xR)
=

1
λ Prob(Y > yR)

. (3.12)

Hence, it follows that
Prob(Y ≤ yR) = 1−1/(λR). (3.13)

Invoking Eq. (3.7) for γ 6= 0 leads to the result

xR = u + σ [(λR)γ −1]/γ. (3.14)

Similarly, for γ = 0, it is found that



24 3 The Peaks-Over-Threshold Method

xR = u + σ ln(λR), (3.15)

where u is the threshold used in the estimation of γ and σ . A discussion of how to
estimate confidence intervals on xR using profile likelihood methods, is provided by
Coles (2001). In this book the focus is on the bootstrap method, cf. Section 3.7.

3.5 Parameter Estimation for the GP Distributions

There is a range of possible estimation methods available for the parameters of
the GP distribution. In our own work, we have mostly used three methods that serve
the purpose reasonably well when the shape parameter does not deviate too much
from zero (γ < 0.5): The de Haan estimators, the moment estimators and the maxi-
mum likelihood estimators. These three methods will be discussed below. Alternative
methods include the Hill estimators and the probability weighted moments (PWM)
estimators, cf. Beirlant et al. (2004). PWM estimators has been popular in flood fre-
quency analysis (Hosking et al., 1985). A further development are provided by the
L-moment estimators (Hosking and Wallis, 1997). It has been shown that L-moments
have some issues related to their lack of sensitivity to the tail behaviour of the under-
lying statistical distribution. This is clearly of importance for properly representing
extreme value distributions, cf. Winterstein and MacKenzie (2013).

3.5.1 de Haan estimators

Let n denote the total number of data points, while the number of observations
above the threshold value u is denoted by k. The threshold u then represents the
(k +1)th highest data point(s). An estimate for λ is λ̂ = k/nyrs, where nyrs denotes the
length of the record in years. The highest, second highest, ... , kth highest, (k + 1)th
highest variates are denoted by X∗n , X∗n−1, ...,X∗n−k+1, X∗n−k = u, respectively.

The parameter estimators proposed by de Haan (1994) are based on the following
two quantities:

Hk,n =
1
k

k−1

∑
i=0
{ln(X∗n−i)− ln(X∗n−k)} (3.16)

and

H(2)
k,n =

1
k

k−1

∑
i=0
{ln(X∗n−i)− ln(X∗n−k)}2 . (3.17)

Estimators for σ and γ are then given by the relations

σ̂ = ρ X∗n−k Hk,n = ρ uHk,n (3.18)

and

γ̂ = Hk,n + 1− 1
2

1− (Hk,n)2

H(2)
k,n


−1

(3.19)

where ρ = 1 if γ̂ ≥ 0, while ρ = 1− γ̂ if γ̂ < 0.
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Subject to general conditions on the underlying probability law, de Haan (1994)
showed that γ̂ → γ and σ̂ → σ as n→ ∞ (in probability).

Closely related to the de Haan estimators are the Hill estimators. Their application
to the problem of estimating extreme wind speeds was investigated by Naess and
Clausen (1999). Their conclusion was that the Hill estimators lead to results that are
quite similar to those provided by the de Haan estimators. Because the Hill estimators
require considerably higher numerical efforts than the de Haan estimators and rarely
provide significantly better results, the Hill estimators were excluded from the present
discussion. The interested reader is referred to Naess and Clausen (1999); Beirlant
et al. (2004) for details.

3.5.2 Moment estimators

In terms of the the mean value E(Y ) and the standard deviation s(Y ) of the ex-
ceedance variate Y , it can be shown that (Hosking and Wallis, 1987)

σ =
1
2
E(Y ){1 +[E(Y )/s(Y )]2} (3.20)

and

γ =
1
2
{1− [E(Y )/s(Y )]2} . (3.21)

Hence, empirical estimates of the first two moments of Y provide estimates of σ

and γ. The resulting estimators are referred to as the moment estimators for σ and γ.

3.5.3 Maximum likelihood estimators

The maximum likelihood estimators (MLEs) are often preferred due to their asymp-
totic efficiency. Let y1, . . . ,yk denote the observed sample of exceedances above the
threshold u from an observed sample of peak values x1, . . . ,xn. The log-likelihood func-
tion `(σ ,γ|y1, . . . ,yk) for the sample y1, . . . ,yk is given by

`(σ ,γ|y1, . . . ,yk) =−k lnσ −
(

1
σ

+ 1
) k

∑
i=1

ln
(

1 + γ
yi

σ

)
, (3.22)

provided (1 + γyi/σ) > 0 for i = 1, . . . ,k. If γ = 0, the log-likelihood assumes the form

`(σ ,0|y1, . . . ,yk) =−k lnσ − 1
σ

k

∑
i=1

yi . (3.23)

The MLE σ̂ and γ̂ are obtained by maximizing `(σ ,γ|y1, . . . ,yk) with respect to σ and
γ. These values are found by numerical methods, except for the special case γ = 0, for
which a simple, closed-form solution exists for σ̂ . It is given as σ̂ = ∑

k
i=1 yi/k.
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3.6 Model Validation

Probability (PP) and quantile (QQ) plots may be useful tools to get a grip on the
suitability of the GP model for the excesses beyond a chosen threshold u, cf. Beirlant
et al. (2004). Denote the threshold excesses by y1,y2, . . . ,yk and the estimated GP
model by Ĥ. Ordering the threshold excesses by increasing magnitude: y(1) ≤ y(2) ≤
. . .≤ y(k), the PP plot consists of the point graph,(

i/(k + 1), Ĥ(y(i))
)
, i = 1, . . . ,k, (3.24)

where

Ĥ(y) = 1−
(

1 + γ̂y/σ̂

)−1/γ̂

, (3.25)

provided γ̂ 6= 0. If γ̂ = 0, the plot is constructed using the exponential distribution.
Assuming again that γ̂ 6= 0, the QQ plot is traced out by the point graph,(

Ĥ−1(i/(k + 1)),y(i)
)
, i = 1, . . . ,k, (3.26)

where

Ĥ−1(y) = u +
σ̂

γ̂

(
y−γ̂ −1

)
, (3.27)

If the GP model is a reasonable model for the distribution of the excesses of u, both
the PP and the QQ plot should follow approximately a straight line. These procedures
are discussed more thoroughly in Chapter 9.

3.7 Estimating Confidence Intervals by Bootstrapping

The principle of the bootstrapping method was briefly explained in the previous
chapter, cf. Section 2.8. In this section on the POT method, only the nonparametric
bootstrap is used. The goal of this method is to estimate some statistical quantity
V given by the unknown distribution function on the basis of an observed sample
y = (y1,y2, . . . ,yn), which is a sample or vector consisting of n independent observations
of a random variable Y . Let V̂ denote the estimate of V based on the given sample.
The nonparametric bootstrapping technique for estimating confidence intervals on V
is based on resampling (with replacement) from the empirical distribution function
(EDF) provided by the observed sample y, cf. Section 2.8.

This is done as follows: the EDF gives rise to an empirical random variable Y ∗.
` bootstrap samples y∗j , j = 1, . . . , `, with n independent observations of Y ∗ in each
sample are now generated. Each sample y∗j gives rise to an estimate V ∗j of V .

Simple estimates for confidence intervals on V are derived by calculating the sample
standard deviation s∗V :

s∗V =

√√√√ 1
`−1

`

∑
j=1

(V ∗j −V̄ ∗)2, (3.28)

where V̄ ∗ = (1/`) ∑
`
j=1 V ∗j . An approximate confidence interval at level 1− q is then

obtained as
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(V̂ −wq/2 s∗V , V̂ + wq/2 s∗V ), (3.29)

where wq/2 denotes the 100(1−q/2)% standard normal fractile. To get stable results
for this procedure, usually 20-30 bootstrap samples are sufficient. To avoid making
the assumption that the bootstrap estimates V ∗j are normally distributed, the true
distribution may be approximated by generating a large number of bootstrap samples,
usually several thousand are needed, especially for small values of q. If ` samples
were generated, the V ∗j are rearranged in increasing order V ∗(1) ≤ V ∗(2) ≤ . . . ≤ V ∗(`). A

100(1−q)% confidence interval for V is then,

(V ∗(L) ,V ∗(M) ) , (3.30)

where (L) = [q`/2] and (M) = [(1− q/2)`] ([a] means the integer part of a). Davison
and Hinkley (1997) describe possible improvements of such estimates. However, they
are not discussed here as they are considered to be of less practical interest.
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4.1 Introduction

In Chapter 1, some challenges to the problem of estimating extreme value distri-
butions from limited amounts of data were discussed. In the current chapter, this
problem will be approached by exploiting the concept of the mean upcrossing rate.
It will be shown that this opens the door to very robust and reasonably accurate
approximations to the extreme value distributions of stochastic processes, provided
some reasonable conditions are satisfied. In the majority of books on extreme value
statistics, which generally focus on asymptotic results for sequences of data, this ap-
proach is usually discussed under a heading that typically goes like the title of the
current chapter. By stopping short of the asymptotic limits, this approach offers a
uniquely applicable methodology for approximate extreme value analysis of a host of
engineering problems.

In all sections of this chapter, except the last, it is assumed that the stochastic
process model is stationary. This is typically referred to as a short-term condition,
which is highlighted because the environmental processes causing loads and motions of
structures of interest to us, are changing their characteristics with time. E.g. in offshore
engineering, the practical time window for sea states to be considered stationary, is
typically chosen to be three hours. Hence, in order to properly handle the estimation
of extreme values over the design life of a structure, it is necessary to derive methods
that allow us to obtain extreme value distributions for the long-term condition. This
problem is discussed in Section 4.10.

4.2 Average Rate of Level Crossings

As an example, let us assume that the forces at a given location in a structure due
to wind loads can be modeled as a stationary stochastic process X(t) with smooth
realizations, cf. Chapter 9. In fact, in practice, it may be assumed that the variance
spectrum, see Chapter 9, of the process has compact support, implying that the real-
izations are infinitely smooth. It is now desirable to calculate how often an arbitrary
realization of X(t) can be expected to exceed a given force level a. An equivalent
formulation of the same problem is the following: what is the average number of a-
upcrossings per unit time by X(t)? An a-upcrossing means that the level a is exceeded
with positive slope. Figure 4.1 shows part of a realization of a narrow banded process,
where there are three upcrossings of the indicated level a. Each upcrossing is marked
with a small circle in Figure 4.1.

Let N+(a,∆ t) denote the random number of times that X(t) upcrosses the level a
during the time interval (t, t +∆ t). It has been assumed that X(t) has smooth realiza-
tions, which means that they are differentiable and that the differentiated realizations
are continuous. This means that x(t + δ ) ≈ x(t) + ẋ(t)δ for 0 ≤ δ ≤ ∆ t (∆ t small) for
any realization x(t) of X(t). In other words, any realization x(t) can be approximated
by a straight line in the interval (t, t + ∆ t). This implies that x(t) crosses the level a
at most once in this interval, see Figure 4.2. The conditions for one upcrossing of the
level a in the interval (t, t + ∆ t) then become

x(t)≤ a (4.1)
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Figure 4.1 A realization of a narrow banded process with three upcrossings of the level a
during time T .

and
x(t + ∆ t)≈ x(t)+ ẋ(t)∆ t > a. (4.2)

Figure 4.2 Local approximation by a straight line at an upcrossing.

To satisfy Eqs. (4.1) and (4.2), it is clearly necessary that ẋ(t) > 0. The conditions
for one upcrossing can therefore be written in the following way:

a− ẋ(t)∆ t < x(t)≤ a (4.3)

and
ẋ(t) > 0 . (4.4)

It is seen that to calculate the probability for an upcrossing, the joint density
fX(t)Ẋ(t)(x, ẋ) of X(t) and Ẋ(t) is needed. The way stationarity has been defined,

fX(t)Ẋ(t)(x, ẋ) is automatically independent of t. Hence, we simply write fXẊ (x, ẋ) to
indicate this independence. From Eqs. (4.3) and (4.4), it is obtained that, for suffi-
ciently small ∆ t,

Prob{N+(a,∆ t) = 1}=
∫

∞

0

∫ a

a−ẋ∆ t
fXẊ (x, ẋ)dxdẋ. (4.5)
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Hence, for small ∆ t, ∫ a

a−ẋ∆ t
fXẊ (x, ẋ)dx = ẋ∆ t fXẊ (a, ẋ), (4.6)

provided that fXẊ (x, ẋ) is continuous. This implies that

Prob{N+(a,∆ t) = 1}= ∆ t
∫

∞

0
ẋ fXẊ (a, ẋ)dẋ. (4.7)

Since it is assumed that the realizations can be approximated locally by a straight
line, then pn = Prob{N+(a,∆ t) = n} is negligible for n = 2,3, . . . compared to p1 for
sufficiently small ∆ t. It follows that

E[N+(a,∆ t)] =
∞

∑
n=0

n pn ≈ 0 · p0 + 1 · p1 + 2 ·0 + 3 ·0 + . . .

= p1 = ∆ t
∫

∞

0
ẋ fXẊ (a, ẋ)dẋ. (4.8)

The expected (or average) number of a-upcrossings per unit of time, which is
denoted by ν

+
X (a), is then given by the following expression:

ν
+
X (a) = lim

∆ t→0

1
∆ t

E[N+(a,∆ t)] =
∫

∞

0
ẋ fXẊ (a, ẋ)dẋ. (4.9)

ν
+
X (a) is referred to by several names. In this book we use mostly average (or mean) (a-

)upcrossing rate and average (or mean) (a-)upcrossing frequency. It is seen that ν
+
X (a)

depends only on the level a. Because ν
+
X (a) is independent of t, E[N+(a,T )] = ν

+
X (a)T

for any value of T , cf. Eq. (4.8), which was derived under the assumption that ∆ t is
small.

Equation (4.9) is a useful formula. It is often referred to as the Rice formula after its
creator S. O. Rice (1954). To get a feeling for the physical content of the Rice formula,
one may note that the right hand side of Eq. (4.9) expresses a sort of expectation value
of the slope at upcrossing of the level a coupled with the probability of being at that
level. The greater the average slope at a given level, the more often an arbitrary
realization will upcross that level. In other words, large average positive slope of the
time histories implies shorter cycles and thereby more frequent level crossings. At the
same time one must expect that the number of upcrossings of a given level is coupled
to the probability of reaching that level. The Rice formula therefore appears to have
a fairly plausible form when it is subjected to closer scrutiny.

In the same way that an a-upcrossing was defined, an a-downcrossing can be defined
in a similar way. An a-downcrossing implies that the level a is passed with negative
slope. The expected number of a-downcrossings per unit of time of a stationary process
X(t) is denoted by ν

−
X (a). To derive the formula for ν

−
X (a), the following observation

is made: it is obvious that an a-downcrossing for the process X(t) is equivalent with a
(−a)-upcrossing for the process Y (t) =−X(t). Hence ν

−
X (a) = ν

+
Y (−a). From the rela-

tion Y (t) = −X(t) follows that fYẎ (y, ẏ) = fXẊ (−y,−ẏ). This, together with Eq. (4.9),
gives
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ν
−
X (a) = ν

+
Y (−a) =

∫
∞

0
ẏ fYẎ (−a, ẏ)dẏ =

∫
∞

0
ẏ fXẊ (a,−ẏ)dẏ

=
∫ −∞

0
ẋ fXẊ (a, ẋ)dẋ =−

∫ 0

−∞

ẋ fXẊ (a, ẋ)dẋ. (4.10)

A common way of rewriting Eq. (4.10) is

ν
−
X (a) =

∫ 0

−∞

|ẋ| fXẊ (a, ẋ)dẋ. (4.11)

An a-crossing is either an a-upcrossing or an a-downcrossing. The expected number
of a-crossings per unit of time, denoted by νX (a), must satisfy the equation νX (a) =
ν

+
X (a)+ ν

−
X (a). From Eqs. (4.9) and (4.11), it is then obtained that

νX (a) =
∫

∞

−∞

|ẋ| fXẊ (a, ẋ)dẋ. (4.12)

For a stationary process, any a-upcrossing must by necessity be followed by an
a-downcrossing, and conversely. If that was not the case, the realizations would have
a mean drift in the positive or negative direction; that is, the mean value would not
be constant. For a stationary process, the following relations apply:

ν
−
X (a) = ν

+
X (a) =

1
2

νX (a). (4.13)

4.3 Distribution of Peaks of a Narrow-banded Process

Assume that X(t) is a stationary process with zero mean value, which is also nar-
row banded. What characterizes a realization of a narrow banded process is that the
amplitude and length (period) of subsequent cycles vary slowly, as illustrated in Fig-
ure 4.1. This implies that almost invariably, there is only one maximum or peak value
between an upcrossing and a subsequent downcrossing of any level a, see Figure 4.3.
Because a zero mean value was assumed, the mean number of peaks per unit of time
will therefore be approximately equal to the mean rate of zero-upcrossings, that is,
ν

+
X (0).

Let Xp denote the size or height of an arbitrary peak of X(t). Xp becomes a random
variable. The probability distribution of Xp for a narrow banded process X(t) with
zero mean value is now defined as

Prob{Xp > a}=
ν

+
X (a)

ν
+
X (0)

, (a≥ 0). (4.14)

The distribution FXp(a) is then given as

FXp(a) = 1− ν
+
X (a)

ν
+
X (0)

, a≥ 0, (4.15)

while FXp(a) = 0 for a < 0.

If mX 6= 0, the following definition applies: FXp(a) = 1−ν
+
X (a)/ν

+
X (mX ) for a ≥ mX

and FXp(a) = 0 for a < mX . Because ν
+
X (a) is assumed to equal the mean number
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Figure 4.3 (a) Peak between an upcrossing and a subsequent downcrossing of the level a. (b)
Two peaks between an upcrossing and a subsequent downcrossing.

of peaks per unit of time above the level a, then clearly ν
+
X (a) will decrease with

increasing a. For all processes of interest to us, it may be assumed that ν
+
X (a)→ 0

when a→ ∞. This implies that FXp(a) gets the properties that a distribution must
have; that is, FXp(a) is a nondecreasing function for increasing a, FXp(a)→ 0 when

a→−∞ and FXp(a)→ 1 when a→ ∞. It is tacitly assumed that ν
+
X (a) gets its largest

value when a = mX , which is usually the case. As observed, it is true for a Gaussian
process. Note that it must also apply to processes that are characterized by having
only one maximum between an upcrossing and a subsequent downcrossing of the mean
value level, that is, for infinitely narrow banded processes. The assumption made is
therefore quite reasonable.

If ν
+
X (a) can be differentiated with respect to a, the density for peaks is obtained,

assuming that mX = 0,

fXp(a) =− 1
ν

+
X (0)

dν
+
X (a)

da
, a≥ 0, (4.16)

while fXp(a) = 0 for a < 0. Equations (4.15) and (4.16) are sometimes called the ”peak
formulas”. It is emphasized that they only apply to narrow banded processes.

For the sake of completeness, it should be mentioned that the peak distributions
can also be defined in the general case. However, this would require that the exact
mean number of peaks per unit of time were used in definitions. The expressions
then obtained would be of limited practical use because they are difficult, if not
impossible, to calculate. The simplifications that are sometimes introduced to make
the expressions amenable to calculations are often, in fact, ill defined.

4.4 Average Upcrossing Rate and Distribution of Peaks of a
Gaussian Process

A random variable X is normally distributed if the density of X is given as,

fX (x) =
1√

2πσX
exp
{
− 1

2

(x−mX

σX

)2}
(4.17)
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for σX > 0. If σX = 0, then X = mX . In this case, X may be considered as a degenerate
normal variable.

Two random variables X and Y are called jointly normally distributed if the joint
density of X and Y is given by the equation,

fXY (x,y) =
1

2π σX σY

√
1−ρ2

XY

exp
{
− 1

2(1−ρ2
XY )

[(x−mX

σX

)2

−2ρXY

(x−mX

σX

)(y−mY

σY

)
+
(y−mY

σY

)2]}
(4.18)

where ρXY = E[(X −mX )(Y −mY )]/σX σY is the correlation coefficient for X and Y .
Invariably, | ρXY |≤ 1, but to be precise, in Eq. (4.18) it is assumed that |ρXY |< 1 and
that σX > 0, σY > 0.

If X and Y are uncorrelated, ρXY = 0 by definition. For this case, Eq. (4.18) assumes
the form,

fXY (x,y) =
1

2π σX σY
exp
{
− 1

2

[(x−mX

σX

)2
+
(y−mY

σY

)2]}
=

1√
2π σX

exp
{
− 1

2

(x−mX

σX

)2}
· 1√

2π σY
exp
{
− 1

2

(y−mY

σY

)2}
= fX (x) · fY (y) (4.19)

According to Eq. (4.19), X and Y are (statistically) independent variables. We
have therefore shown that two uncorrelated normally distributed (real) variables are
automatically independent. However, one should make a note of the fact that this
does not apply to other types of random variables.

A stochastic process X(t) is called Gaussian or normally distributed if the random
variable Z = ∑

n
j=1 c j X(t j) is normally distributed for any (arbitrary) choice of n (=

1,2, . . .), constants c1, . . . ,cn, and times t1, . . . , tn. If Y (t) is the response of a linear,
time-invariant system where the input process F(t) is Gaussian, F(t) and Y (t) are
jointly normally distributed variables for any time t, and Y (t) also becomes a Gaussian
process.

If X(t) is a stationary and differentiable Gaussian process, X(t) and Ẋ(t) are jointly
normally distributed for any t. It can be shown that ρX(t) Ẋ(t) = 0, cf. Wong and Hajek

(1985); Naess and Moan (2013); hence, X(t) and Ẋ(t) are independent variables, and
it follows that,

fX(t)Ẋ(t)(x, ẋ) = fX(t)(x) · fẊ(t)(ẋ)

=
1

2π σX σẊ
exp
{
− 1

2

[(x−mX

σX

)2
+
( ẋ

σẊ

)2]}
(4.20)

where the fact that mẊ = 0 for the derivative Ẋ(t) of any stationary and differentiable
process X(t) has been used. This can be seen as follows:

E[Ẋ(t)] = lim
N→∞

1
N

N

∑
j=1

ẋ j(t) =
d
dt

lim
N→∞

1
N

N

∑
j=1

x j(t) =
d
dt

E[X(t)] (4.21)

Because mX = E[X(t)] = constant for a stationary process, it follows immediately that
mẊ = 0. Note also that fX(t)Ẋ(t)(x, ẋ) is independent of t.
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Let us calculate the mean upcrossing rate ν
+
X (a). Substituting from Eq. (4.20) into

Eq. (4.9) gives

ν
+
X (a) =

∫
∞

0

ẋ
2π σX σẊ

exp
{
− 1

2

[(a−mX

σX

)2
+
( ẋ

σẊ

)2]}
dẋ

=
1

2π

σẊ
σX

exp
{
− 1

2

(a−mX

σX

)2}∫ ∞

0

ẋ
σẊ

exp
{
− 1

2

( ẋ
σẊ

)2}
d
( ẋ

σẊ

)
=

1
2π

σẊ
σX

exp
{
− 1

2

(a−mX

σX

)2}
. (4.22)

It is seen that ν
+
X (a) decreases rapidly (with σX as reference scale) at each side of

the mean value, where it assumes its largest value

ν
+
X (mX ) =

1
2π

σẊ
σX

. (4.23)

In many situations one would prefer to define the origin so that mX = 0. The expres-
sion on the rhs of Eq. (4.23) is therefore often referred to as the mean zero upcrossing
rate, under the tacit assumption that mX = 0. Another corresponding parameter that
is often met in the literature, is the mean zero-crossing period Tz, which is defined by,

Tz = (ν
+
X (0))−1 = 2π

σX

σẊ
. (4.24)

For a stationary Gaussian process X(t) with mean value zero, ν
+
X (a) is completely

determined by the two standard deviations σX and σẊ . If the variance spectrum SX (ω)
of X(t) is known, σX and σẊ can be calculated by using the formulas,

σ
2
X =

∫
∞

−∞

SX (ω)dω (4.25)

and

σ
2
Ẋ =

∫
∞

−∞

ω
2 SX (ω)dω. (4.26)

If X(t) is also assumed to be narrow banded, the density fXp(a) of the peaks of X(t)
may be calculated. From Eqs. (4.16) and (4.22), it is found that (mX = 0),

fXp(a) =

{
a

σ2
X

exp
{
− a2

2σ2
X

}
a≥ 0

0 , a < 0.
(4.27)

A density of this type is called a Rayleigh density, and Xp becomes a Rayleigh dis-
tributed variable. An example of fXp(a) is shown in Figure 4.4

Gaussian processes have great practical significance. This is primarily due to the
following two reasons. In many cases, important physical phenomena that give rise to
loads on structures can be modeled as Gaussian processes with a reasonable degree of
accuracy. Moreover, weakly damped structures usually make the response more Gaus-
sian than the load. In addition comes the fact that a Gaussian process is particularly
amenable to analytical treatment.

From Eq. (4.22), it is seen that ν
+
X (a) is proportional to fX (a), which is a conse-

quence of the fact that X(t) and Ẋ(t) are independent random variables for any t. Of



4.5 Extreme Value Distributions by the Upcrossing Rate Method 37

Figure 4.4 The PDF fXp (a) with σX = 1.0 of Rayleigh distributed peaks.

course, in general this is not the case. Returning to Eq. (4.9), it may be rewritten as,

ν
+
X (a) =

∫
∞

0
ẋ fXẊ (a, ẋ)dẋ =

∫
∞

0
ẋ fẊ |X (ẋ | a) fX (a)dẋ = E[Ẋ+ | X = a] fX (a). (4.28)

Here E[Ẋ+ |X = a] denotes the average positive slope of X(t) at the level X(t) = a, which
in general depends on the level a. However, as pointed out by Naess and Gaidai (2008),
for a wide range of response processes, this dependence appears to be surprisingly
weak.

4.5 Extreme Value Distributions by the Upcrossing Rate
Method

The starting point is that a response quantity has been modeled as a stationary
stochastic process. The goal now is to calculate the probability distribution of the
largest value of the response process X(t) during a specified time period. It is also
a goal to determine the probability distribution of the time to the first exceedance
of a given response level. These problems are very difficult to solve exactly, but by
simplifying somewhat, one may often find reasonably accurate approximate solutions.

Let us denote the largest value that X(t) assumes during the time T by M(T ). That
is, M(T ) = max{X(t);0≤ t ≤ T}. Also, let Θ(a) denote the time to the first exceedance
of the level a. M(T ) and Θ(a) are random variables. If it is convenient to emphasize
that M(T ) and Θ(a) refer to the process X(t), the notation MX (T ) and ΘX (a) is used.
Clearly,

Prob{M(T )≤ a}= Prob{Θ(a) > T} (4.29)

because both events {M(T ) ≤ a} and {Θ(a) > T} express the same, namely, that
there are no exceedances of the level a during time T . Let us call this event E .
Then E = {X(t) ≤ a for all t ∈ (0,T )}, but this event can also be expressed as
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E = {X(0)≤ a and N+(a,T ) = 0}. This is so because if X(0)≤ a and there are no subse-
quent upcrossings of a, there can be no exceedances. Hence, Prob{E }= Prob{X(0)≤
a and N+(a,T ) = 0}→Prob{N+(a,T ) = 0} when a→∞ because of the law of marginal
probability. When it is written that a→ ∞ here, it means that a assumes values that
are large compared to the typical values for the process considered; it should not
be strictly interpreted as meaning that a grows beyond all limits. In the chapter on
asymptotic extreme value distributions, this will be different. Because the extreme
values in most cases are much larger than the typical values, the approximation
Prob{E }= Prob{N+(a,T ) = 0} is introduced.

To determine Prob{N+(a,T ) = 0}, the following simplifying assumption is intro-
duced: upcrossings of high levels are statistically independent events. If the process
X(t) is not too narrow banded, that is, neighbouring peaks tend to be of similar size,
this is a reasonable approximation. This simplification implies that the random num-
ber of upcrossings in an arbitrary time interval of length T is Poisson distributed with
parameter E[N+(a,T )] = ν

+
X (a)T . In particular, this leads to the result

Prob{N+(a,T ) = 0}= exp{−ν
+
X (a)T}. (4.30)

A derivation of Eq. (4.30) is given in the appendix at the end of this chapter.
From Eq. (4.30), it is then obtained that

FM(T )(a) = Prob{M(T )≤ a}= exp{−ν
+
X (a)T} , (a→ ∞), (4.31)

and

FΘ(a)(θ) = 1−Prob{Θ(a) > θ}= 1− exp{−ν
+
X (a)θ} , (a→ ∞), (4.32)

Often, ν
+
X (a)T � 1 for a relevant level a and time interval (0,T ), such that the

probability of exceedance of a during the time T can be approximated as

Prob{Exceedance}= FΘ(a)(T )≈ ν
+
X (a)T (4.33)

because ex ≈ 1 + x for |x| � 1.
The derivations above represent a successful attempt in deriving an approximate

expression for the distribution of the extreme value M(T ) and for the time to first
passage Θ(a) for large values of a, and it was seen that these distributions are de-
termined by the mean level-upcrossing rate ν

+
X (a). The only significant simplification

that has been adopted is the assumption that upcrossings of high levels are indepen-
dent. Regarding the response of a lightly damped structure, the response maxima
will have a tendency to occur in clumps. In particular, large peaks will tend to oc-
cur simultaneously as illustrated in Figure 4.1. The assumption about independent
upcrossings will then tend to be less valid. In such cases, Eqs. (4.31) and (4.32) may
give significant deviations from the correct values, but always on the safe side in the
sense that Eq. (4.31), for instance, leads to larger extreme value estimates than the
correct ones. It will be seen in the next chapter that the ACER method provides a
practical and elegant solution to this specific problem.

When the upcrossing rate is estimated from time series of limited length, there
will be uncertainty due to sample variability. Hence, uncertainty quantification is an
important issue in extreme value analysis, which is sensitive to small model changes.
Since the upcrossing rate is, in fact, largely equivalent to one of the ACER functions,
this problem is discussed in the next chapter.
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In some situations, the relevant extreme values will be connected to the smallest or
minimum values of a process. Such a case can, however, be easily recast to a study of
maximum values by observing that min{X(t);0≤ t ≤ T}=−max{−X(t);0≤ t ≤ T}.

4.6 Extreme Values of Gaussian Processes

The particular case of a Gaussian process warrants special attention. Hence, let
X(t) be a stationary Gaussian process with a mean level upcrossing rate given by
Eq. (4.22). For simplicity, it is assumed that mX = 0. In any case, since changing the
mean value is equivalent to a constant shift of all realizations, nothing is lost by this
assumption.

The distribution of M(T ) (≥ 0) for large values of a is then, according to Eqs. (4.22)
and (4.31), given by the expression

FM(T )(a) = exp
{
−ν

+
X (0)T exp

(
− a2

2σ2
X

)}
, (a→ ∞), (4.34)

where the mean zero upcrossing rate enters, that is,

ν
+
X (0) =

1
2π

σẊ
σX

. (4.35)

The density of M(T ), fM(T )(a), can be calculated from Eq. (4.34) by fM(T )(a) =
dFM(T )(a)/da, and it is given as follows (for large values of a):

fM(T )(a) =
a

σ2
X

ν
+
X (0)T exp

(
− a2

2σ2
X

)
exp
{
−ν

+
X (0)T exp

(
− a2

2σ2
X

)}
=

a
σ2

X
ν

+
X (0)T exp

(
− a2

2σ2
X

)
FM(T )(a). (4.36)

Assuming that Eq. (4.36) is valid for all values of a, Figure 4.5 shows the density of
M(T ) for various values of ν

+
X (0)T .

A quantity of particular interest in connection with design of structures is the level
a = ξp = ξp(T ) , which with probability p is not exceeded during the time T , that is,

FM(T )(ξp) = p. (4.37)

Because p = exp(ln p), it follows from Eq. (4.34) that

exp
(
−

ξ 2
p

2σ2
X

)
=− ln p

ν
+
X (0)T

. (4.38)

This leads to the formula

ξp(T ) = σX

√
2ln
(

ν
+
X (0)T

ln(1/p)

)
. (4.39)



40 4 A Point Process Approach to Extreme Value Statistics

Figure 4.5 Various densities for a stationary Gaussian process X(t). A: Density of X(t). B:
Density of the peaks of X(t) (narrow banded case). C: Density of M(T ) for various values of
N = ν

+
X (0)T .

This formula can then be used to find the response level that has a probability of 1%,
say, of being exceeded (p = 0.99) during time T .

The most probable extreme value, denoted by ξ̂ = ξ̂ (T ), is given to good approxi-
mation by the formula

ξ̂ = σX

√
2 ln

(
ν

+
X (0)T

)
(4.40)

ξ̂ is the value where the PDF of the extreme value M(T ) attains its maximum. It

follows that ξ̂ ≈ ξ0.37 because ln(1/0.37)≈ 1.0 (e−1 ≈ 0.37).
Specific values of the quantiles ξp/σX for various numbers of zero upcrossings are

listed in Table 4.1. Apart from providing a set of useful reference values, Table 4.1
also clearly illustrates the slow increase in typical extreme values with increasing time
for a stationary Gaussian process.

Table 4.1 Table of ξp/σX -values

ν
+
X (0)T 10 100 1000 10000

p = 0.37 2.1460 3.0349 3.7169 4.2919
p = 0.50 2.3105 3.1533 3.8143 4.3765
p = 0.90 3.0176 3.7028 4.2797 4.7876
p = 0.95 3.2474 3.8924 4.4448 4.9357
p = 0.99 3.7156 4.2908 4.7975 5.2556
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Another quantity that is often used as a measure of extreme values is the expected
largest value during a given time T , that is, E[M(T )]. This expected value can be
calculated as,

E[M(T )] =
∫

∞

0
a

dFM(T )(a)

da
da. (4.41)

It is now convenient to introduce a new integration variable η defined by the equation
FM(T )(a) = e−η , which implicitly defines a as a function of η . Note that a = 0 (∞)
corresponds to η = ∞ (0). It is obtained that,

dFM(T )(a)

da
da =

dFM(T )(a)

dη

dη

da
da =

dFM(T )(a)

dη
dη =−e−η dη . (4.42)

Substituted into Eq. (4.41), this leads to the equation,

E[M(T )] =
∫

∞

0
a(η)e−η dη , (4.43)

where a = a(η) is a function of η . The way η is defined, η = ν
+
X (0)T exp{−a2/(2σ2

X )}.
Our focus is on large a-values, that is, small η-values, and it is obtained by solving
with respect to a:

a = σX

√
2ln(ν

+
X (0)T )−2lnη

= σX

√
2ln(ν

+
X (0)T )

{
1− lnη

ln(ν
+
X (0)T )

}1/2

= σX

√
2ln(ν

+
X (0)T )

{
1− lnη

2ln(ν
+
X (0)T )

− (lnη)2

8(ln(ν
+
X (0)T ))2 + . . .

}
. (4.44)

It can be shown that the main contribution to the integral in Eq. (4.43) comes
from small η-values, and it is found that,

E[M(T )]≈ σX

√
2ln(ν

+
X (0)T )

{
1−

∫
∞

0 lnη e−η dη

2ln(ν
+
X (0)T )

−
∫

∞

0 (lnη)2 e−η dη

8(ln(ν
+
X (0)T ))2 + . . .

}
= σX

√
2ln(ν

+
X (0)T )

{
1 +

λE

2ln(ν
+
X (0)T )

−
π2

6 + λ 2
E

8(ln(ν
+
X (0)T ))2 + . . .

}
(4.45)

because
∫

∞

0 lnη e−η dη =−λE and
∫

∞

0 (lnη)2 e−η dη = π2/6 + λ 2
E , where λE = 0.5772...

denotes Euler’s constant. Usually, ln(ν
+
X (0)T ) is sufficiently large to warrant the fol-

lowing approximation

E[M(T )]≈ σX

{√
2ln(ν

+
X (0)T )+

λE√
2ln(ν

+
X (0)T )

}
(4.46)

Similarly, it is found that,

E[M(T )2] =
∫

∞

0
a(η)2 e−η dη ≈ 2σ

2
X
{

ln(ν
+
X (0)T )+ λE

}
(4.47)
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From Eqs. (4.47) and (4.46), the expression for the variance of M(T ) may be derived.
It is obtained that,

σ
2
M(T ) = E[M(T )2]−E[M(T )]2 ≈ π2σ2

X

12ln(ν
+
X (0)T )

. (4.48)

One may note that E[M(T )]→ ∞, while σM(T ) → 0 when T → ∞. In Figure 4.5 it
is clearly seen how the mean value of M(T ) increases, while the standard deviation
decreases with increasing values of T .

Let us conclude this discussion of the extreme value distribution of a stationary
Gaussian process by showing that it approaches one of the three asymptotic extreme
value distributions discussed in Chapter 2 , viz. the Gumbel distribution. The expres-
sion for FM(T )(a) given by Eq. (4.34) can be written as,

FM(T )(a) = exp
{
− exp

(
−h(a)

)}
, (a→ ∞), (4.49)

where h(a) = a2

2σ2
X

+ ln(ν
+
X (0)T ). Let a0 denote the solution of the equation h(a) = 0.

This gives a0 = σX

√
2ln(ν

+
X (0)T ). It can be verified that the range of values of a where

most of the extreme value distribution ”lives”, cf. Figure 4.5, satisfies |a− a0| << a0
for a0→ ∞. Then h(a) = h(a)−h(a0)≈ h′(a0)(a−a0) for large values of a0. Hence, it
follows that asymptotically,

FM(T )(a)≈ exp
{
− exp

(
−h′(a0)(a−a0)

)}
= exp

{
−exp

(
−a−a0

σ0

)}
, (a0→ ∞) , (4.50)

where σ0 = σX/
(√

2ln(ν
+
X (0)T )

)
. This is clearly an extreme value distribution of the

Gumbel type. It may be noted that the mean value of this Gumbel distribution is
a0 + 0.5772σ0, cf. Section 2.2, which agrees with the mean value given in Eq. (4.46).
Similarly, the variance of this Gumbel distribution is π2σ2

0 /6, which coincides with
the variance derived in Eq. (4.48).

The Gumbel distribution limit will follow for a large class of extreme value models
of the form given in Eq. (4.49) with a differentiable function h with the properties
that h(a)→ ∞ when a→ ∞, and h′(a) > 0 for a > al for some value al .

4.7 The Crossing Rate of Transformed Processes

Assume that two stationary and differentiable processes X(t) and Y (t) satisfy the
equation

Y (t) = h
[
X(t)

]
, (4.51)

where h(·) is a given differentiable function. The following useful result can then be
shown: the upcrossing rate ν

+
Y (b) of Y (t) is determined by the upcrossing rate ν

+
X (a)

of X(t) by the relation (Naess, 1983; Grigoriu, 1984),
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ν
+
Y (b) =

n

∑
j=1

ν
+
X (a j), (4.52)

where a1, . . . ,an denote all possible x-solutions of the equation b = h(x).
Let us apply this result on the example Y (t) = X(t)2, where X(t) is a stationary

Gaussian process with mean value zero. It can be shown that Y (t) is also stationary. In
this particular case, h(x) = x2 so that the equation b = h(x) has the solutions a1 =

√
b

and a2 =−
√

b (b≥ 0). According to Eqs. (4.52) and (4.22), it is obtained that,

ν
+
Y (b) =

1
π

σẊ
σX

exp
{
− b

2σ2
X

}
, b≥ 0. (4.53)

The extreme value distribution for the Y (t) process then becomes

FMY (T )(b) = exp{−ν
+
Y (b)T}= exp

{
−ν

+
Y (0)T exp

(
− b

2σ2
X

)}
, (4.54)

where

ν
+
Y (0) =

1
π

σẊ
σX

(= 2ν
+
X (0)). (4.55)

Note that FMY (T )(b) is in fact a Gumbel distribution. Analogously to the Gaussian
case, one will find that, for example,

E[MY (T )] = 2σ
2
X
{

ln(ν
+
Y (0)T )+ λE

}
. (4.56)

For the similar case of Z(t) = X(t) |X(t)|, then ν
+
Z (b) = ν

+
Y (|b|)/2 because in this

case the equation b = h(x) = x|x| has only one solution, viz. a = sign(b)
√
|b|.

4.8 Hermite Moment Models

When only statistical moments of a response process are available, it has been
proposed to use Hermite moments to capture non-Gaussian behaviour and its effect
on extreme response statistics (Winterstein, 1985, 1988). Assuming that a stationary
response process X(t) can be related to a stationary standard Gaussian process U(t)
by a strictly increasing function g by X = g(U), an approximation to g is sought in
terms of Hermite polynomials. Specifically,

X−µX

σX
= X0 = g(U)≈ κ

(
U + Σ

N
n=3 gn Hen−1(U)

)
= κ

(
U + g3 (U2−1)+ g4 (U3−3U)+ . . .

)
. (4.57)

The expansion coefficients gn control the shape of the standardized distribution,
while the κ parameter is a scaling factor ensuring that X0(t) has unit variance. For
N = 4, the gn can be expressed in terms of the central moments αn = E(Xn

0 ), assuming
that α4 > 3 (Winterstein, 1988),
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g3 =
α3

4 + 2
√

1 + 1.5(α4−3)
, (4.58)

g4 =

√
1 + 1.5(α4−3)−1

18
, (4.59)

and

κ =
(
1 + 2g2

3 + 6g2
4
)−1/2

. (4.60)

The condition α4 > 3 corresponds to a ’softening’ response, signifying that the tails
of the distribution is wider than the Gaussian. The opposite case, α4 < 3, is discussed
by Winterstein (1988). For some recent work on this method, cf. Zhang et al. (2019).
Having obtained an approximation of the function g in terms of statistical moments
estimated from the recorded or simulated response time series, the result from the
previous section can now be applied to determine the crossing rate of the response
process to estimate extreme value statistics by the point process method.

Previously, a common model adopted in ocean engineering was that the ocean
surface elevation could be regarded as a Gaussian random field. However, in recent
years there has been a development toward implementing also non-Gaussian, second
order wave field models. This topic is briefly discussed in Section 11.7 on extremes
of non-Gaussian random fields. With a Gaussian model of the random wave field,
the dynamic response of marine structures to the ocean waves would then appear to
be represented as a transformation of a Gaussian input process. There will be several
examples of such modelling in this book, and it will be clear that, in general, a simple,
marginal transformation between the input and output processes will not be adequate.
However, it is a rather interesting observation that the upcrossing rate for a wide range
of nonlinear dynamical models is largely determined by the probability density (Naess
and Gaidai, 2008). This indicates that in such cases a marginal transformation may
give reasonably good results also for the upcrossing rate.

4.9 Return Period

Let Z be a random variable, and let

p = Prob{Z > z}= 1−FZ(z). (4.61)

Assume that a series of independent observations of Z can be made. The mean
number of observations to the first time the observed (measured) value of Z exceeds
z, is called the return period for exceedance of z, and it is denoted by R̃(z). It can be
shown that,

R̃(z) =
1
p

=
1

1−FZ(z)
. (4.62)

This equation can be explained by recognizing that, on average, 1/p trials must be
conducted before an event of probability p occurs.
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Note that R̃(z) refers to the number of observations and that these are assumed to
be statistically independent. To express the return period in terms of time, knowledge
about the time interval between the observations is needed. If the observation interval
is ∆ t, the return period specified in terms of time, which is denoted by R(z), will be
given as,

R(z) = ∆ t R̃(z). (4.63)

The observation interval ∆ t must be chosen sufficiently long such that the individual
observations become approximately independent. Note that R(ξp(T )) = T/(1− p),
where ξp(T ) is given by Eq. (4.39) and T is the ”observation” interval.

A design load with a probability of 10−2 of being exceeded during one year is often
used in connection with the design of offshore structures. If X(t) denotes a relevant
load process considered for such a design provision, and ξ denotes the corresponding
load level, then Prob{Z > ξ} = 0.01, where Z = max(X(t);0 ≤ t ≤ 1year). The return
period for exceedance of ξ then becomes,

R̃(ξ ) =
1

Prob{Z > ξ} =
1

0.01
= 100. (4.64)

The reference period in this case is one year; therefore, R(ξ ) = 100 years.
It should be mentioned that time varying loads caused by, for example, ocean waves

cannot generally be considered as stationary over an extended period of time. This
implies that quantities such as yearly maxima must be calculated by using so-called
long-term statistics. This is discussed in the next section.

4.10 Long Term Extreme Value Distributions

Clearly, the estimation of the extreme loads or load effects on e.g a marine structure
subjected to the ocean environment over the design life of the structure must take
into account the changing weather conditions. This is done in a consistent manner by
invoking an appropriate long-term statistical method.

There are basically three different approaches to estimating characteristic long-term
extreme values. These methods are based on (1) all peak values, (2) all short-term
extremes, or (3) the long-term extreme value. A more detailed description follows,
where X(t) denotes a zero-mean stochastic process, for example the wave elevation
or a corresponding load effect, that reflects the changing environmental conditions.
Therefore, X(t) is a nonstationary process. Let T denote the long-term time duration,
e.g. 1 year, or a service life of, e.g., 30 years, and let T̃ denote the duration of each
short-term weather condition, assuming that T = K T̃ , where K is a large integer. The
long-term situation is considered to be a sequence of K short-term conditions, where
each short-term condition is assumed to be stationary. Significantly, around the world
there are different kinds of weather conditions, also at sea. A coarse characterization
of sea states:

- extratropical, with slowly varying wave conditions
- tropical, with rare hurricanes that represent very rapidly changing weather condi-

tions

In this section, the discussions and derivations are limited to extratropical conditions.
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Let W denote the vector of parameters that describes the short-term environmental
condition. W can be considered as a random vector variable. For simplicity, let us
assume that W = (Hs,Ts), where Hs is the significant wave height and Ts a suitable
spectral period (generic notation). For example, Ts may represent the spectral peak
period Tp or the mean zero-crossing period Tz. In principle, the analysis is entirely
similar if W contains more parameters, e.g. dominant wave direction, wind speed, etc.

4.10.1 All peak values

A peak value of X(t), denoted generically by Xp, is defined here as the maximum
value of X(t) between two consecutive zero upcrossings. For each short-term condition,
let FXp|HsTs(ξ |hs, ts) denote the conditional distribution of the peak value. Battjes (1970)
showed that the long-term distribution FXp(ξ ) of the peak value Xp is given as follows:

FXp(ξ ) =
1

ν
+
X (0)

∫
hs

∫
ts

ν
+
X (0|hs, ts)FXp|HsTs(ξ |hs, ts) fHsTs(hs, ts)dhsdts , (4.65)

where ν
+
X (0) denotes the long-term average zero-upcrossing rate given by

ν
+
X (0) =

∫
hs

∫
ts

ν
+
X (0|hs, ts) fHsTs(hs, ts)dhsdts . (4.66)

Here, ν
+
X (0|hs, ts) denotes the average zero-upcrossing rate for the short-term station-

ary condition characterized by Hs = hs and Ts = ts.
In practical applications, a commonly adopted statistical distribution for the peak

values in a short-term condition is the Rayleigh distribution, that is,

FXp|HsTs(ξ |hs, ts) = 1− exp
(
− ξ 2

2σX (hs, ts)2

)
. (4.67)

In the modelling of ocean waves, it is sometimes appropriate to use a more accurate
distribution of the peak values, or wave crest heights. A distribution that is frequently
used, is one proposed by Forristall (2000).

Under the assumption that all peak values can be considered as statistically inde-
pendent, which may not always be very accurate, the peak value ξq with a probability
q of being exceeded per year is found by solving the following equation:

FXp(ξq) = 1− q

S(1y) ·ν+
X (0)

, (4.68)

where S(1y) = 365 ·24 ·3600 denotes the number of seconds in a year. The short-term
duration T̃ does not enter into this analysis. In the long run, the relative frequency
of the various sea states is reflected in the joint density fHsTs(hs, ts), which can be
approximated by using an appropriate scatter diagram, if that is available. An example
of such a scatter diagram is shown in Table 4.2.

Let the scatter diagram be divided into m intervals for the hs-values and n inter-
vals for the ts-values. It may often be an acceptable approximation to assume that
ν

+
X (0|hs, ts) = T−1

z ≈ cT−1
s for a fixed constant c, cf. Eq. (4.24). Equation (4.65) with
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the Rayleigh approximation for FXp|HsTs(ξ |hs, ts) can then be approximately expressed
in the following form:

FXp(ξ )≈ 1

t−1
s

m

∑
i=1

n

∑
j=1

{
1− exp

(
− ξ 2

2σX (hi, t j)2

)} Ki j

t j K
, (4.69)

where

t−1
s =

m

∑
i=1

n

∑
j=1

Ki j

t j K
. (4.70)

Here, Ki j equals the number of observations in condition (i, j), that is, in the hs-interval
(hi−∆h/2,hi +∆h/2) and the ts-interval (t j−∆ t/2, t j +∆ t/2); i = 1, . . . ,m, j = 1, . . . ,n.
K = ∑

m
i=1 ∑

n
j=1 Ki j is the total number of observations, or sea states. Also note that

the values for hs and ts included on the scatter diagram in Table 4.2 are upper-class
limits, that is, hi + ∆h/2 and t j + ∆ t/2.

Table 4.2 Scatter diagram northern North Sea, 1973 – 2001. Values given for hs and tp are
upper-class limits.

hs (m) tp(s)
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 > 20

0.5 18 15 123 113 110 390 260 91 38 42 32 3 19 13 9 1 3 2 7
1.0 16 49 675 433 589 1442 1802 959 273 344 125 33 64 29 13 1 7 1 6
1.5 5 32 417 893 1107 1486 2757 1786 636 731 299 121 92 43 18 10 5 2 13
2.0 1 0 102 741 1290 1496 2575 1968 780 868 492 200 116 51 31 8 4 4 8
2.5 0 0 9 256 969 1303 2045 1892 803 941 484 181 157 58 23 19 5 1 8
3.0 0 0 1 45 438 1029 1702 1898 705 957 560 218 196 92 40 11 4 2 5
3.5 0 0 1 4 124 650 1169 1701 647 865 456 237 162 100 36 12 6 1 5
4.0 0 0 2 0 33 270 780 1369 573 868 427 193 157 91 51 13 3 0 1
4.5 0 0 0 0 3 90 459 1017 466 761 380 127 137 86 31 23 6 5 0
5.0 0 0 0 0 0 15 228 647 408 737 354 119 96 50 32 18 2 4 1
5.5 0 0 0 0 0 2 68 337 363 580 283 94 92 31 24 10 6 2 0
6.0 0 0 0 0 0 1 20 166 221 418 307 63 76 24 13 9 4 0 0
6.5 0 0 0 0 0 0 5 50 140 260 257 59 49 20 12 4 2 2 2
7.0 0 0 0 0 0 0 0 23 90 180 193 41 53 20 5 3 3 0 0
7.5 0 0 0 0 0 0 0 6 25 93 121 45 46 17 5 5 0 1 0
8.0 0 0 0 0 0 0 0 3 14 50 84 26 47 11 6 0 1 0 0
8.5 0 0 0 0 0 0 0 0 7 25 45 23 25 20 8 0 0 0 0
9.0 0 0 0 0 0 0 0 1 2 12 30 22 20 19 0 0 0 0 0
9.5 0 0 0 0 0 0 0 0 1 2 20 21 14 7 1 1 0 1 0
10.0 0 0 0 0 0 0 0 0 0 2 5 4 21 6 2 0 0 0 0
10.5 0 0 0 0 0 0 0 0 0 3 4 8 9 12 2 0 0 0 0
11.0 0 0 0 0 0 0 0 0 0 0 2 0 4 3 1 0 1 0 0
11.5 0 0 0 0 0 0 0 0 0 0 2 1 2 3 0 0 0 0 0
12.0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 0
12.5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
13.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

4.10.2 All short-term extremes

The conditional distribution FX̃ |HsTs
(ξ |hs, ts) of the largest peak value, X̃ , during a

short-term condition is clearly given by the expression

FX̃ |HsTs
(ξ |hs, ts) =

(
FXp|HsTs(ξ |hs, ts)

)k(st)
, (4.71)
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where k(st) = ν
+
X (0|hs, ts) T̃ is the number of peak values during the short-term condition

specified by Hs = hs and Ts = ts. The validity of Eq. (4.71) is again based on the
assumption that all peak values are independent.

The long-term distribution of the short-term extreme peak values is often approx-
imated by the expression,

FX̃ (ξ ) =
∫

hs

∫
ts

FX̃ |HsTs
(ξ |hs, ts) fHsTs(hs, ts)dhsdts . (4.72)

Although the error is usually not significant, the averaging done in Eq. (4.72) is
not quite correct in the sense that it is not a so-called ergodic average (Naess, 1984),
which would be the correct approach. To achieve this, Eq. (4.72) has to be modified
to read (Krogstad, 1985),

FX̃ (ξ ) = exp
{∫

hs

∫
ts

lnFX̃ |HsTs
(ξ |hs, ts) fHsTs(hs, ts)dhsdts

}
. (4.73)

The root of this problem of averaging resides in the very notion of long-term statis-
tics, and how it has to be interpreted. By its very definition, it is a notion built on
evolution in time. And all information that is extracted about its properties is obtained
by taking time averages along the observed time histories. That is precisely what is
wrong with Eq. (4.72), because it applies a simple ensemble average. On the other
hand, Eq. (4.73), which is an ergodic average, results from taking the appropriate
time averages.

Assuming for illustration that T̃ = 3 h, an estimate of the value ξq, which has a
probability q of being exceeded per year, is in this case determined by the equation

FX̃ (ξq) = 1− q
365 ·8 (4.74)

If Eq. (4.72) is used, a relation analogous to Eq. (4.69) would be (with T̃ = 3 h
and T−1

z ≈ cT−1
s )

FX̃ (ξ )≈
m

∑
i=1

n

∑
j=1

{
1− exp

(
− ξ 2

2σX (hi, t j)2

)} 602×3×c
t j Ki j

K
. (4.75)

4.10.3 The long-term extreme value

The distribution of the extreme value X̂ = X̂(T ), that is, the global extreme value
over a long-term period T , can be expressed as follows (Naess, 1984),

FX̂ (ξ ) = exp
{
−T

∫
hs

∫
ts

ν
+
X (ξ |hs, ts) fHsTs(hs, ts)dhsdts

}
, (4.76)

where ν
+
X (ξ |hs, ts) denotes the average ξ -upcrossing rate for the short-term stationary

situation characterized by Hs = hs and Ts = ts.
From Eqs. (4.34) and (4.35), it follows that for the case of a zero-mean Gaussian

process, Eq. (4.76) would read,
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FX̂ (ξ ) =

exp
{
−T

∫
hs

∫
ts

σẊ (hs, ts)
2πσX (hs, ts)

exp
(
− ξ 2

2σX (hs, ts)2

)
fHsTs(hs, ts)dhsdts

}
, (4.77)

where the standard deviations σX and σẊ in the long-term situation become functions
of the environmental parameters hs and ts, as indicated.

With T = 1 year = S(1y) seconds, the value ξq, which has a probability q of being
exceeded per year, is now calculated from the equation,

FX̂ (ξq) = 1−q . (4.78)

With reference to Table 4.2, Eq. (4.77) can then be expressed as a relation analogous
to Eq. (4.69) in the following way (with T = 1 year and T−1

z ≈ cT−1
s ):

FX̂ (ξ )≈ exp
{
−

m

∑
i=1

n

∑
j=1

S(1y)× c
t j

exp
(
− ξ 2

2σX (hi, t j)2

) Ki j

K

}
. (4.79)

For the purpose of estimating extreme load effects, the use of scatter diagrams
calls for a certain amount of caution. If the scatter diagram is too coarse, leading to
poor resolution in the tail regions, the long-term extreme value estimates may become
inaccurate. In such cases, it is recommended to use a properly adapted smooth joint
density of the parameters characterizing the short-term sea states. For our purposes,
the joint density of W = (Hs,Ts) is needed. For North Sea applications, the spectral
period Ts is often the spectral peak period Tp due to the fact that a commonly adopted
spectral model is the JONSWAP spectrum, which is usually parameterized by the
significant wave height and the spectral peak period. The marginal distribution of Hs
is now often modeled as one of the following two alternatives:

- a three-parameter Weibull distribution
- a combination of a lognormal and a Weibull distribution

The following probabilistic model given by Haver (1980) and Haver and Nyhus (1986)
has been frequently adopted as the latter model. Expressed in terms of probability
densities, it assumes the form,

fHs(hs) =
1√

2παhs
exp
{
− (lnhs−θ)2

2α2

}
, hs ≤ η , (4.80)

and

fHs(hs) =
β

ρ

(hs

ρ

)β−1
exp
{
−
(hs

ρ

)β
}
, hs > η , (4.81)

where the value of the transition parameter η separating the lognormal model for
the smaller values of Hs from the Weibull model for the larger values, will depend on
the geographic location. A requirement is that limhs↑η fHs(hs) = limhs↓η fHs(hs), that is,
fHs(hs) is continuous at η .

This marginal density for the significant wave height is complemented by the con-
ditional density of the spectral peak period Tp given the value of Hs using a lognormal
model:

fTp|Hs(tp|hs) =
1√

2πσtp
exp
{
− (ln tp−µ)2

2σ2

}
, (4.82)
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where the parameters µ and σ are assumed to depend on the significant wave height
hs in the following manner:

µ = a1 + a2ha3
s , (4.83)

σ
2 = b1 + b2 exp(−b3hs) , (4.84)

for suitably chosen constants ai and bi, i = 1,2,3.
The joint density for the environmental parameters is then obtained by multiplying

the marginal density for the significant wave height with the conditional density for
the spectral peak period, that is,

fW (w) = fHsTp(hs, tp) = fHs(hs) fTp|Hs(tp|hs) . (4.85)

The following set of parameter values was cited by Haver (2002) for locations in
the northern North Sea (Statfjord area): α = 0.6565, θ = 0.77, η = 2.90, β = 2.691,
ρ = 1.503, a1 = 1.134, a2 = 0.892, a3 = 0.225, b1 = 0.005, b2 = 0.120, b3 = 0.455.

4.10.4 Simplified methods

In this chapter three alternative long-term statistical approaches to estimate the
extreme wave-induced response for ULS design checks at a given annual probability
of exceedance (or return period), have been outlined. It is emphasized that a long-
term approach is the most accurate approach, if it can be achieved at all. If computer
models can be used, a long-term analysis is possible with the computational power
that is accessible today. However, such analyses may still become a challenge in terms
of required computer time. Therefore, simplified design methods are still very popu-
lar, but such methods would always need to be validated against the full long-term
approach.

The applicability of simplified approaches depends on the character of the response,
especially whether it can be considered quasistatic or dynamic, which response values
are relevant and also which accuracy is required; that is, whether the analysis is
carried out in pre-engineering or the detailed design phase. In this connection, the fact
that nonlinear hydrodynamic effects might be present and cause sum- or difference-
frequency excitation, respectively, should be considered.

A bottom fixed structure with a natural period below 3 seconds, say, could be
considered to have a quasi-static behaviour under steady wave loading and a design
approach with appropriately chosen wave height and period would be relevant. For
structures with natural periods above 3 seconds, the quasistatic approach might still
be used in combination with the use of a dynamic amplification factor (DAF) deter-
mined by a stochastic analysis for relevant sea states, if the DAF is limited, say, to
less than 1.5. The simplified methods would be relevant for early design phases while
a stochastic dynamic approach should be used in the detailed design phase.

Method of equivalent storms

Based on earlier work by Jahns and Wheeler (1972) and Haring and Heideman
(1978), Tromans and Vanderschuren (1995) proposed an alternative approach to the
calculation of the long-term extreme load or load effect. In their approach, the focus
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is on storm events, similar to what is done in a peaks-over-threshold analysis. This
approach is particularly relevant for tropical areas with rare hurricanes. Hence, the
long-term situation is considered as a sequence of storm events. The method is based
on the assumption that the distribution of the storm extreme response value can
be approximated by a Gumbel extreme value distribution conditional on the most
probable extreme response for that storm. The distribution of the most probable
extreme value itself is assumed to follow a generalized Pareto distribution, which is
determined by fitting to data. By invoking the rule of total probability, as exemplified
by Eq. (4.72), the long-term extreme response value distribution can be calculated.

Contour line method

In recent years, the environmental contour line approach (Winterstein et al., 1993;
Haver and Winterstein, 2008) has been advocated as a rational basis for choosing the
appropriate short-term design storms leading to load and response extremes corre-
sponding to a prescribed return period, e.g. 100 years, or equivalently, a prescribed
annual probability of exceedance, which otherwise has to be obtained from a long-term
analysis.

Environmental contour line plots are convenient tools for complicated structural
dynamic systems where a full long-term response analysis is extremely time consum-
ing. Environmental contour lines make it possible to obtain reasonable long-term
extremes by concentrating the short-term considerations to a few sea states in the
scatter diagram.

The contour line approach can be applied for an offshore site if the joint probability
density for the significant wave height and the spectral peak period is available in the
form of a joint model as described by Eqs. (4.80)-(4.82). This joint model must be
fitted to the available data given in the form of a scatter diagram such as the one in
Table 4.2. As demonstrated by Moan et al. (2005), prediction of extreme values is very
sensitive to the amount of environmental data available to represent the long-term
variability of the sea states. The fitting of appropriate analytical densities ensures a
smoothing and can facilitate a reasonably accurate representation of the long-term
extreme response.

Contour lines corresponding to a constant annual exceedance probability can be ob-
tained by transforming the joint model to a space consisting of independent, standard
Gaussian variables and then using the inverse first order reliability method (IFORM),
(see, e.g., Winterstein et al. (1993)). In the standard Gaussian space, the contour line
corresponding to an annual exceedance probability of q will be circles with radius
r = Φ−1(1−q/2920), where Φ denotes the distribution of a standard Gaussian vari-
able, and 2920 = 365× 8 is the number of 3-hour sea states per year. Transforming
these circles back to the physical parameter space provides the q-probability contour
lines. Approximate contour lines can be obtained by determining the probability den-
sity for the point defined by the marginal q-probability significant wave height and
the conditional median spectral peak period, and then estimating the q-probability
contour line by the line of constant probability density. Contour lines based on the
joint model discussed in Subsection 4.10.3 are plotted in Fig. 4.6, cf. Haver (2002).
Even for the most complicated systems, simple methods may often be used to identify
the most critical range of the q-probability contour line regarding a prediction of the
q-probability response extreme.
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The advantage of this method is that analyses of only a few sea states are required.
As the most unfavorable sea state along the q-probability contour line is identified, a
proper estimate for the q-probability response is taken as the p-fractile of the distri-
bution of the 3-hour extreme response value. It is important to note that the median
3-hour extreme value for this sea state, i.e. p = 0.50, will not represent a proper es-
timate for the q-probability extreme value because this characteristic value will not
account for the inherent randomness of the 3-hour extreme value. The fractile level,
p, will depend on the aimed exceedance probability target, q, and the degree of non-
linearity of the system. For most practical systems, p = 0.90 seems reasonable for
q = 10−2, while p = 0.95 may be more adequate for q = 10−4. As an alternative to us-
ing a p-fractile above 0.5, the desired load effect may be obtained by multiplying the
median or expected maximum value with a factor of 1.2 - 1.3. Anyway, this simplified
contour line method ideally needs to be validated by a full long-term analysis for the
relevant type of environmental conditions and load effects.

Figure 4.6 Environmental contour line plot for the wave conditions in the Statfjord area

4.11 Appendix

In this appendix the validity of Eq. (4.30) is demonstrated. The derivation of the
formula for the mean rate of upcrossings of a given level, as it is expressed in Eq. (4.9),
was based on assumptions about the probability of the number of upcrossings during
short time intervals. Using similar notation as in Section 4.2, that is, pn = pn(∆ t) =
Prob{N+(a,∆ t) = n}, it was assumed in particular that pn/p1→ 0, when ∆ t → 0 for
n≥ 2. In other words, the probability of occurrence of two or more upcrossings during
a short time interval can be neglected compared with the probability of one upcrossing
during the same time interval. To simplify the notation somewhat, λ = ν

+
X (a) is used.

According to Eq. (4.9), it can therefore be assumed that for sufficiently small ∆ t,

p1(∆ t) = λ∆ t (4.86)

and



4.11 Appendix 53

pn(∆ t) = 0 , n≥ 2. (4.87)

Because ∑
∞
n=0 pn = 1, it follows that,

p0(∆ t) = 1−λ∆ t. (4.88)

To proceed, it is now required to use the assumption that the upcrossings of the
level a are independent events. This implies that the number of upcrossings in a given
time interval is statistically independent of the number of upcrossings in another,
nonoverlapping time interval. This may be used to derive the following equation:

p0(t + ∆ t) = Prob{No upcrossings in (0, t + ∆ t)}
= Prob{[No upcrossings in (0, t)] and [No upcrossings in (t, t + ∆ t)]}
= p0(t) p0(∆ t) (4.89)

Equation (4.89) together with Eq. (4.88) gives,

p0(t + ∆ t)− p0(t)
∆ t

=−λ p0(t). (4.90)

Strictly speaking, this equation is only approximately correct. However, on the basis
of the assumptions made, it is realized that the approximation becomes better the
smaller ∆ t becomes. This leads to the differential equation,

d p0(t)
dt

=−λ p0(t), (4.91)

which has the solution p0(t) = C exp(−λ t), where C is a constant. Clearly p0(0) = 1.
This gives C = 1. The solution is therefore,

p0(t) = e−λ t , (4.92)

which corresponds to Eq. (4.30).
While in the process, the expression for pn(t) will also be derived. It is realized that

n ≥ 1 upcrossings in the interval (0, t + ∆ t) can occur as follows: { n upcrossings in
(0, t) and 0 upcrossings in (t, t +∆ t) } or { n−1 upcrossings in (0, t) and 1 upcrossing
in (t, t + ∆ t) }, etc. This can be expressed by the equation,

pn(t + ∆ t) =
n

∑
i=0

pn−i(t) pi(∆ t) = pn(t) p0(∆ t)+ pn−1(t) p1(∆ t). (4.93)

The last equality follows from Eq. (4.87).
Similarly to the preceding derivation, this leads to the differential equations,

d pn(t)
dt

=−λ pn(t)+ λ pn−1(t) , n = 1,2, . . . (4.94)

with the initial conditions pn(0) = 0 (n≥ 1). These equations can be solved in several
ways. One way is to introduce the auxiliary functions un(t), n = 0,1, . . . defined by
pn(t) = e−λ t un(t). When this is substituted into Eq. (4.94), it leads to the equations,

dun(t)
dt

= λ un−1(t) , n = 1,2, . . . , (4.95)
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with initial conditions un(0) = 0, n = 1,2, . . .. In particular,

du1(t)
dt

= λ u0(t) = λ , (4.96)

which gives u1(t) = λ t, because u1(0) = 0. Successive solution of Eq. (4.95) gives,

un(t) =
(λ t)n

n!
, (4.97)

and thereby,

pn(t) =
(λ t)n

n!
e−λ t , (4.98)

which holds for n = 0,1,2, . . . (0! = 1).
The Poisson process is a frequently used model for phenomena characterized by

events that occur approximately independent of each other. Subject to certain condi-
tions, the Poisson process can be used to model the stream of telephone calls through
a telephone exchange or the stream of cars passing through a road crossing.
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5.1 Introduction

Extreme value statistics, even in applications, is generally based on asymptotic
results. This is done either by assuming that the epochal extremes, for example yearly
extreme wind speeds at a given location, are distributed according to the so called
generalized (asymptotic) extreme value distribution with unknown parameters to be
estimated on the basis of the observed data, cf. Chapter 2, or Coles (2001); Beirlant
et al. (2004). Or, it is assumed that the exceedances above high thresholds follow a
generalized (asymptotic) Pareto distribution with parameters that are estimated from
the data, cf. Chapter 3, or Coles (2001); Beirlant et al. (2004); Davison and Smith
(1990); Reiss and Thomas (2007). As was discussed in Chapter 1, the major problem
with both of these approaches is that the asymptotic extreme value theory itself
cannot be used in practice to decide to what extent it is applicable for the observed
data. And since statistical tests to decide this issue are rarely precise enough to settle
this problem, the assumption that a specific asymptotic extreme value distribution is
the appropriate distribution for the observed data, is based more or less on faith or
convenience.

On the other hand, one can reasonably assume that in many cases long time se-
ries obtained from practical measurements do contain values that are large enough to
provide useful information about extreme events that are truly asymptotic. This can-
not be strictly proved in general, of course, but the accumulated experience indicates
that asymptotic extreme value distributions do provide reasonable, if not always very
accurate, predictions when based on measured data. This is amply documented in the
vast literature on the subject, and good references to this literature are Beirlant et al.
(2004); Embrechts et al. (1997); Falk et al. (2004).

However, even if the situation might be tolerable, it is clearly not satisfactory. In an
effort to improve on the described state of affairs, an approach to the extreme value
prediction problem has been developed that is less restrictive and more flexible than
the ones using only asymptotic theory (Naess and Gaidai, 2009; Naess et al., 2013).
The approach is based on two separate components which are designed to improve on
two important aspects of extreme value prediction based on observed data.

⇒ The first component provides a nonparametric empirical representation of the
extreme value distribution inherent in the data. It also has the capability to ac-
curately capture and display the effect of statistical dependence in the data on
the extreme value distribution, which opens for the opportunity of using all the
available data in the analysis.

⇒ The second component is then constructed based on the realization that all, or
at least almost all, the available data are sub-asymptotic. Hence, it is important
to set up the method of analysis to also incorporate sub-asymptotic data into
the estimation of extreme value distributions, which will be shown to have some
importance for accurate prediction.

The proposed method has been used on a wide variety of estimation problems,
and the experience is that it represents a very powerful addition to the toolbox of
methods for extreme value estimation and prediction. Several such examples will be
presented in this book, cf. Chapters 6, 9 and 12. A recent and interesting example
of its practical use on the distribution of defects in metallic materials is given by
Cetin and Naess (2012). Fatigue failures in such materials is intimately related to the
distribution of defects, cf. Murakami (2002). Another recent example, is its application



5.2 A Sequence of Conditioning Approximations 57

to sea ice dynamics proposed by Sinsabvarodom et al. (2022). Needless to say, what
is presented in this chapter is by no means considered the end of the development of
the ACER method. It is a novel method, and it is to be expected that several aspects
of the proposed approach will see improvements.

5.2 A Sequence of Conditioning Approximations

In this section a sequence of nonparametric distribution functions will be con-
structed that converges to the exact extreme value distribution for the time series
considered. This constitutes the core of the proposed approach.

Consider a stochastic process Z(t), which has been observed over a time interval,
(0,T ) say. Assume that values X1, . . . ,XN , which have been derived from the observed
process, are allocated to the discrete times t1, . . . , tN in (0,T ). This could be simply
the observed values of Z(t) at each t j, j = 1, . . . ,N, or it could be average values or
peak values over smaller time intervals centered at the t j’s. Our goal is to accurately
determine the distribution function of the extreme value MN = max{X j ; j = 1, . . . ,N}.
Specifically, we want to estimate P(η) = Prob(MN ≤ η) accurately for large values
of η without asymptotics. Clearly, P(η) = Prob(X1 ≤ η ,X2 ≤ η , . . . ,XN ≤ η). Since N
typically will be a large number, direct estimation of this joint distribution function
is not a practical option. Hence, we need to develop another approach.

An underlying premise for the development in this chapter is that a rational ap-
proach to the study of the extreme values of the sampled time series is to consider
exceedances of the individual random variables X j above given thresholds, as in clas-
sical extreme value theory. The alternative approach of considering the exceedances
by upcrossing of given thresholds by a continuous stochastic process has already been
discussed in Chapter 4, see also Naess and Gaidai (2008); Naess et al. (2007). The
approach taken in the present chapter seems to be the appropriate way to deal with
the recorded data time series of, for example, the hourly or daily largest wind speeds
observed at a given location, just to cite a concrete example.

The following basic rule from probability theory: Prob(A ∩B) = Prob(A |B)Prob(B)
for two events A and B, turns out to be an important key to estimating P(η). Using
this basic rule repeatedly, it is obtained that,

P(η) = Prob(MN ≤ η) = Prob{XN ≤ η , . . . ,X1 ≤ η}
= Prob{XN ≤ η |XN−1 ≤ η , . . . ,X1 ≤ η}Prob{XN−1 ≤ η , . . . ,X1 ≤ η}
= Prob{XN ≤ η |XN−1 ≤ η , . . . ,X1 ≤ η}
· Prob{XN−1 ≤ η |XN−2 ≤ η , . . . ,X1 ≤ η}Prob{XN−2 ≤ η , . . . ,X1 ≤ η}

...

=
N

∏
j=2

Prob{X j ≤ η |X j−1 ≤ η , . . . ,X1 ≤ η} ·Prob(X1 ≤ η). (5.1)

In general, the variables X j are statistically dependent. Hence, instead of assuming
that all the X j are statistically independent, which leads to the classical approximation,
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P(η)≈ P1(η) :=
N

∏
j=1

Prob(X j ≤ η) , (5.2)

where := means ’by definition’, the following one-step memory approximation will to
some extent account for the dependence between the X j’s,

Prob{X j ≤ η |X j−1 ≤ η , . . . ,X1 ≤ η} ≈ Prob{X j ≤ η |X j−1 ≤ η}, (5.3)

for 2≤ j ≤ N. With this approximation, it is obtained that,

P(η)≈ P2(η) :=
N

∏
j=2

Prob{X j ≤ η |X j−1 ≤ η}Prob(X1 ≤ η) . (5.4)

By conditioning on one more data point, the one-step memory approximation is ex-
tended to,

Prob{X j ≤ η |X j−1 ≤ η , . . . ,X1 ≤ η} ≈ Prob{X j ≤ η |X j−1 ≤ η ,X j−2 ≤ η} , (5.5)

where 3≤ j ≤ N, which leads to the approximation,

P(η)≈ P3(η) :=
N

∏
j=3

Prob{X j ≤ η |X j−1 ≤ η ,X j−2 ≤ η}

·Prob{X2 ≤ η |X1 ≤ η}Prob(X1 ≤ η) . (5.6)

For a general k, 2≤ k ≤ N, it is obtained that,

P(η)≈ Pk(η) :=
N

∏
j=k

Prob{X j ≤ η |X j−1 ≤ η , . . . ,X j−k+1 ≤ η}

·
k−1

∏
j=2

Prob{X j ≤ η |X j−1 ≤ η . . . ,X1 ≤ η} · Prob(X1 ≤ η) , (5.7)

where P(η) = PN(η). It follows that the sequence of approximations P1(η),P2(η), . . .
constitute a sequence of increasingly accurate representations of the exact extreme
value distribution P(η).

It should be noted that the one-step memory approximation adopted above is not a
Markov chain approximation, as being discussed in Smith (1992); Coles (1994); Smith
et al. (1997), nor do the k-step memory approximations lead to kth-order Markov
chains, which are proposed in Yun (1998, 2000). An effort to relinquish the Markov
chain assumption to obtain an approximate distribution of clusters of extremes is
reported by Segers (2005).

It is now necessary to have a closer look at the values for P(η) obtained by using
Eq. (5.7) as compared to Eq. (5.2). Eq. (5.2) can be rewritten in the form,

P(η)≈ P1(η) =
N

∏
j=1

(
1−α1 j(η)

)
, (5.8)

where α1 j(η) = Prob{X j >η}, j = 1, . . . ,N. Then the approximation based on assuming
independent data can be written as,
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P(η)≈ F1(η) := exp
(
−

N

∑
j=1

α1 j(η)
)
, η → ∞ , (5.9)

noting that 1− x ≈ exp(−x) with high accuracy for small x. The relative error of
this approximation is less than 0.5% for values |x| < 0.1 and it decreases rapidly for
decreasing values of |x|. In this chapter, the notation η→∞ is adopted to denote large
values of η relative to the typical values. Hence, it should not be construed as a true
limiting operation.

Similarly, Eq. (5.7) can be expressed as,

P(η)≈ Pk(η) =
N

∏
j=k

(
1−αk j(η)

) k−1

∏
j=1

(
1−α j j(η)

)
, (5.10)

where αk j(η) = Prob{X j > η |X j−1 ≤ η , . . . ,X j−k+1 ≤ η}, for j ≥ k ≥ 2, denotes the
exceedance probability conditional on k−1 previous non-exceedances. From Eq. (5.10)
it is obtained that,

P(η)≈ Fk(η) := exp
(
−

N

∑
j=k

αk j(η)−
k−1

∑
j=1

α j j(η)
)
, η → ∞ , (5.11)

and Fk(η)→ P(η) as k→ N with FN(η) = P(η) for η → ∞.
For the sequence of approximations Fk(η) to have practical significance, it is im-

plicitly assumed that there is a cut-off value kc satisfying kc � N such that effec-
tively Fkc(η) = FN(η). It may be noted that for k-dependent stationary data se-
quences, that is, for data where Xi and X j are independent whenever | j− i|> k, then
P(η) = Pk+1(η) exactly, and, under rather mild conditions on the joint distributions of
the data, limN→∞ P1(η) = limN→∞ P(η) (Watson, 1954). In fact, it can be shown that
limN→∞ P1(η) = limN→∞ P(η) is true for weaker conditions than k-dependence (Lead-
better et al., 1983). However, for finite values of N, the picture is much more complex,
and purely asymptotic results should be used with some caution.

Returning to Eq. (5.11), extreme value prediction by the conditioning approach
described above reduces to estimation of (combinations) of the αk j(η) functions. In
accordance with the previous assumption about a cut-off value kc, for all k-values of
interest, k� N, so that ∑

k−1
j=1 α j j(η) is effectively negligible compared to ∑

N
j=k αk j(η).

Hence, for simplicity, the following approximation is adopted, which is applicable to
both stationary and nonstationary data,

Fk(η) = exp
(
−

N

∑
j=k

αk j(η)
)
, k ≥ 1 . (5.12)

Going back to the definition of α1 j(η), it follows that ∑
N
j=1 α1 j(η) is equal to the

expected number of exceedances of the threshold η during the time interval (0,T ).
Eq. (5.9) therefore expresses the approximation that the stream of exceedance events
constitute a (non-stationary) Poisson process. This opens for an understanding of
Eq. (5.12) by interpreting the expressions ∑

N
j=k αk j(η) as the expected effective num-

ber of (assumed) independent exceedance events provided by conditioning on k− 1
previous observations.
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5.3 Empirical Estimation of the Average Conditional
Exceedance Rates

The concept of average conditional exceedance rate (ACER) of order k is now
introduced as follows,

εk(η) =
1

N− k + 1

N

∑
j=k

αk j(η) , k = 1,2, . . . (5.13)

It is noted that this empirical ACER function also depends on the number of data
points N. In contrast to the average upcrossing rate of Chapter 4, which would typ-
ically express the average number of upcrossings per time unit, the ACER functions
are exceedance rates per data point.

The behaviour and diagnostic power of the ACER functions will be demonstrated
for several examples in Chapter 6. In terms of the ACER function, we may now write,

Fk(η) = exp
(
− (N− k + 1)εk(η)

)
, k ≥ 1 . (5.14)

In practice, there are typically two scenarios for the underlying process Z(t). Ei-
ther we may consider it to be a stationary process, or, in fact, even an ergodic pro-
cess, which allows the replacement of ensemble averages with time averages, cf. Doob
(1953); Cramer and Leadbetter (1967); Wong and Hajek (1985). The alternative is
to view Z(t) as a process that depends on certain parameters whose variation in time
may be modelled as an ergodic process in its own right. For each set of values of the
parameters, the premise is that Z(t) can then be modelled as an ergodic process. This
would be the scenario that can be used to model long-term statistics (Naess, 1984;
Schall et al., 1991).

For both these scenarios, the empirical estimation of the ACER function εk(η)
proceeds in a completely analogous way by counting the total number of favourable
incidents, that is, exceedances combined with the requisite number of preceding non-
exceedances, for the total data time series and then finally dividing by N−k +1≈ N.
This can be shown to apply for the long-term situation, as briefly discussed below.

A few more details on the numerical estimation of εk(η) for k ≥ 2 may be appro-
priate. Initially, the following random functions are introduced,

Ak j(η) = 1{X j > η ,X j−1 ≤ η , . . . ,X j−k+1 ≤ η} , j = k, . . . ,N, k = 2,3, . . . (5.15)

and
Bk j(η) = 1{X j−1 ≤ η , . . . ,X j−k+1 ≤ η} , j = k, . . . ,N, k = 2, . . . , (5.16)

where 1{A } denotes the indicator function of some event A , that is, 1{A }= 1 if the
event occurs, 1{A } = 0 if not. Then, since E[1{A }] = Prob{A }, where E[·] denotes
the expectation operator, it follows that,

αk j(η) =
Prob{X j > η ,X j−1 ≤ η , . . . ,X j−k+1 ≤ η}

Prob{X j−1 ≤ η , . . . ,X j−k+1 ≤ η} =
E[Ak j(η)]

E[Bk j(η)]
, j = k, . . . ,N, k = 2, . . . ,

(5.17)
Assuming an ergodic process, which implies stationarity, then obviously εk(η) =
αkk(η) = . . . = αkN(η), and by ergodicity, replacing ensemble means with correspond-
ing time averages, it may be assumed that for the time series at hand,
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εk(η) = lim
N→∞

∑
N
j=k ak j(η)

∑
N
j=k bk j(η)

, (5.18)

where ak j(η) and bk j(η) are the realized values of Ak j(η) and Bk j(η), respectively,
for the observed time series. Denoting a realization of the time series X1,X2, . . . by
x1,x2, . . ., then ak j(η) = 1 if x j > η ,x j−1 ≤ η , . . . ,x j−k+1 ≤ η , otherwise ak j(η) = 0.
Similarly, bk j(η) = 1 if x j−1 ≤ η , . . . ,x j−k+1 ≤ η , otherwise bk j(η) = 0.

Clearly, limη→∞E[Bk j(η)] = 1. Hence, limη→∞ ε̃k(η)/εk(η) = 1, where,

ε̃k(η) =
∑

N
j=k E[Ak j(η)]

N− k + 1
. (5.19)

The advantage of using the modified ACER function ε̃k(η) for k ≥ 2, is that it is
easier to use for non-stationary or long-term statistics than εk(η). Since our focus is
on the values of the ACER functions at the extreme levels, we may use any function
that provides correct predictions of the appropriate ACER function at these extreme
levels.

To see why Eq. (5.19) may be applicable for nonstationary time series, it is recog-
nized that,

P(η)≈ exp
(
−

N

∑
j=k

αk j(η)
)

= exp
(
−

N

∑
j=k

E[Ak j(η)]

E[Bk j(η)]

)
'

η→∞
exp
(
−

N

∑
j=k

E[Ak j(η)]
)
. (5.20)

If the time series can be segmented into K blocks such that E[Ak j(η)] remains ap-
proximately constant within each block and such that ∑ j∈Ci E[Ak j(η)] ≈ ∑ j∈Ci ak j(η)
for a sufficient range of η-values, where Ci denotes the set of indices for block no. i,
i = 1, . . . ,K, then ∑

N
j=k E[Ak j(η)]≈ ∑

N
j=k ak j(η). Hence,

P(η)≈ exp
(
− (N− k + 1)ε̂k(η)

)
, (5.21)

where, in this case,

ε̂k(η) =
1

N− k + 1

N

∑
j=k

ak j(η) , (5.22)

which is the empirical counterpart of Eq. (5.19).
It is of interest to note what events are actually counted for the estimation of the

various εk(η), k ≥ 2. Let us start with ε2(η). It follows from the definition of ε2(η)
that ε2(η)(N−1) can be interpreted as the expected number of exceedances above the
level η satisfying the condition that an exceedance is counted only if it is immediately
preceded by a non-exceedance. Hence, if a realization of a stochastic process is sampled
with a sufficiently high frequency to approximate the realization with good accuracy,
then ε2(η)(N−1) is approximately the expected number of upcrossings of η among
the N−1 data points. This implies that ε2(η) is approximately the average upcrossing
rate per data point. Therefore, if the N−1 data points correspond to a time interval
of length T , then ε2(η)(N−1)/T expresses the average upcrossing rate per time unit.

Assuming that we are studying a narrow band stochastic response process, sampling
a realization by extracting the local peak values would be a typical procedure for
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studying the extremes. A reinterpretation of ε2(η)(N−1) for this case would lead us
to the conclusion that it equals the average number of clumps of exceedances above η

for the realizations considered, where a clump of exceedances is defined as a maximum
number of consecutive exceedances of the peak values above η . Figure 5.1 illustrates
how clumps of exceedances would be counted for the estimation of ε2(η). A scrutiny
of the figure shows that four clumps can be identified.

0 50 100 150

−6

0

6

t

η

Figure 5.1 An illustration of clumps of exceedances counted for the estimation of ε2(η).

In general, εk(η)(N − k + 1) then equals the average number of clumps of ex-
ceedances above η separated by at least k− 1 non-exceedances. Hence, for the il-
lustrating example of Figure 5.1, it follows that for the estimation of ε3(η), the two
arrows show that what were three clumps for the estimation of ε2(η), now become
one clump for the estimation of ε3(η). Hence, in Figure 5.1, we can now identify only
two clumps for the estimation of ε3(η).

If the time series analysed is obtained by extracting local peak values from a narrow
band response process, it is interesting to note that there is a certain similarity be-
tween the ACER approximations and the envelope approximations for extreme value
prediction (Naess and Gaidai, 2008; Vanmarcke, 1975). For alternative statistical ap-
proaches to account for the effect of clustering on the extreme value distribution, the
reader may consult Leadbetter (1983); Hsing (1987, 1991); Leadbetter (1995); Ferro
and Segers (2003); Robert (2009). In these works the emphasis is on the notion of
the extremal index, which characterizes the clumping or clustering tendency of the
data and its effect on the extreme value distribution, cf. Section 2.9. In the ACER
functions, these effects are automatically accounted for.

Now, let us look at the problem of estimating a confidence interval for εk(η),
assuming a stationary time series. If R realizations of the requisite length of the time
series is available, or, if one long realization can be segmented into R subseries, then
the sample standard deviation ŝk(η) can be estimated by the standard formula,

ŝk(η)2 =
1

R−1

R

∑
r=1

(
ε̂

(r)
k (η)− ε̂k(η)

)2
, (5.23)

where ε̂
(r)
k (η) denotes the ACER function estimate from realization no. r, and ε̂k(η) =

∑
R
r=1 ε̂

(r)
k (η)/R.
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Assuming that realizations are independent, for a suitable number R, e.g. R ≥
20, Eq. (5.23) leads to a good approximation of the 95 % confidence interval CI =(
C−(η),C+(η)

)
for the value εk(η), where,

C±(η) = ε̂k(η)±1.96 ŝk(η)/
√

R . (5.24)

Alternatively, and which also applies to the non-stationary case, it is consistent
with the adopted approach to assume that the stream of conditional exceedances over
a threshold η constitute a Poisson process, possibly non-homogeneous. Hence, the
variance of the estimator Êk(η) of ε̃k(η), where,

Êk(η) =
∑

N
j=k Ak j(η)

N− k + 1
, (5.25)

is Var[Êk(η)] = ε̃k(η). Therefore, for high levels η , the approximate limits of a 95 %
confidence interval of εk(η), can be written as,

C±(η) = ε̂k(η)
(

1± 1.96√
(N− k + 1)ε̂k(η)

)
. (5.26)

5.4 Long-Term Extreme Value Analysis by the ACER Method

In Section 4.10 we studied long-term extreme value distributions for the point
process method. This was related to a scatter diagram of short term environmental
conditions. If the whole time series over a long-term scenario is available, we have
shown in the previous section that the long-term statistics using ACER functions
may be estimated directly from the time series, cf. Eq. 5.21. However, in many cases it
would be more practical to analyze each short term condition separately and combine
the obtained ACER functions after that. This would, e.g. be the typical approach
in a simulation based long-term statistical analysis where the short term response
time series would be simulated and the resulting time series subjected to an ACER
analysis. The obtained ACER functions would then be combined to form the long-
term ACER function. One advantage of doing a long-term analysis this way, would
be the opportunity to apply the ACER function definition of Eq. (5.18) to each short
term condition.

Adapting Eq. (4.76) to the discrete scenario for the ACER analysis over the scatter
diagram of Table 4.2, an estimated long-term ACER function would be expressed as
follows,

ε̂k(η) = ∑
hi

∑
t j

ε̂k(η |hi, t j) fHsTs(hi, t j)∆hi∆ t j , (5.27)

where the ACER functions ε̂k(η |hi, t j) have been estimated for each separate short
term condition (hi, t j), or (i, j) for short.

An alternative, equivalent formulation is obtained as in Subsection 4.10.3. Assume
that the number of sea states in condition (i, j) is Ki j, i = 1, . . . ,m and j = 1, . . . ,n, and
K = ∑

m
i=1 ∑

n
j=1 Ki j, cf. Subsection 4.10.1. We may then write,

ε̂k(η) =
m

∑
i=1

n

∑
j=1

ε̂
(i j)
k (η)

Ki j

K
, (5.28)
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where the ACER function ε̂
(i j)
k (η) is estimated for condition (i, j). So, again we obtain

the long-term extreme value distribution as,

P(η)≈ exp
(
− (N− k + 1)ε̂k(η)

)
, (5.29)

using either Eq.(5.27) or (5.28), where N is the number of data over the long-term
period. However, please note the cautionary comments on the use of a scatter diagram
for long-term analysis in Subsection 4.10.3.

5.5 Estimation of Extremes for the Asymptotic Gumbel Case

The second component of the approach to extreme value estimation presented in
this chapter, was originally derived for a time series with an asymptotic extreme
value distribution of the Gumbel type, cf. Naess and Gaidai (2009). This case is
therefore presented first, also because the extension of the asymptotic distribution to
a parametric class of extreme value distribution tails that are capable of capturing to
some extent subasymptotic behaviour is more transparent, and perhaps more obvious,
for the Gumbel case. The reason behind the efforts to extend the extreme value
distributions to the subasymptotic range is the fact that the ACER functions allow
us to use not only asymptotic data, which is clearly an advantage since proving that
observed extremes are asymptotic is not possible.

The effect of the asymptotic distribution being of the Gumbel type on the possible
subasymptotic functional forms of εk(η) cannot easily be decided in any detail. How-
ever, using the asymptotic form as a guide, it is assumed that the behaviour of the
ACER in the tail is dominated by a function of the form exp{−a(η−b)c} (η ≥ η1 ≥ b)
where a, b and c are suitable constants, and η1 is an appropriately chosen tail marker.
Hence, it will be assumed that,

εk(η) = qk(η) exp{−ak(η−bk)
ck} , η ≥ η1, (5.30)

where the function qk(η) is slowly varying compared with the exponential function
exp{−ak(η − bk)

ck} and ak,bk, and ck are suitable constants, that in general will be
dependent on k. Note that the value ck = qk(η) = 1 corresponds to the asymptotic
Gumbel distribution, which is then a special case of the assumed tail behaviour. And,
of course, any extreme value distribution with an ACER function of the form given
by Eq. (5.30), is asymptotically Gumbel, cf. comments at the end of Section 4.6.

Note that under the assumptions made, a plot of − log
∣∣ log

(
εk(η)/qk(η)

)∣∣ versus
log(η − bk) will exhibit a perfectly linear tail behaviour. This will be illustrated in
Chapter 9.

It is realized that if the function qk(η) could be replaced by a constant value, qk
say, one would immediately be in a position to apply a linear extrapolation strategy
for deep tail prediction problems. In general, qk(η) is not constant, but its variation
in the tail region is often sufficiently slow to allow for its replacement by a constant,
possibly by adjusting the tail marker η1. The proposed statistical approach to the
prediction of extreme values is therefore based on the assumption that we can write,

εk(η) = qk exp{−ak(η−bk)
ck} , η ≥ η1, (5.31)
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where ak,bk,ck and qk are appropriately chosen constants. In a certain sense, this is a
minimal class of parametric functions that can be used for this purpose, which makes
it possible to achieve three important goals. Firstly, the parametric class contains the
asymptotic form given by ck = qk = 1 as a special case. Secondly, the class is flexible
enough to capture to a certain extent subasymptotic behaviour of any extreme value
distribution that is asymptotically Gumbel. Thirdly, the parametric functions agree
with a wide range of known special cases, of which a very important example is the
extreme value distribution for a regular stationary Gaussian process, which has ck = 2.

The viability of this approach has been successfully demonstrated for extreme value
statistics of the response processes related to a wide range of different dynamical sys-
tems, cf. Naess and Gaidai (2008); Naess et al. (2007). In Chapter 6, the ACER
method will be applied to the problem of predicting extreme wind speeds. The per-
formance of the annual maxima method and the POT method for this purpose, will
also be discussed.

As to the question of finding the parameters a,b,c,q (the subscript k, if it applies,
is suppressed), the adopted approach is to determine these parameters by minimizing
the following mean square error function with respect to all four arguments,

F(a,b,c,q) =
J

∑
j=1

w j
∣∣ log ε̂(η j)− logq + a(η j−b)c∣∣2 , (5.32)

where η1 < .. .<ηJ denotes the levels where the ACER function has been estimated, w j
denotes a weight factor that puts more emphasis on the more reliably estimated ε̂(η j),
cf. the discussion about the BLUE below. However, the choice of weight factor is to
some extent arbitrary. With

(
C−(η),C+(η)

)
denoting the 95% confidence interval for

the value εk(η), we have previously used w j =
(

logC+(η j)− logC−(η j)
)−θ

with θ = 1
and 2, combined with a Levenberg-Marquardt least squares optimization method (Gill
et al., 1981). This has usually worked well provided reasonable, initial values for the
parameters were chosen. Note that the form of w j puts some restriction on the use
of the data. Usually, there is a level η j beyond which w j is no longer defined, that is,
C−(η j) becomes negative. Hence, the summation in Eq. (5.32) has to stop before that
happens. Also, the data should be preconditioned by establishing the tail marker η1
based on inspection of the empirical ACER functions.

In general, to improve robustness of results, it is recommended to apply a nonlin-
early constrained optimization (Forst and Hoffmann, 2010). The set of constraints is
written as, 

logq−a(ηi−b)c < 0 ,
0 < q < +∞ ,
min

j
X j < b≤ η1 ,

0 < a < +∞ ,
0 < c < 5 .

(5.33)

Here, the first nonlinear inequality constraint is evident, since under our assumption
we have ε̂(ηi) = qexp{−a(ηi−b)c}, and ε̂(ηi) < 1 by definition.

A note of caution: When the parameter c is equal to 1.0 or close to it, that is, the
distribution is close to the Gumbel distribution, the optimization problem becomes
ill-defined or close to ill-defined. It is seen that when c = 1.0, there is an infinity
of (b,q) values that gives exactly the same value of F(a,b,c,q). Hence, there is no
well defined optimum in parameter space. There are simply too many parameters.
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This problem is alleviated by fixing the q-value, and the obvious choice is q = 1. The
restriction c < 5 is a practical one and has no real significance beyond limiting the
range of c-values. A c-value larger than 5 should cause an inspection of the choice of
tail marker. For c-values larger than 1.0, the c-value would typically decrease with
increasing tail marker, indicating a deep tail approach to the Gumbel distribution,
which is the asymptotic limit.

Although the Levenberg-Marquardt method generally works well with four or, when
appropriate, three parameters, a more direct and transparent optimization method has
also been developed for the problem at hand. It is realized by scrutinizing Eq. (5.32)
that if b and c are fixed, the optimization problem reduces to a standard weighted
linear regression problem. That is, with both b and c fixed, the optimal values of a and
logq are found using closed form weighted linear regression formulas in terms of w j,
y j = logε(η j) and x j = (η j−b)c. In that light, it can also be concluded that the best

linear unbiased estimators (BLUE) are obtained for w j = σ
−2
y j , where σ2

y j = Var[y j]
(empirical) (Draper and Smith, 1998; Montgomery et al., 2002). Unfortunately, this
is not a very practical weight factor for the kind of problem we have here because
the summation in Eq. (5.32) then typically would have to stop at undesirably small
values of η j.

It is obtained that the optimal values of a and q are given by the relations,

a∗(b,c) =−∑
N
j=1 w j(x j− x)(y j− y)

∑
N
j=1 w j(x j− x)2

, (5.34)

and
logq∗(b,c) = y + a∗(b,c)x , (5.35)

where x = ∑
N
j=1 w jx j/∑

N
j=1 w j, with a similar definition of y.

To calculate the final optimal set of parameters, one may use the Levenberg-
Marquardt method on the function F̃(b,c) = F(a∗(b,c),b,c,q∗(b,c)) to find the optimal
values b∗ and c∗, and then use Eqs. (5.34) and (5.35) to calculate the corresponding
a∗ and q∗.

For a simple construction of a confidence interval for the target deep tail extreme
value provided by a particular ACER function as given by the fitted parametric curve,
the empirical confidence band is reanchored to the fitted curve by centering the in-
dividual confidence intervals CI0.95 for the point estimates of the ACER function on
the fitted curve. Under the premise that the specified class of parametric curves fully
describes the behaviour of the ACER functions in the tail, parametric curves are fit-
ted as described above to the boundaries of the reanchored confidence band. These
curves are used to determine a first estimate of a 95% confidence interval for the
target extreme value. To obtain a more precise estimate of the confidence interval,
a bootstrapping method would be recommended. A comparison of estimated confi-
dence intervals by both these methods will be presented in Section 6.2 on extreme
value prediction for synthetic data.

As a final point, it has been observed that the predicted value is not very sensitive
to the choice of η1, provided it is chosen with some care. This property is easily
recognized by looking at the way the optimized fitting is done. If the tail marker is
in the appropriate domain of the ACER function, the optimal fitted curve does not
change appreciably by moving the tail marker.
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5.6 Estimation of Extremes for the General Case

For independent data in the general case, the ACER function ε1(η) can be ex-
pressed asymptotically as,

ε1(η) '
η→∞

[
1 + γ

(
a(η−b)

)]− 1
γ , (5.36)

where a > 0, b, γ are constants. This follows from the explicit form of the generalized
extreme value (GEV) distribution, which has been discussed in Chapter 2.

Again, the implication of this assumption on the possible subasymptotic functional
forms of εk(η) in the general case is not a trivial matter. The approach we have chosen
is to assume that the class of parametric functions needed for the prediction of extreme
values for the general case can be modelled on the relation between the Gumbel
distribution and the GEV distribution. While the extension of the asymptotic Gumbel
case to the proposed class of subasymptotic distributions was fairly transparent, this
is not equally so for the general case. However, using a similar kind of approximation,
the behaviour of the mean exceedance rate in the subasymptotic part of the tail is

assumed to follow a function largely of the form
[
1 + γ

(
a(η−b)c

)]− 1
γ (η ≥ η1 ≥ b)

where a > 0, b, c > 0 and γ > 0 are suitable constants, and η1 is an appropriately
chosen tail level. Hence, it will be assumed that (Naess, 2010),

εk(η) = qk(η)
[
1 + γk

(
ak(η−bk)

ck
)]− 1

γk , η ≥ η1, (5.37)

where the function qk(η) is weakly varying compared with the function[
1 + γk

(
ak(η−bk)

ck
)]− 1

γk and ak > 0, bk, ck > 0 and γk > 0 are suitable constants, that
in general will be dependent on k. Note that the values ck = 1 and qk(η) = 1 correspond
to the asymptotic limit, which is then a special case of the general expression given in
Eq. (5.37). Another method to account for subasymptotic effects has been proposed
by Eastoe and Tawn (2012), building on ideas developed by Tawn (1990), Ledford and
Tawn (1996) and Heffernan and Tawn (2004). In this approach, the asymptotic form of
the marginal distribution of exceedances is kept, but it is modified by a multiplicative
factor accounting for the dependence structure of exceedances within a cluster.

An alternative form to Eq. (5.37) would be to assume that,

εk(η) =
[
1 + γk

(
ak(η−bk)

ck + dk(η)
)]− 1

γk , η ≥ η1, (5.38)

where the function dk(η) is weakly varying compared with the function ak(η−bk)
ck .

However, for estimation purposes, the form given by Eq. (5.37) appears to be prefer-
able as it leads to somewhat simpler estimation procedures.

For practical identification of the ACER functions given by Eq. (5.37), it is ex-
pedient to assume that the unknown function qk(η) varies sufficiently slowly to be
replaced by a constant. In general, qk(η) is not constant, but its variation in the tail
region is assumed to be sufficiently slow to allow for its replacement by a constant.
Hence, as in the Gumbel case, it is in effect assumed that qk(η) can be replaced by
a constant for η ≥ η1, for an appropriate choice of tail marker η1. For simplicity of
notation, in the following we shall suppress the index k on the ACER functions, which
will then be written as,
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ε(η) = q [1 + ã(η−b)c]−ξ , η ≥ η1, (5.39)

where ξ = 1/γ, ã = aγ.
For the analysis of data, first the tail marker η1 is provisionally identified from

visual inspection of the log plot (η , ln ε̂(η)). The value chosen for η1 corresponds to
the beginning of regular tail behaviour in a sense to be discussed below.

The optimization process to estimate the parameters is done relative to the log
plot, as for the Gumbel case. The mean square error function to be minimized is in
the general case written as,

F(ã,b,c,q,ξ ) =
N

∑
j=1

w j
∣∣ log ε̂(η j)− logq + ξ log [1 + ã(η j−b)c]

∣∣2 , (5.40)

where w j is a weight factor as previously defined.
An option for estimating the five parameters ã,b,c,q,ξ is again to use the Levenberg-

Marquardt least squares optimization method, which can be simplified also in this case
by observing that if ã, b and c are fixed in Eq. (5.40), the optimization problem reduces
to a standard weighted linear regression problem. That is, with ã, b and c fixed, the
optimal values of ξ and logq are found using closed form weighted linear regression
formulas in terms of w j, y j = log ε̂(η j) and x j = log(1 + ã(η j−b)c).

It is obtained that the optimal values of ξ and logq are given by relations sim-
ilar to Eqs. (5.34) and (5.35). To calculate the final optimal set of parameters,
the Levenberg-Marquardt method may then be used on the function F̃(ã,b,c) =
F(ã,b,c,q∗(ã,b,c),ξ ∗(ã,b,c)) to find the optimal values ã∗, b∗ and c∗, and then the
corresponding ξ ∗ and q∗ can be calculated. The optimal values of the parameters may
e.g also be found by a sequential quadratic programming (SQP) method (Numerical
Algorithms Group, 2010). This general case formulation of the ACER method used
on financial risk issues, which often requires heavy tailed distributions, is discussed in
Chapter 7.
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6.1 Introduction

As stated in Chapters 1 and 5, extreme value statistics, even in applications, is gen-
erally based on asymptotic results. This is done either by assuming that the epochal
extremes, for example yearly extreme wind speeds at a given location, are distributed
according to the generalized (asymptotic) extreme value distribution with unknown
parameters to be estimated on the basis of the observed data, cf. Chapter 2. Or it is
assumed that the exceedances above high thresholds follow a generalized (asymptotic)
Pareto distribution with parameters that are estimated from the data, cf. Chapter 3.
With the ACER method now available, the performance of these three methods on
simulated or measured data may be compared. Note that all calculations of the em-
pirical ACER functions in this chapter were performed using the ACER program
package for Matlab (Karpa, 2012). This package also allows for optimized fitting of
parametric functions for prediction of long return period extreme values for the case of
asymptotic Gumbel distributions, cf. Section 5.5, which totally dominates engineering
applications.

The first example in this chapter deals with synthetic data, which allows us to
control the exact result to be predicted by the different methods. The second example
looks at measured wind speed data at three locations along the coast of Norway. The
measurement periods are ranging from 12 to 16 years. The goal would then e.g. be to
predict a 100 year return period value for the wind speed on the basis of these data.
This represents a classical problem in wind engineering. For some other problems of
these kind of engineering challenges where the ACER method has been applied, cf.
e.g. Gaidai et al. (2016, 2018); Yu et al. (2020); Sinsabvarodom et al. (2022)

6.2 Extreme Value Prediction for Synthetic Data

In this section the performance of the ACER method and also the 95% CI esti-
mation will be illustrated. 20 years of synthetic wind speed data are subjected to
analysis, amounting to 2000 data points, which is not much for detailed statistics.
However, this case may represent a real situation when nothing but a limited data
sample is available. In this case it would appear crucial to provide extreme value es-
timates utilizing all data available. As will be demonstrated, the tail extrapolation
technique proposed for the ACER method performs on the average better than the
asymptotic POT or Gumbel methods.

The extreme value statistics will be analyzed by application to synthetic data for
which the exact extreme value statistics can be calculated (Naess and Clausen, 2001).
In particular, it is assumed that the underlying (normalized) stochastic process Z(t)
is stationary and Gaussian with mean value zero and standard deviation equal to one.
It is also assumed that the mean zero up-crossing rate ν+(0) is such that the product
ν+(0)T = 103 where T = 1 year, which seems to be typical for the wind speed process.
Using the Poisson assumption, the distribution of the yearly extreme value of Z(t) is
then calculated by the formula

F1yr(η) = exp
{
−ν

+(η)T
}

= exp
{
−103 exp

(
−η2

2

)}
, (6.1)
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where T = 1 year and ν+(η) is the mean up-crossing rate per year, η is the scaled wind
speed. The 100-year return period value η100yr is then calculated from the relation
F1yr(η100yr) = 1−1/100, which gives η100yr = 4.80.

The Monte Carlo simulated data to be used for the synthetic example are gen-
erated based on the observation that the peak events extracted from measurements
of the wind speed process, are usually separated by 3-4 days. This is done to obtain
approximately independent data, as required by the POT method. In accordance with
this, peak event data are generated from the extreme value distribution

F3d(η) = exp
{
−qexp

(
−η2

2

)}
, (6.2)

where q = ν+(0)T = 10, which corresponds to T = 3.65 days, and F1yr(η) =
(
F3d(η)

)100
.

Since the data points (i.e. T = 3.65 days maxima) are independent, εk(η) is inde-
pendent of k. Therefore, k = 1 is chosen. Since there are 100 data from one year, the
data amounts to 2000 data points. For estimation of a 95% confidence interval for each
value of the ACER function ε1(η) for the chosen range of η-values, the required stan-
dard deviation in Eq. (11.37) was based on 20 estimates of the ACER function using
the yearly data. This provided a 95% confidence band on the ACER function based
on 2000 data. From these data, the predicted 100 year return level is obtained from
ε̂1(η100yr) = 10−4. A nonparametric bootstrapping method was also used to estimate
a 95% confidence interval based on 1000 resamples of size 2000.

The POT prediction of the 100 year return level was based on using maximum
likelihood estimates (MLE) of the parameters in Eq. (3.3) for a specific choice of
threshold. The 95% confidence interval was obtained from the parametrically boot-
strapped density of the POT estimate for the given threshold. A sample of 1000 data
sets was used. One of the unfortunate features of the POT method is that the es-
timated 100 year value may vary significantly with the choice of threshold. So also
for the synthetic data. We have followed the standard recommended procedures for
identifying a suitable threshold (Coles, 2001).

Note that in spite of the fact that the true asymptotic distribution of exceedances
is the exponential distribution Eq. (3.4), the POT method used here is based on
adopting Eq. (3.3). The reason is simply that this is the recommended procedure
(Coles, 2001), which is somewhat unfortunate, but understandable. The reason being
that the GP distribution provides greater flexibility in terms of curve fitting. If the
correct asymptotic distribution of exceedances had been used on this example, poor
results for the estimated return period values would be obtained. The price to pay
for using the GP distribution, is that the estimated parameters may easily lead to an
asymptotically inconsistent distribution.

The 100 year return level predicted by the Gumbel method was based on using the
method of moments for parameter estimation on the sample of 20 yearly extremes.
This choice of estimation method is due to the small sample of extreme values. The
95% confidence interval was obtained from the parametrically bootstrapped density
of the Gumbel prediction. This was based on a sample of size 10,000 data sets of 20
yearly extremes. The results obtained by the method of moments were compared with
the corresponding results obtained by using the maximum likelihood method. While
there were individual differences, the overall picture was one of very good agreement.

In order to get an idea about the performance of the ACER, POT and Gumbel
methods, 100 independent 20 yr MC simulations as discussed above were done. Ta-
ble 6.1 compares predicted values and confidence intervals for a selection of 10 cases
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together with average values over the 100 simulated cases. It is seen that the average
of the 100 predicted 100 year return levels is slightly better for the ACER method
than for both the POT and the Gumbel methods. But more significantly, the range
of predicted 100 year return levels by the ACER method is 4.34 - 5.36, while the
same for the POT method is 4.19 - 5.87, and for the Gumbel method 4.41 - 5.71.
Hence, in this case the ACER method performs consistently better than both these
methods. It is also observed from the estimated 95% confidence intervals that the
ACER method, as implemented in this book, provides slightly higher accuracy than
the other two methods. Lastly, it is pointed out that the confidence intervals of the
100 year return level values by the ACER method obtained by either the simplified
extrapolated confidence band approach or by nonparametric bootstrapping are very
similar except for a slight mean shift. As a final comparison, the 100 bootstrapped
confidence intervals obtained for the ACER and Gumbel methods missed the target
value three times, while for the POT method this number was 18.

Table 6.1 100 year return level estimates and 95% CI (BCI = CI by bootstrap) for A=ACER,
G=Gumbel and P=POT. Exact value = 4.80.

Sim.No. A η̂100yr A CI A BCI G η̂100yr G BCI P η̂100yr P BCI
1 5.07 (4.67, 5.21) (4.69, 5.42) 4.41 (4.14, 4.73) 4.29 (4.13, 4.52)
10 4.65 (4.27, 4.94) (4.37, 5.03) 4.92 (4.40, 5.58) 4.88 (4.42, 5.40)
20 4.86 (4.49, 5.06) (4.44, 5.19) 5.04 (4.54, 5.63) 5.04 (4.48, 5.74)
30 4.75 (4.22, 5.01) (4.33, 5.02) 4.75 (4.27, 5.32) 4.69 (4.24, 5.26)
40 4.54 (4.20, 4.74) (4.27, 4.88) 4.80 (4.31, 5.39) 4.73 (4.19, 5.31)
50 4.80 (4.35, 5.05) (4.42, 5.14) 4.91 (4.41, 5.50) 4.79 (4.31, 5.34)
60 4.84 (4.36, 5.20) (4.48, 5.19) 4.85 (4.36, 5.43) 4.71 (4.32, 5.23)
70 5.02 (4.47, 5.31) (4.62, 5.36) 4.96 (4.47, 5.53) 4.97 (4.47, 5.71)
80 4.59 (4.33, 4.81) (4.38, 4.98) 4.76 (4.31, 5.31) 4.68 (4.15, 5.27)
90 4.84 (4.49, 5.11) (4.60, 5.30) 4.77 (4.34, 5.32) 4.41 (4.23, 4.64)
100 4.62 (4.29, 5.05) (4.45, 5.09) 4.79 (4.31, 5.41) 4.53 (4.05, 4.88)

Av. 100 4.82 (4.41, 5.09) (4.48, 5.18) 4.84 (4.37, 5.40) 4.72 (4.27, 5.23)

An example of the ACER plot and results obtained for one set of data is presented
in Figure 6.1. The predicted 100 year value is 4.85 with a predicted 95% confidence
interval (4.45, 5.09). Figure 6.2 presents POT predictions based on MLE for different
thresholds in terms of the number n of data points above the threshold. The predicted
value is 4.7 at n = 204, while the 95% confidence interval is (4.25, 5.28). The same
data set as in Figure 6.1 was used. This was also used for the Gumbel plot shown in
Figure 6.3. In this case the predicted value based on the method of moments (MM) is

η̂
100yr
MM = 4.75 with a parametric bootstrapped 95% confidence interval of (4.34, 5.27).

Prediction based on the Gumbel-Lieblein BLUE method (GL), cf. e.g. Cook (1985),

is η̂
100yr
GL = 4.73 with a parametric bootstrapped 95% confidence interval equal to

(4.35, 5.14).

6.3 Measured Wind Speed Data

In this section we analyze real wind speed data, measured at three weather stations
off the coast of Norway: At Torsv̊ag Fyr weather station (station number 90800), Sula
weather station (station number 65940) and Obrestad Fyr weather station (station
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Figure 6.1 Synthetic data ACER ε̂1, Monte Carlo simulation (*); optimized curve fit (—);
empirical 95% confidence band (- -); optimized confidence band (· · ··). Tail marker η1 = 2.3
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Figure 6.2 The point estimate η̂100yr of the 100-year return period value based on 20 years
synthetic data as a function of the number n of data points above the threshold. The return
level estimate = 4.7 at n = 204.

number 44080), cf. Karpa and Naess (2013). Figure 6.4 shows the geographical position
of each station. The hourly maximum of the three seconds wind gust (10 meters above
the ground) were recorded during 13 years (1997-2010) at the first station, 12 years
(1998-2010) at the second, and 16 years (1994-2010) at the third station (Norwegian
Meteorological Institute, 2012).

Extreme wind speed prediction is an important issue for design of structures ex-
posed to the weather variations. Significant efforts have been devoted to the problem
of predicting extreme wind speeds on the basis of measured data by various authors
over several decades, see e.g. Cook (1982); Naess (1998a); Palutikof et al. (1999);
Perrin et al. (2006) for extensive references to previous work.

The objective is to estimate a 100 year wind speed for each of these locations.
Variation in the wind speed caused by seasonal variations in the wind climate during
the year makes the wind speed a non-stationary process on the scale of months.
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Figure 6.3 The point estimate η̂100yr of the 100-year return period value based on 20 years
synthetic data. Lines are fitted by the method of moments – solid line (—) and the Gumbel-
Lieblein BLUE method – dash-dotted lite (– · –). The return level estimate by the method of
moments is 4.75, by the Gumbel-Lieblein BLUE method is 4.73

Figure 6.4 Map of Norway with marked weather stations

Moreover, due to global climate change, yearly statistics may vary on the scale of years.
The latter is, however, a slow process and for the purpose of long-term prediction,
it is assumed here that within a time span of 100 years, a quasi-stationary model of
the wind speeds applies. This may not be entirely true, of course, but for the three
stations under study, no apparent trend in the wind speed was detected over the
period of registration.

Figures 6.5 - 6.7 demonstrate the plots of the time series observed from each station.
A conspicuous feature of the time series is the clear seasonal variation of the wind
speeds. Note the paucity of data at certain times at the Sula station. The practical
consequence of this is to shorten the effective length of the time series. It is of some
importance to note that the samples from Torsv̊ag Fyr and Obrestad Fyr stations
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contain outlying observations, such as 45.3 m/s in June 06, 1997; 43.7 m/s in May 10,
2001 and 60.8 m/s in September 09, 2008 for Obrestad Fyr station and 45.3 m/s in July
12, 1998 and July 31, 1999 for Torsv̊ag Fyr station. Such wind speeds are most likely
spurious for the corresponding time periods and latitudes. Moreover, observations
from the weather stations in the close neighborhood of Obrestad Fyr confirm that no
heavy storm has occurred during the period in question, while no information from
the stations in the neighborhood of Torsv̊ag Fyr is available. Therefore, the outliers
from Obrestad Fyr station have to be rejected, while the outliers from Torsv̊ag Fyr
are kept, mainly in order to show that the ACER method is largely insensitive to
observations of this kind.

Figure 6.5 Observations from Torsv̊ag Fyr station

Figure 6.6 Observations from Sula station

In Figures 6.8 - 6.10, ε̂k(η) is plotted versus wind speeds, η/σ for different values
of k for the three stations. The figures reveal that there is significant dependence
between the data, but that this is largely accounted for by k = 48 since there is a
marked degree of convergence of the ε̂k(η) for k ≥ 48. It should be noted that k = 48



76 6 Some Practical Aspects of Extreme Value Analyses

Figure 6.7 Observations from Obrestad Fyr station

obviously corresponds to two days separated exceedances for hourly observations. For
k ≥ 96, that is four days declustered data, full convergence has been achieved for all
practical purposes. However, Figures 6.8 - 6.10 also reveal that for extreme value
estimation ε̂1(η) can be used since the ACER functions all converge in the far tail.
This clearly demonstrates the power of an ACER function plot as a diagnostic tool
to decide on the value of k needed for extreme value estimation in a particular case.
In spite of significant dependence effects for the lower wind speeds, for the extreme
wind speeds this is largely absent. This makes it possible to choose k = 1, which makes
much more data available for estimation, with a possible reduction of uncertainty in
estimation as a result.
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Figure 6.8 Comparison between ACER estimates for different degrees of conditioning.
Torsv̊ag Fyr wind gust statistics based on 13 years of hourly data with outliers included,
σ = 5.30.

Figures 6.11 - 6.13 show the plots of the optimized fit to the data for ε̂1(η) for each
station. 100-year return level value and its 95% CI are estimated parametrically. For
the data with outliers from Torsv̊ag Fyr weather station, η̂100yr = 47.46 m/s and 95%
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Figure 6.9 Comparison between ACER estimates for different degrees of conditioning. Sula
wind gust statistics based on 12 years of hourly data, σ = 5.49.
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Figure 6.10 Comparison between ACER estimates for different degrees of conditioning.
Obrestad Fyr wind gust statistics based on 16 years of hourly data, σ = 5.47.

CI = (42.11, 50.71) with parameters of the optimal curve: q = 0.44, b = 9.02, a = 0.1,
c = 1.33. The predicted 100-years return wind speed and 95% CI for the data without
outliers are η̂100yr = 47.21 m/s; CI = (39.94, 50.60) with optimal parameters q = 0.47,
b = 8.49, a = 0.09, c = 1.36. In the case of the Sula wind station, η̂100yr = 46.33 m/s;
CI = (43.41, 47.77), where the parameters of the optimal curve are: q = 0.58, b =
0, a = 0.005, c = 2.07. Finally, for the Obrestad Fyr station, the 100-year return
level value is η̂100yr = 48.38 m/s with confidence interval (43.18, 50.74) and optimal
parameters q = 0.29, b = 12.34, a = 0.13, c = 1.27.

The annual maxima method is applied to the wind gust data to compare the
estimated 100-year return level values. The application of this method to the wind
data is based on the premise that the time series of the yearly maxima can be modelled
as a sequence of iid random variables, which would seem to be a reasonable assumption
to make as a first approximation. The Gumbel estimate η̂100yr is based on the method
of moments (MM) and the Gumbel-Lieblein BLUE method (GL), cf. e.g. Cook (1985).
A computer program has been written in the Matlab language to implement both
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Figure 6.11 Plot for Torsv̊ag Fyr of ε̂1(η) against η/σ on a logarithmic scale with η1 = 2.07σ

for the optimized parameter values with the 95% confidence band, σ = 5.30.
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Figure 6.12 Plot for Sula of ε̂1(η) against η/σ on a logarithmic scale with η1 = 2.36σ for the
optimized parameter values with the 95% confidence band, σ = 5.49.
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Figure 6.13 Plot for Obrestad Fyr of ε̂1(η) against η/σ on a logarithmic scale with η1 = 2.5σ

for the optimized parameter values with the 95% confidence band, σ = 5.47.
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methods. Figures 6.14 - 6.16 present observed yearly extremes extracted from the
hourly data together with fitted straight lines on Gumbel probability paper. Hereby,
the 100-year return level values for the first station with outliers included are η̂

100yr
MM =

51.33 m/s and η̂
100yr
GL = 51.57 m/s, while in the case of rejected outlying observations,

η̂
100yr
MM = 44.31 m/s and η̂

100yr
GL = 45.84 m/s. For Sula and Obrestad Fyr stations, the

100-year return level values are η̂
100yr
MM = 48.66 m/s with η̂

100yr
GL = 52.9 m/s and η̂

100yr
MM =

48.59 m/s with η̂
100yr
GL = 53.79 m/s, respectively.

Despite the fact that the Gumbel-Lieblein BLUE method is considered as one of
the best available conventional Gumbel methods, the application of the GL method
requires tables of the BLUE coefficients which are not easily available for annual
data with sample size N > 24. Observed results reveal sensitivity of this method to
outliers, which also applies for the method of moments. It is also noted that the
Gumbel-Lieblein BLUE method seems to have a tendency to overestimate predicted
return level values, while the method of moments seems to be reasonably stable for
the studied sets of data.
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Figure 6.14 The point estimate η̂100yr of the 100-year return period value by the Annual
maxima method. Lines are fitted by the method of moments – solid line (—) and the Gumbel-
Lieblein BLUE method – dash-dotted lite (– · –). Torsv̊ag Fyr wind speed statistics, 13 years
hourly data, σ = 5.30.

The POT method is also applied to the wind gust time series. Immediately, this
would seem to be an unwarranted approach since the time series of wind speeds
is conspicuously nonstationary. Efforts have been made to account for the seasonal
variations by explicit modelling of the parameters of the GP distribution, cf. Coles
(2001). However, this does not seem to be a widely adopted procedure. Instead, the
POT method is applied directly to the full time series, recognizing that the extracted
relevant data comes from a period of 3 or 4 months, which may be considered to
represent a more or less stationary period. And by manipulating time frames, this is
considered to represent one year. This trick approximately circumvents the problem
of nonstationarity. This will be our approach here.

Following the WAFO-group (2000), data were declustered beforehand. It was done
in such a way that peak events separated by 3.5 days or more were extracted from
the measured data and selected for the analysis to achieve approximate independence
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Figure 6.15 The point estimate η̂100yr of the 100-year return period value by the Annual
maxima method. Lines are fitted by the method of moments – solid line (—) and the Gumbel-
Lieblein BLUE method – dash-dotted lite (– · –). Sula wind speed statistics, 12 years hourly
data, σ = 5.49
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Figure 6.16 The point estimate η̂100yr of the 100-year return period value by the Annual
maxima method. Lines are fitted by the method of moments – solid line (—) and the Gumbel-
Lieblein BLUE method – dash-dotted lite (– · –). Obrestad Fyr wind speed statistics, 16 years
hourly data, σ = 5.47

of the exceedances (Naess, 1998b). Figures 6.17 - 6.19 present POT estimates of
η̂100yr for different threshold numbers based on maximum likelihood estimation, cf.
Chapter 3. Estimates were obtained by using the MATLAB (2009) Statistics Toolbox
routine gpfit. It is interesting to observe the unstable characteristics of the estimates
over a range of threshold values. While it is clearly of interest to discuss methods for
stabilizing the POT estimates, this issue is considered to be outside the scope of this
book.

In Tables 6.2 - 6.5, the 100-year return period values are listed together with the
predicted 95% confidence intervals for all methods and each station. In case of the
annual maxima method, the 95% confidence intervals are estimated from a paramet-
ric bootstrapping of the Gumbel estimates based on a sample of size 10,000 data
sets of 13, 12 and 16 yearly extremes. For the POT method, the bootstrapped 95%
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Figure 6.17 The point estimate η̂100yr of the 100-year return period value based on 13 years
Torsv̊ag Fyr station wind data as a function of the number n of data points above threshold.
The return level estimate = 49.41 at n = 131, σ = 5.30
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Figure 6.18 The point estimate η̂100yr of the 100-year return period value based on 12 years
Sula station wind data as a function of the number n of data points above threshold. The
return level estimate = 43.42 at n = 120, σ = 5.49.

confidence intervals were estimated by using the MATLAB (2009) Statistics Toolbox
routine bootstrp. 10,000 samples are generated by sampling with replacement from
the observed exceedances above high thresholds.

6.4 Extreme Value Prediction for a Narrow Band Process

In engineering mechanics, a classical extreme response prediction problem is the
case of a lightly damped mechanical oscillator subjected to random forces. To illustrate
this prediction problem, the response process of a linear mechanical oscillator driven
by a Gaussian white noise will be investigated. Let X(t) denote the displacement
response. The dynamic model can then be expressed as, Ẍ(t) + 2ζ ωeẊ(t) + ω2

e X(t) =
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Figure 6.19 The point estimate η̂100yr of the 100-year return period value based on 12 years
Obrestad Fyr station wind data as a function of the number n of data points above threshold.
The return level estimate = 46.1 at n = 151, σ = 5.47

Table 6.2 Predicted 100-year return period levels for Torsv̊ag Fyr weather station by the
ACER-method for different degrees of conditioning, Annual maxima and POT methods, re-
spectively; outliers are considered true observations.

Method Spec η̂100yr m/s 95% CI (η̂100yr) m/s

ACER, various k

1 47.46 (42.11, 50.71)
2 48.18 (41.48, 51.31)
4 46.96 (42.25, 49.63)
24 48.36 (43.44, 51.63)
48 47.54 (43.46, 49.75)
72 47.44 (44.39, 48.79)
96 48.78 (44.53, 51.61)

Annual maxima
MM 51.33 (43.08, 61.57)
GL 51.57 (44.24, 60.67)

POT – 49.41 (40.95, 59.42)

Table 6.3 Predicted 100-year return period levels for Torsv̊ag Fyr weather station by the
ACER-method for different degrees of conditioning, Annual maxima and POT methods, re-
spectively; outliers are rejected.

Method Spec η̂100yr m/s 95% CI (η̂100yr) m/s

ACER, various k

1 47.21 (39.94, 50.60)
2 47.79 (41.13, 50.93)
4 46.32 (42.00, 49.04)
24 47.22 (43.26, 50.04)
48 46.38 (43.60, 48.19)
72 46.32 (44.24, 47.37)
96 47.80 (44.45, 49.95)

Annual maxima
MM 44.31 (39.36, 50.39)
GL 45.84 (40.72, 52.41)

POT – 42.62 (39.01, 47.31)
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Table 6.4 Predicted 100-year return period levels for Sula weather station by the ACER-
method for different degrees of conditioning, Annual maxima and POT methods, respectively.

Method Spec η̂100yr m/s 95% CI (η̂100yr) m/s

ACER, various k

1 46.33 (43.41, 47.77)
2 46.81 (44.08, 49.04)
4 47.99 (44.80, 50.57)
24 46.65 (44.10, 48.07)
48 46.83 (44.28, 48.03)
72 45.80 (43.01, 46.96)
96 45.69 (42.32, 47.01)

Annual maxima
MM 48.66 (41.58, 57.58)
GL 52.90 (44.29, 63.39)

POT – 43.42 (39.07, 47.80)

Table 6.5 Predicted 100-year return period levels for Obrestad Fyr weather station by the
ACER-method for different degrees of conditioning, Annual maxima and POT methods, re-
spectively.

Method Spec η̂100yr m/s 95% CI (η̂100yr) m/s

ACER, various k

1 48.38 (43.18, 50.74)
2 48.11 (42.38, 50.69)
4 48.81 (42.34, 51.59)
24 47.90 (42.87, 50.53)
48 48.90 (43.82, 50.72)
72 49.47 (44.06, 51.52)
96 48.55 (43.46, 49.96)

Annual maxima
MM 48.59 (42.10, 56.84)
GL 53.79 (46.16, 63.53)

POT – 46.10 (41.00, 55.00)

W (t), where ζ = relative damping, ωe = undamped eigenfrequency, and W (t) = a
stationary Gaussian white noise (of suitable intensity). By choosing a small value
for ζ , the response time series will exhibit narrow band characteristics, that is, the
spectral density of the response process X(t) will assume significant values only over
a narrow range of frequencies. This manifests itself by producing a strong beating of
the response time series, which means that the size of the response peaks will change
slowly in time, see Figure 6.20. A consequence of this is that neighbouring peaks are
strongly correlated, and there is a conspicuous clumping of the peak values. This gives
rise to the problem of accurate prediction, since the usual assumption of independent
peak values is then violated.

Many approximations have been proposed to deal with this correlation problem,
but no completely satisfactory solution has been presented. In this section it will be
shown that the ACER method solves this problem efficiently and elegantly in a statis-
tical sense. In Figure 6.21 are shown some of the ACER functions for the example time
series. It may be verified from Figure 6.20 that there are approximately 32 sample
points between two neighbouring peaks in the time series. To illustrate a point, the
time series consisting of all sample points has been analyzed. Usually, in practice, only
the time series obtained by extracting the peak values would be used for the ACER
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Figure 6.20 Part of the narrow-band response time series of the linear oscillator with fully
sampled and peak values indicated.

analysis of a narrow band process. In the present case, the first ACER function is
then based on assuming that all the sampled data points are independent, which is
obviously completely wrong. The second ACER function, which is based on counting
each exceedance with an immediately preceding non-exceedance, is nothing but an
upcrossing rate. Using this ACER function is largely equivalent to assuming indepen-
dent peak values. It is now interesting to observe that e.g. the 25th ACER function can
hardly be distinguished from the second ACER function. In fact, the ACER functions
after the second do not change appreciably until one starts to approach the 32nd,
which corresponds to hitting the previous peak value in the conditioning process. So,
the important information concerning the dependence structure in the present time
series seems to reside in the peak values, which may not be very surprising. It is seen
that the ACER functions show a significant change in value as a result of accounting
for the correlation effects in the time series. To verify the full dependence structure in
the time series, it is necessary to continue the conditioning process down to at least
the 64th ACER function. In the present case there is virtually no difference between
the 32nd and the 64th, which shows that the dependence structure in this particu-
lar time series is captured almost completely by conditioning on the previous peak
value. It is interesting to contrast the method of dealing with the effect of sampling
frequency discussed here with that of Robinson and Tawn (2000).

To illustrate the results obtained by extracting only the peak values from the time
series, which would be the approach typically chosen in an engineering analysis, the
ACER plots for this case is shown in Figure 6.22. By recognizing that there is an
almost one-to-one correspondence between upcrossings and peaks, it can be verified
by comparing results from Figures 6.21 and 6.22, that they are in very close agreement
since the second ACER function in Figure 6.21 corresponds to the first ACER function
in Figure 6.22 by the observed one-to-one correspondence, and by noting that there
is a factor of approximately 32 between corresponding ACER functions in the two
figures. This is due to the fact that the time series of peak values contains about 32
times less data than the original time series.
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Figure 6.21 Comparison between ACER estimates for different degrees of conditioning for
the narrow-band time series.
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Figure 6.22 Comparison between ACER estimates for different degrees of conditioning based
on the time series of the peak values, cf. Figure 6.20.
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7.1 Introduction

In 1991 the Norwegian government decided that the power market should be dereg-
ulated allowing for power trading. Following this, the Nord Pool market was estab-
lished in 1996 as a common electricity market for Norway and Sweden. Finland fol-
lowed into the Nord Pool market area in 1998, and western and eastern Denmark
joined in 1999 and 2000 respectively. In 2002 Nord Pool spot was established and to-
day runs the spot (1 day a-head) market for electricity in Norway, Sweden, Denmark,
Finland and Estonia. Today, a large part of the consumption of electricity in this
market is traded trough Nord Pool spot, and the spot market is the most important.

Due to the difficulties and costs of storing electricity (basically it cannot be stored)
the observed spot price is highly volatile and the changes of these spot prices are often
very large. Some stylized facts for the price changes in these spot data are that they
display very heavy tails, significant serial correlation, seasonality and volatility clus-
tering (Weron, 2006). The seasonality comes from the fact that the electricity cannot
be stored, so the price during the high demand periods (during the day, weekdays
and the winter) tend to be higher. Most of the electricity in the market is produced
by hydro power plants, so prices are also highly influenced by precipitation, giving
higher electricity prices in dry years. Extreme price changes or spikes are observed in
electricity markets around the world (Escribano et al., 2002), and has been studied
extensively over the last years. Earlier work on modelling these spikes as an error
process (Contreras et al., 2003; Garcia et al., 2005; Swider and Weber, 2007) applying
extreme value theory, will be used here (Byström, 2005; Chan and Gray, 2006). This
chapter largely follows the work reported by Dahlen et al. (2015).

In the examples presented, a conditional extreme value approach will be used,
as suggested by McNeil and Frey (2000), to estimate tail quantiles for the return
distribution, and thus get a measure of the Value-at-Risk (VaR). They suggested
that a Generalized Pareto (GP) distribution is to be fitted, with the use of the POT
method, to a dataset of residuals from an AR-GARCH (Brockwell and Davis, 2002)
filtering process. Here, the ACER method will also be used to estimate the tails of
these residuals, and the obtained results will be compared to those obtained with
the use of the POT method. The methods will be compared in both in sample and
out of sample performance. A reason for using the ACER method over the POT
method, is that there are essentially no asymptotic arguments and no requirements
about independent data in the derivation of the ACER method, which in turn leads
to better use of the data.

7.2 Value-at-Risk

To quantify the risk associated with the models applied, it was decided to use
the Value-at-Risk (VaR) metric. The VaR metric, for the next day, is defined for a
probability α as the value the loss will not exceed with probability α. For a series of
stochastic variables Xt , which would here be the future price of electricity, the VaR
will be defined as,

Prob(Xt ≤ VaRα) = α. (7.1)

So, the VaR is directly related to the quantiles of the distribution of electricity prices.
For the models used in this chapter, the VaR is straight-forward to calculate. For the
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POT method, the VaR is simply obtained by inverting the GP distribution for a given
probability. This gives the VaR as, cf. Eq. (3.3),

VaRα = u +
σ

γ

(
(1−α)−γ −1

)
, (7.2)

where u denotes the chosen threshold value, σ and γ are the scale and shape param-
eters of the GP distribution of exceedances of u, respectively. For the ACER method,
the VaR is found just as easily by inverting the estimated ACER function for the
desired exceedance level α, cf. Eq. (5.39). The VaR then becomes,

VaRα = b +

(
1
ã

(( q
1−α

)ξ

−1
))1/c

, (7.3)

where ã, b, c, q and ξ are the parameters estimated by fitting the assumed parametric
ACER function to the observed data. In the derivation of Eq. (7.3), the approximation
exp(−x)≈ 1−x for small x is used. It should be noted that when using the conditional
approach, the VaR estimations need to be inserted into the equation for the conditional
quantiles. As a last reminder, it should be noted that for the VaR to be interpreted
as the unlikely loss, these two methods need to be fitted to the left tail of the return
distribution. So, using the VaR, a simple and straight-forward method to quantify the
risk in the Nordic Power Exchange spot market is at hand.

7.3 Application to Simulated Time Series of Electricity Prices

Before using the method developed on real time series, it was decided to try to
motivate the use of the ACER method instead of the POT method by applying the
two to simulated time series with known properties. By this approach, it should be
possible to get an idea of the difference in performance for the two methods, and if
the ACER method performs better, argue that it should be used when estimating
extreme quantiles. The initial step was simply simulating iid innovations from a Stu-
dent’s t distribution and comparing the estimated quantiles with the ones from the
actual distribution. Data sets were simulated consisting of 10 time series with 3650
independent outcomes of the t variable in each, which then provides us with data
sets of 36500 observations. This was repeated 5 times, resulting in 5 data sets for
comparing the performance of the ACER and POT methods. For the data sets simu-
lated, a t variable with ν = 4 degrees of freedom was used. Applying the ACER and
POT methods to the simulated data sets, and estimating the 100 time series return
level, which is the level that is expected to be exceeded once per 100 time series, the
results presented in Table 7.1 were obtained. In this table, the estimated 100 time
series return level is presented along with the percentage deviation from the real re-
turn level obtained from the Student’s t distribution, and 95% confidence intervals for
the estimated return level. From this table it is seen that while the ACER method
estimates a return level closer to the real return level 4 out of 5 times, the width of the
confidence intervals is far greater when using the POT method. The reason for the
difference in the confidence intervals is likely due to the fact that the ACER method
uses approximately 48% of all observations, compared to approximately 10% of all
observations used by the POT method.
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Table 7.1 100 time series return level estimated with ACER and POT for the t-model with
ν = 4.

η100ts
ACER CIACER η100ts

POT CIPOT
32.99 (2.1%) (29.32, 37.80) 33.82 (4.7%) (23.75, 43.88)
27.78 (14.0%) (24.17, 31.59) 24.56 (24.0%) (18.35, 31.05)
31.68 (1.9%) (28.43, 34.72) 30.24 (6.4%) (21.87, 38.61)
29.76 (7.7%) (26.88, 33.31) 31.83 (1.5%) (22.46, 41.20)
31.80 (1.5%) (26.29, 34.25) 29.05 (10.1%) (21.15, 36.96)

7.4 Electricity Price Data

In this chapter, the daily spot price at the Nordic Power Exchange, Nord Pool,
is studied. It will be the price at 9 a.m. for a ten year period, from 01.01.2000 to
31.12.2009. The price region considered is the middle of Norway. It should be noted
that this price region was established on 20.11.2006. Before that time, it was integrated
with the rest of Norway. It is also worth mentioning that the spot price in this market
is actually a 1-day futures price, where the price for the following day is set by an
auction at noon.

Plotted in Figure 7.1 are the daily prices observed over this ten year period, and
in Figure 7.2 are the daily price changes, presented as logarithmic returns. Observ-
able from these figures are large spikes in both the price and price change processes.
There also seems to be some volatility clustering in the return series. In Table 7.2,
some descriptive statistics is presented along with test values for the Ljung–Box test
(Brockwell and Davis, 2002) for different lags on both the return and squared return
series. Q(h) denotes the test statistic at lag h for the return series, while Q2(h) is the
same for the squared series. A large excess kurtosis and positive skewness are observed,
meaning that both very small and very large price changes occur often compared to a
normal distribution, and large positive price changes are more common than the large
negative price changes. From the Ljung–Box test, significant serial correlation for all
lags considered here is observed, which is expected. For the squared returns, there is
significant serial correlation for both 7 and 10 lags, meaning that there is significant
volatility clustering or a GARCH effect.

Table 7.2 Descriptive statistics for the return series.

Mean Skew. Ex.Kurt. Q(1) Q(2) Q(7) Q2(1) Q2(2) Q2(7)

3.00 ·10−4 0.97 23.27 182.20 430.86 1505.67 265.50 606.49 863.32

7.5 Conditional Approach

Following the conditional approach of McNeil and Frey (2000), and the use of a
similar model for the electricity spot prices as given by Byström (2005), the data were
modelled with the use of an AR-GARCH model, and the ACER method was then
applied for estimation of the residual tail quantiles. To accommodate the heavy tailed
data, which are typically observed in finance, the proposed procedure of Section 5.6
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Figure 7.1 Daily electricity spot prices on Nord Pool for the ten year period.
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Figure 7.2 Daily electricity price changes on Nord Pool for the ten year period.

was used. For these returns, the goal was to fit an AR-GARCH model where the
seasonality in the process was modeled by an AR process. The terms included in
this AR process were the AR(1) and AR(7) terms because of the clear seasonality
over the day and over the week. For modeling the volatility, a GARCH(1,1) process
(Bollerslev, 1986) was chosen. This provides a model that should be able to capture
the serial correlation over the week and the observed heteroscedasticity. The model
then assumes the form,

Rt = a0 + a1Rt−1 + a7Rt−7 + σtZt , (7.4)

σ
2
t = α0 + α1σ

2
t−1Z2

t−1 + β1σ
2
t−1, (7.5)

where Rt denotes daily log return rates of spot prices Xt , that is, Rt = log(Xt/Xt−1).
The Zt are iid random variables of mean value zero and variance equal to 1.0, while
a0,a1,a7,α0,α1,β1 are all non-negative constants. In this chapter, it will be assumed
that Zt is Normal or Student’s t distributed, scaled to unit variance. The conditional
quantiles, for these two models, can then be calculated as,
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q∗t,α = a0 + a1Rt−1 + a7Rt−7 + σtqα , (7.6)

where qα is the standard α-quantile of the Normal- or Student’s t-distribution.
For the heavy tails observed in this type of data, this standard AR-GARCH process

will not be sufficient to model the tails of the return distribution accurately. The error
distribution simply cannot be assumed to be Normal or Student’s t, as will be observed
later. Introduced by McNeil and Frey (2000), and applied to Nord Pool spot prices
by Byström (2005), the extreme value theory approach has proven itself superior
to the use of a standard AR-GARCH approach. This approach was used here, but
instead of using only a POT fitted GP distribution for estimation of the tail quantiles
for the standardized residual distribution, the ACER method was also applied. The
performance of this method was then compared to the performance of the conditional
model where the POT method was used. After using the ACER and POT methods
to estimate the tail quantiles of the residual distribution, the conditional quantiles for
these models were calculated as,

q∗t,α = a0 + a1Rt−1 + a7Rt−7 + σt q̂α , (7.7)

where q̂α is the quantile of the residual distribution, associated with probability α,
estimated by the POT or ACER method. The standardized residuals obtained by
the Normal AR-GARCH filter were still slightly serially correlated, but most of the
heteroscedacity was removed. These conditional quantiles may also be regarded as the
VaR(α) estimate when considering the distribution of the lower tail. For the in sample
performance test, the conditional tail quantiles were estimated for all observations,
and then the number of empirical exceedances over these quantiles were compared to
what was to be expected. When dealing with the out of sample performance, the initial
step was estimating a model using the first five years, and then this model was used to
predict the tail quantiles for the next day. The model was then re-estimated with the
last five years of the data, or a rolling window of length five years, for each day, and
the tail quantiles for the next day were predicted. As for the in sample performance
test, the empirical exceedances over the predicted tail quantiles are compared to what
is expected.

The reason for the pre-filtering of the data set, was the desire to use a GARCH
process to model the volatility and to accommodate for sudden changes in the volatil-
ity. The use of an AR process for the autocorrelation is mainly because of the POT
method’s need of iid observations. There is no such iid requirements for the ACER
method, so the use of an AR process is strictly not needed in this case.

7.6 Results

Using the models introduced, the goal is to analyze the ten years of daily spot price
data from the Nord Pool. As an introduction, let us start off with an unconditional
tail fitting, that is, apply the POT and ACER methods directly to the return series.
Then, the conditional approach will be introduced, as detailed in McNeil and Frey
(2000), where both the ACER and POT methods will be used to fit the residuals
produced by the AR-GARCH filtering.
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7.6.1 Unconditional approach

As mentioned, the unconditional approach will be to apply the POT and ACER
method directly to the return series. To compare the performance of these two meth-
ods, both in sample and out of sample fit will be considered. For the in sample fit,
the methods are simply used to estimate the tail quantiles of the return distribution,
and these quantiles will be compared to what is actually observed. For the out of
sample test, the first five years of the data will be used to estimate the model and
then predict the tail quantiles for the following day. The rolling window is then moved
to the next day and the model is re-estimated and the quantiles for the next day is
calculated from the estimated parameters. This is repeated for the last five years of
the data set.

For the POT method, it is necessary for the data used to be iid, which from the
Ljung–Box test results is clearly not the case. There is both significant serial correla-
tion and volatility clustering. To deal with this problem, the data will be declustered
by extracting peaks with enough lags in between that it is reasonable to assume in-
dependence between the observations. For the ACER method, there is no need to
decluster the data as the correlation between lags is accounted for in the choice of
ACER function.

In Table 7.3, the number of empirical exceedances over the estimated in sam-
ple quantiles is presented for both methods, along with the number of expected ex-
ceedances over these quantiles. It is observed from this table that there is not a great
difference between the number of exceedance over the estimated quantiles for the two
methods. For the out of sample performance the number of exceedances over the es-
timated quantiles can be observed in Figure 7.4. Again, there is no great difference
between the results of the two methods, but the ACER method is again slightly more
accurate than the POT method. A problem with doing such out of sample predic-
tion, is that the last five years of the data are used with no more emphasis on what
happened yesterday than five years ago. This means that the estimated quantiles,
and thus risk measures, will need a long time to be able to incorporate a rise or
fall in volatility. This again leads to the effect that most of the exceedances over the
predicted quantiles will be observations from the periods with high volatility, while
one would ideally like the exceedances to be uniformly distributed over the period in
question.

Table 7.3 In sample performance of the unconditional methods.

Probability Expected POT ACER
.95 183 175 179
.99 37 38 38
.995 18 19 19
.999 4 3 4
.9995 2 3 2
.9999 0 1 0
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Table 7.4 Out of sample performance of the unconditional methods.

Probability Expected POT ACER
.95 91 99 99
.99 18 29 24
.995 9 17 11
.999 2 2 2
.9995 1 1 1
.9999 0 0 0

7.6.2 Conditional approach

To be able to accommodate for sudden changes in volatility, at least to some ex-
tent, the conditional approach is used. The first step is to filter the data with an
AR-GARCH process. For this, a GARCH(1,1) process with AR parameters for the
1st and 7th lag is applied before using the POT and ACER methods for fitting to
the standardized residuals. The residuals are standardized with the current volatility.
The parameters for the AR-GARCH model with both normal and t distributed er-
rors are presented in Table 7.5, with the standard errors in brackets. For the model
with normally distributed errors, all parameters are significant at a 0.01 significance
level, except α0 which is significant at a 0.1 significance level and µ which is non-
significant. For the model with t distributed errors, all parameters are significant at
0.01 significance level, except µ which is non-significant.

Descriptive statistics and Ljung–Box test results for the residual series, that is, the
residual series after pre-filtering with the normal AR-GARCH model, can be found
in Table 7.6. For the residual series there is still positive skewness and high excessive
kurtosis. It is observed that while there is still significant serial correlation, it has been
greatly reduced, and there are no significant GARCH effects in the residual series.
It was observed that it is possible to remove slightly more of the serial correlation
by including more AR-terms, but the difference is minimal so the model with less
parameters is preferred.

Table 7.5 Estimated AR-GARCH parameter values.

Parameter Value-N Value-t
µ 2.997 ·10−3(1.69 ·10−3) −1.628 ·10−3(1.14 ·10−3)
a1 −0.338(2.95 ·10−2) −0.283(1.57 ·10−2)
a7 0.388(2.33 ·10−2) 0.425(1.45 ·10−2)
α0 2.985 ·10−4(1.62 ·10−5) 8.518 ·10−4(2.16 ·10−4)
α1 6.362 ·10−2(1.43 ·10−2) 0.455(8.93 ·10−2)
β1 0.931(1.70 ·10−2) 0.740(2.58 ·10−2)
ν - 2.582(0.14)

Table 7.6 Descriptive statistics for residual series.

Mean Skew. Ex.Kurt. Q(1) Q(2) Q(7) Q2(1) Q2(2) Q2(7)

2.90 ·10−3 4.44 97.72 6.70 102.91 141.82 7.20 ·10−3 8.60 ·10−3 3.67 ·10−1

After filtering the return series, the POT and ACER methods are applied to the
series of standardized residuals. As this series is much closer to iid than the return
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series, and observations over the chosen threshold seem to be independent of each
other, there is no need to decluster the data in the same way that was done with the
unconditional method. Nevertheless, it should be noted that only the observations
over the chosen threshold are used, which in this case will be less than 10% of the
data. Using the POT method to fit a GP distribution to the data, with the threshold
u selected from inspection (Coles, 2001), the parameters presented in Table 7.7 are
obtained. Here λ is the empirical estimate of P(X > u). Inverting Eq. (3.3) for the
desired probabilities, gives us the POT estimated quantiles, which in turn is inserted
into Eq. (7.7) to get the conditional quantiles. For the ACER method, the same
procedure is used, and the parameters for the extrapolated ACER function can be
found in Table 7.8.

For the in sample performance of these two methods, the same procedure as for the
unconditional approach is used. In Table 7.9, the number of exceedances over a given
quantile for the different methods are presented. It is seen that for the standard AR-
GARCH model with standard normally distributed errors, the quantiles are severely
underestimated for all quantile levels, and for the same model with t distributed errors
the quantiles for the lower levels are severely overestimated. It is also observed that
the AR-GARCH model, where the POT method has been applied to the standardized
residuals, clearly is able to estimate the extreme quantiles much better than just a
standard AR-GARCH model. This is the same as was found by Byström (2005).

Table 7.7 Generalized Pareto distribution parameters from POT.

Parameter Value
σ 0.5318
ξ 0.3118
λ 9.32 ·10−2

u 1

Table 7.8 Parameters estimated for the ACER method.

Parameter Value
ã 0.254
b 0.010
c 1.181
q 0.46
ξ 0.334

Table 7.9 Predicted in sample right quantiles for the different methods.

Probability Expected AR-GARCH-N AR-GARCH-t C-POT C-ACER
0.95 182 128 32 187 182
0.99 37 57 9 34 35
0.995 18 43 4 19 18
0.999 4 28 2 4 4
0.9995 2 23 1 3 1
0.9999 0 17 0 1 0
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To compare the performance of the POT and ACER methods, it is important to
assess the out of sample fit for the two methods. To do this, a model is estimated
using the first five years of the data, and then the conditional quantiles for the next
day are estimated. The model is then reestimated using what is now the last five years
of the data, and again the next day conditional quantiles is predicted. This gives us
a period of five years for the out of sample prediction. In Table 7.10, the number of
exceedances over the predicted out of sample quantiles is presented. It is seen from
this, that the performance of the conditional POT and the conditional ACER method
is quite similar, with the conditional ACER method giving a slightly better out of
sample fit for the more extreme quantiles. In Table 7.11, the counted exceedances over
the predicted 95% day ahead quantile is presented. It is seen that the distribution of
the exceedances is fairly even over the years. The exceedances are well distributed
and do not become more frequent in the high volatility periods.

Table 7.10 Exceedances over predicted out of sample quantiles. Right tail.

Probability Expected AR-GARCH-N AR-GARCH-t C-POT C-ACER
0.95 91 117 32 94 92
0.99 18 42 9 17 17
0.995 9 27 4 11 10
0.999 2 12 2 4 2
0.9995 1 11 1 0 1
0.9999 0 4 0 0 0

Table 7.11 Yearly distribution of exceedances for the conditional ACER and POT method.
Out of sample.

Year C-POT C-ACER
1 16 16
2 17 17
3 19 20
4 24 21
5 18 18
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8.1 Introduction

As was detailed in Chapter 4, a key function for a practical assessment of the
extreme value distribution of stochastic response processes, is the average rate of up-
crossings of high levels by the response. An important class of such response processes
can be expressed as a second order stochastic Volterra series, that is, a stochastic
Volterra series that has been truncated after the second order term (Schetzen, 1980).
A substantial amount of work has been done to derive methods for efficient analysis
of this model, starting with the seminal paper by Kac and Siegert (1947). Later, with
the development of the offshore industry, this paper had an impact on investigations
of the response statistics of large floating structures. Early contributions in this field
of research were made, among many others, by Neal (1974), Vinje (1983), Langley
(1984), Naess (1985b, 1990b) and Donley and Spanos (1990).

The type of stochastic Volterra series models that will be studied here, can be ex-
pressed as a sum of a linear and a nonlinear, quadratic transformation of a Gaussian
process. Such a representation of the response process would apply to the standard
model for expressing the total wave forces or horizontal excursion responses of e.g. a
tension leg platform in a random sea way. It also applies to the response of a linear
structure to a quadratic wind loading where the wind speed is modeled as a Gaussian
process. It would also apply to the representation of large deformations of flexible
structures subjected to Gaussian loads in which the strains/stresses exhibit a strong
quadratic effect. The problem of determining the marginal probability distribution
function of such response processes has been solved in the sense that computer pro-
grams are available that allow very accurate numerical calculations of these functions,
cf. Naess and Johnsen (1992).

The focus of this chapter is to show that it is also possible to accurately calculate
the average upcrossing rate of second order stochastic Volterra models. This allows the
formulation of approximate extreme value distributions for such response processes.
An interesting aspect of the development in this chapter is the surprising structural
complexity of the problem of calculating the upcrossing rate of a second order Volterra
model. It is also hoped that this chapter may serve to illustrate the power of the point
process approach to practical extreme value analysis via the upcrossing rate function.
The performance of the numerical method that has been developed will be illustrated
by application to three specific examples.

8.2 The Response Process

As already stated, the object of study in this chapter is a stochastic response process
Z(t) modeled as a second order stochastic Volterra series. Specifically, it is assumed
that Z(t) can be written as a sum of a linear, first order response component Z1(t)
and a nonlinear, second order component Z2(t). That is, cf. Naess (1990b),

Z(t) = Z1(t)+ Z2(t), (8.1)

where

Z1(t) =
∫

∞

0
h1(τ)X(t− τ)dτ, (8.2)
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and

Z2(t) =
∫

∞

0

∫
∞

0
h2(τ1,τ2)X(t− τ1)X(t− τ2)dτ1dτ2. (8.3)

In Eqs. (8.2) and (8.3), X(t) denotes a stationary, real Gaussian process. X(t) could
represent a random wave elevation process or a stochastic wind velocity field. It was
chosen here to limit the exposition to the case of a unidirectional situation. How to
deal with the multi-directional case, is explained in detail in Naess (1990b). Based on
the results from this reference, it will be recognized that all results obtained in this
chapter apply equally well to the multi-directional case.

The functions h1(τ) and h2(τ1,τ2) characterize the physical system that is modeled.
h1(τ) is an ordinary impulse response function defining a linear dynamical system.
h2(τ1,τ2), which is referred to as the quadratic impulse response function, character-
izes the second-order properties of the physical system, but in contrast to the linear
impulse response function, it does not have a direct physical interpretation.

To derive expressions suitable for practical numerical calculations, the input process
X(t) is represented as follows,

X(t) =
N

∑
j=−N

[
SX (ω j)∆ω

]1/2
B j eiω jt , (8.4)

where SX (ω) denotes the two-sided spectral density of X(t). Throughout this chapter,
when the summation index runs from negative to positive values, it invariably omits
zero. 0 < ω1 < · · · < ωN is an equidistant discretization of the pertinent part of the
positive frequency axis. ω−i =−ωi, ∆ω = ωi+1−ωi. The assumption of an equidistant
discretization is adopted for simplicity of presentation and is not necessary. In fact,
often a non-equidistant version is used to avoid having too many frequencies, which
is sometimes convenient. The formulas are easily adapted to cover the situation of
non-equidistant discretization. {Bi} is a set of independent, complex Gaussian N(0,1)-
variables with independent, identically distributed real and imaginary parts. These
variables can be assumed to satisfy the relation B−i = B∗i , where * signifies complex
conjugation. i2 =−1. Hence, X(t) becomes a Gaussian process with zero mean value.
The case of a non-zero mean value does not create any difficulties for the analysis, as
is easily recognized.

By substituting Eq. (8.4) into Eqs. (8.2) and (8.3), the following expressions are
obtained,

Z1(t) =
N

∑
i=−N

qiBieiωit , (8.5)

where
qi = Ĥ1(ωi)[SX (ωi)∆ω]1/2, (8.6)

and

Z2(t) =
N

∑
i=−N

N

∑
j=−N

Qi jBiB∗je
i(ωi−ω j)t , (8.7)

where
Qi j = Ĥ2(ωi,−ω j) · [SX (ωi)SX (ω j)]

1/2
∆ω. (8.8)

The function Ĥ1(ω) denotes the linear transfer function, corresponding to h1(τ).
Typically, the second order Volterra series is used for modeling the stochastic loading
process. For the response process to be of the same type, it is necessary that the
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equations of motion of the dynamic system considered are linear and time invariant.
Such a system is characterized by a linear transfer function, L̂(ω) say. The implication
of this is that Ĥ1(ω) can be expressed as follows,

Ĥ1(ω) = L̂(ω)K̂1(ω). (8.9)

L̂(ω) is assumed to be given as follows,

L̂(ω) = (−ω
2M + iωC + K)−1, (8.10)

where M = M(ω), C = C(ω) and K are appropriate mass, damping and stiffness pa-
rameters. The function K̂1(ω) is a linear transfer function associated with the loading
process.

The function Ĥ2(ω,ω ′) denotes the quadratic transfer function (QTF), which de-
pends on two frequencies. It is obtained as a Fourier transform of h2(τ1,τ2). Ĥ2(ω,ω ′)
can be expressed as follows,

Ĥ2(ω,ω ′) = L̂(ω + ω
′)K̂2(ω,ω ′). (8.11)

The function K̂2(ω,ω ′) denotes a QTF for the quadratic forces on the structure.
It is shown by Naess (1987), see also Johnson and Kotz (1970), that by solving the

eigenvalue problem (assumed nonsingular),

Qv j = λ jv j, (8.12)

to find the eigenvalues λ j and orthonormal eigenvectors v j, j = −N, . . . ,−1, 1, . . . ,N,
the quadratic response process can be represented as

Z2(t) =
N

∑
j=−N

λ j Wj(t)2. (8.13)

Here Wj(t), j = −N, . . . ,−1, 1, . . . ,N are real stationary Gaussian N(0,1)-processes
which can be represented as follows

Wj(t) =
N

∑
k=−N

v j(ωk)Bkeiωkt , (8.14)

where v j(ωk) denotes the kth component of v j. Note that the property v j(ω−k) =
v j(ωk)

∗ can be assumed, cf. Naess (1990b). For each fixed t, {Wj(t)} becomes a set of
independent Gaussian variables.

Having achieved the desired representation of the quadratic response Z2(t), it can
then be shown that the first order response can be expressed as

Z1(t) =
N

∑
j=−N

β jWj(t). (8.15)

The (real) parameters β j are given by the relations

β j =
N

∑
k=−N

Ĥ∗1 (ωk)
√

SX (ωk)∆ω v j(ωk). (8.16)
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This gives us the following representation of the total response process (Vinje, 1983;
Naess, 1985b)

Z(t) =
N

∑
j=−N
{λ j Wj(t)2 + β jWj(t)}. (8.17)

Based on this representation, Naess (1987) describes how to calculate the statistical
moments of the response process. Asymptotic upper and lower bounds on the mean
level upcrossing rate are also given, but these bounds are valid only if specific condi-
tions on the ratios β j/λ j are satisfied. It turns out that these conditions are very often
violated in practical applications. Our goal is therefore to find a numerical method for
accurate calculation of the mean level upcrossing rate of the total response process
Z(t). This is the topic of the next section.

8.3 The Average Crossing Rate

The calculation of the mean upcrossing rate ν
+
Z (·; t) at time t of a stochastic process

Z(t) is usually based on the Rice formula. It states that

ν
+
Z (ζ ; t) =

∫
∞

0
ż fZ(t)Ż(t)(ζ , ż)dż, (8.18)

where fZ(t)Ż(t)(·, ·) denotes the joint probability density function of Z(t) and Ż(t) =

dZ(t)/dt. A direct application of Eq. (8.18) requires the calculation of fZ(t)Ż(t). An
alternative approach, which turns out to be ideally suited for the problem at hand, is
to express the mean crossing rate in terms of the characteristic function MZŻ(u,v) =
E[exp{i(uZ(t)+ v Ż(t))}]. It has been shown by Naess (2000b) that in general,

ν
+
Z (ζ , t) = − 1

(2π)2

∫ +∞

−∞

∫ +∞

−∞

1
v

∂MZŻ(u,v)

∂v
e−iζ u dudv

− i
4π

∫ +∞

−∞

(
∂MZŻ(u,v)

∂v

)
v=0

e−iζ u du, (8.19)

where the integral wrt v is interpreted as a principal value integral in the follow-
ing sense:

∫
∞

−∞
= limε→0(

∫ −ε

−∞
+
∫

∞

ε
). A heuristic derivation of this formula is given in

Section 8.6.
For the stationary case, it can be shown that the last integral on the right hand

side of Eq. (8.19) vanishes. Hence, for a stationary process, the following formula is
obtained (Vinje, 1983; Naess, 2000b),

ν
+
Z (ζ ) =− 1

(2π)2

∫ +∞

−∞

∫ +∞

−∞

1
v

∂MZŻ(u,v)

∂v
e−iζ u dudv, (8.20)

where the upcrossing rate is now independent of t, and again, the integral with respect
to v is to be interpreted as a principal value integral as described above.

An alternative expression useful for numerical calculations of the upcrossing rate
ν

+
Z (·), whether the process is stationary or not, can be obtained by considering the

characteristic function as a function of two complex variables. It can then often be
shown that this new function becomes holomorphic in suitable regions of C2, where
C denotes the complex plane. Under suitable conditions, the use of complex function
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theory allows the derivation of the following alternative expression for the crossing
rate, cf. Naess and Karlsen (2004).

ν
+
Z (ζ ) =− 1

(2π)2

∫
∞−ia

−∞−ia

∫
∞−ib

−∞−ib

1
w2 MZŻ(z,w)e− izζ dzdw, (8.21)

where 0 < a < a1 for some positive constant a1, and b0 < b < b1 for some constants
b0 < 0 and b1 > 0.

The calculation of the characteristic function MZŻ is discussed in Grigoriu (1995),
but no explicit expression is derived. Here, a different approach will be followed, which
leads to a convenient explicit representation of the characteristic function suitable
for calculation of the integrals appearing in Eqs. (8.19), (8.20) or (8.21). To this
end, consider the multidimensional Gaussian vectors W = (W−N , . . . ,WN)′ and Ẇ =
(Ẇ−N , . . . ,ẆN)′. It is obtained that the covariance matrix of (W ′,Ẇ ′)′ is given by,

Σ =

(
Σ11 Σ12
Σ21 Σ22

)
, (8.22)

where Σ11 = I = the 2N×2N identity matrix, Σ12 = (ri j) = (E[WiẆj]), Σ21 = (E[ẆiWj])
and Σ22 = (si j) = (E[ẆiẆj]); i, j =−N, . . . ,−1,1, . . . ,N. ri j =−r ji and Σ12 = Σ ′21. It fol-
lows from Eq. (8.14), that the entries of the covariance matrix Σ can be expressed
in terms of the eigenvectors v j, cf. Naess (1987). Let Λ = diag(λ−N , . . . ,λN) be the
diagonal matrix with the parameters λ j on the diagonal, and let β = (β−N , . . . ,βN)′,
cf. Eq. (8.16). It will be shown in Section 8.7 that (Naess, 2000a),

MZŻ(u,v) =
1√

det(A)
exp

{
− 1

2
v2

β
′C β +

1
2

d′A−1 d

}
, (8.23)

where
A = A(u,v) = I−2iuΛ −2iv

(
Λ Σ21 + Σ12 Λ

)
+ 4v2

Λ CΛ , (8.24)

C = Σ22− Σ21 Σ12, (8.25)

d = d(u,v) =
(

iuI + ivΣ12−2v2
Λ C

)
β . (8.26)

8.4 Numerical Calculation

Early efforts to carry out numerical calculation of the mean crossing rate using
Eq. (8.21) has been reported in Naess and Karlsen (2004). These initial investiga-
tions indicated that the method had the potential to provide very accurate numerical
results. Eq. (8.21) will be rewritten as follows,

ν
+
Z (ζ ) =− 1

(2π)2

∫
∞−ia

−∞−ia

1
w2 I(ζ ,w)dw, (8.27)

where
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I = I(ζ ,w) =
∫

∞−ib

−∞−ib
M(z,w)e− izζ dz

=
∫

∞−ib

−∞−ib
exp{− izζ + lnM(z,w)}dz. (8.28)

A numerical calculation of the mean upcrossing rate can start by calculating the
function I(ζ ,w) for specified values of ζ and w. However, a direct numerical integration
of Eq. (8.28) is made difficult by the oscillatory term exp{−iℜ(z)ζ}, where ℜ(z)
denotes the real part of the complex number z. This problem can be avoided by
invoking the method of steepest descent, also called the saddle point method. For this
purpose, write,

g(z) = g(z;w) =− izζ + lnM(z,w)

= φ(x,y)+ iψ(x,y), (8.29)

where z = x + iy. φ(x,y) and ψ(x,y) become real harmonic functions when g(z) is
holomorphic. The idea is to identify the saddle point of the surface (x,y)→ φ(x,y)
closest to the integration line from −∞− ib to ∞− ib. By shifting this integration line
to a new integration contour that passes through the saddle point, and then follows the
path of steepest descent away from the saddle point, it can be shown that the function
ψ(x,y) stays constant, and therefore the oscillatory term in the integral degenerates to
a constant. This is a main advantage of the method of steepest descent for numerical
calculations. It can be shown that the integral does not change its value as long as the
function g(z) is a holomorphic function in the region bounded by the two integration
contours and if the integrals vanish along the contour segments required to close the
region.

If zs denotes the identified saddle point, where g′(zs) = 0, the steepest descent path
away from the saddle point will follow the direction given by −g′(z)∗, for z 6= zs, cf.
Henrici (1977). Typically, the singular points of the function g will be around the
imaginary axis, which indicates that the direction of the paths of steepest descent
emanating from the saddle point will typically not deviate substantially from a direc-
tion orthogonal to the imaginary axis. This provides a guide for setting up a numerical
integration procedure based on the path of steepest descent. First the saddle point
zs is identified. Then the path of steepest descent starting at zs and going ’right’, is
approximated by the sequence of points {z j}∞

j=0 calculated as follows:

z0 = zs, z1 = zs + h, (8.30)

∆z j =− g′(z j)
∗

|g′(z j)|
h, j = 1,2, . . . (8.31)

z j+1 = z j + ∆z j, j = 1,2, . . . (8.32)

where h is a small positive constant.
Similarly, the path of steepest descent going ’left’ is approximated by the sequence

{z j}−∞

j=0 calculated by,

z−1 = zs−h, (8.33)
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∆z j =− g′(z j)
∗

|g′(z j)|
h, j =−1,−2, . . . (8.34)

z j−1 = z j + ∆z j, j =−1,−2, . . . (8.35)

A numerical estimate Î of I can be obtained as follows,

Î = Î+ + Î−, (8.36)

where

Î+ =
h
2

exp{g(zs)}+
K

∑
j=1

∆z j exp{g(z j)}, (8.37)

and

Î− =
h
2

exp{g(zs)}−
−K

∑
j=−1

∆z j exp{g(z j)}, (8.38)

for a suitably large integer K.
A numerical estimate ν̂

+
Z (ζ ) of the mean crossing rate can now be calculated by

the sum,

ν̂
+
Z (ζ ) =− 1

(2π)2 ℜ

{ L

∑
j=−L

1
w2

j
Î(ζ ,w j)∆w j

}
, (8.39)

where the discretization points w j are chosen to follow the negative real axis from a
suitably large negative number up to a point at −ε, where 0 < ε ≤ a, then follow a
semi-circle in the lower half plane to ε on the positive real axis, and finally follow
this axis to a suitably large positive number. Since the numerical estimate does not
necessarily have an imaginary part that is exactly equal to zero, the real part operator
ℜ has been applied.

Generally, the CPU time required to carry out the computations above can be
quite long, depending on the size of the problem, which is related to the number N
of eigenvalues. It is therefore of interest to see if approximating formulas are accurate
enough. The first such approximation to have a look at, is the Laplace approximation
for the inner integral over the saddle point (Henrici, 1977). The simplest version of
this approximation, adapted to the situation at hand, leads to the result,

I = I(ζ ,w)≈
√

2π

− ∂ 2g(zs;w)
∂x2

exp{g(zs;w)}, (8.40)

which can be substituted directly into Eq. (8.39), leading to an approximation of
ν

+
Z (ζ ), which is denoted by ν̃

+
Z (ζ ).

This approximation can also be exploited in the following way: 1) The full method
is used for an inner interval of w-values, which contribute significantly to the integral
in Eq. (8.27). 2) A Laplace approximation is then used in an outer interval of w-values
where the contribution is less than significant. Of course, the level of significance is
chosen according to some suitable criterion. By this procedure, the CPU time was
reduced by factor of about 3. This method will be referred to as the hybrid method,
and the corresponding approximation of ν

+
Z (ζ ) is denoted by ν̌

+
Z (ζ ).
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A simple approximation proposed in Teigen and Naess (1999, 2003) is worth a
closer scrutiny. It is based on the widely adopted simplifying assumption that the dis-
placement process is independent of the velocity process. This leads to an alternative
approximation of ν

+
Z (ζ ), which is denoted by ν

+
Z (ζ ). It is given by the formula,

ν
+
Z (ζ ) = ν

+
Z (ζre f )

fZ(ζ )

fZ(ζre f )
, (8.41)

where fZ denotes the marginal probability density of the surge response, and ζre f
denotes a suitable reference level, typically the mean response. Here, ζre f has been
chosen as the point where fZ assumes its maximum, which corresponds well with the
mean response level. A general approximation for ν

+
Z (ζre f ) is given in Teigen and Naess

(2003). If only slow-drift response is considered, a good approximation is obtained by
putting ν

+
Z (ζre f )≈ 1/T0, where T0 = 2π/ω0 is the slow-drift period. The advantage of

Eq. (8.41) is that the rhs is much faster to calculate than the exact formula.
A few comments on why the mean upcrossing rate has practical significance may

seem appropriate. As is already known, the extreme value distribution is not com-
pletely determined by the mean upcrossing rate. This is true only when the upcrossing
events of the high response levels can be assumed to be statistically independent. Usu-
ally that is a good approximation except when the total damping is very small. For
such cases, Naess (1999) has developed a simple, but effective, method to account for
the effect of low damping on the extreme value distribution. This method is based
on the mean upcrossing rate and the appropriate damping parameter. This is often
advantageous since no time series of response is required. However, when those are
available, the key to an accurate estimation of the extreme value distribution would
be the application of the ACER method.

8.5 Numerical Examples

8.5.1 Slow-drift response

To illustrate the accuracy of the numerical method, the first example concerns a
simple model for the slow-drift response of a moored offshore structure, cf. Naess and
Machado (2000). Specifically, the response process for this case may be written as
(λ = λ1 = λ2),

Z2(t) = λ

(
W1(t)2 +W2(t)2

)
. (8.42)

For this process, the upcrossing rate ν
+
Z2

(z) is given by the relation,

ν
+
Z2

(ζ ) =
σ̂1√
2π

exp
(
− ζ

2λ
+

1
2

ln
(ζ

λ

))
, (8.43)

where σ̂1 =
√

s11− (r12)2. This special case provides a suitable test for the accuracy
of the numerical method.

Let ν̃
+
Z2

(ζ ) denote the mean upcrossing rate of Z2(t) calculated by the numerical
method. Table 8.1 compares the analytical with the numerical upcrossing rate for
different levels, and it is seen that the agreement is very good indeed.
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Table 8.1 Comparison of analytical and numerical mean upcrossing rate.

ζ ν
+
Z2

(ζ ) ν̃
+
Z2

(ζ )

0.5 1.37 ·10−2 1.37 ·10−2

1.0 4.31 ·10−3 4.30 ·10−3

2.0 2.995 ·10−4 2.995 ·10−4

3.0 1.802 ·10−5 1.793 ·10−5

5.0 5.618 ·10−8 5.618 ·10−8

7.0 1.605 ·10−10 1.592 ·10−10

8.5.2 Moored deep floater

The numerical results presented in this example are based on a specific model
structure (Naess et al., 2006). It is a moored deep floater (MDF), which is also called
a spar-buoy, with main particulars as detailed in Table 8.2. Figure 8.1 shows the
submerged part of the floater in the form of a computer mesh, which is used for the
calculation of the hydrodynamic transfer functions. The total mass (including added
mass) of the MDF is M = 12.5 ·106 kg. The damping ratio is set equal to ξ = 0.06, and
the natural frequency in surge or sway is ω0 = 0.047 rad/s. Note that the second order
theory is based on the assumption that the QTF Ĥ2(ωi,−ω j) = L̂(ωi−ω j) K̂2(ωi,−ω j),
where K̂2(·, ·) is a QTF characterizing the slowly varying surge forces on the MDF,
and L̂(·) is a linear transfer function for the surge motion of the MDF, that is,

L̂(ω) =
1

M [−ω2 + 2iξ ω0ω + ω2
0 ]
. (8.44)

An example of the quadratic transfer function for a floating offshore structure is
presented in Subsection 9.6.5.

Table 8.2 Main particulars of the moored deep floater (MDF)

Draught (m) 80.0
Column diameter (m) 10.0
Natural period surge/sway (s) 133.5
Natural period yaw (s) 121

The deep floater studied in this example could represent the supporting structure
of a floating wind turbine. The Hywind turbine is a particular case of such a structure,
where the concept of a moored deep floater is used as a supporting structure. A sketch
of the Hywind turbine is presented in Fig. 8.2.

The random stationary sea state is specified by a JONSWAP spectrum, which is
given as follows,

SX (ω) =
αg2

ω5 exp

{
− 5

4

(
ωp

ω

)4
+ lnγ exp

[
− 1

2σ2

(
ω

ωp
−1
)2]}

, (8.45)
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Figure 8.1 Computer mesh of the submerged part of the moored deep floater and the near
field of the sea surface.

Figure 8.2 A sketch of the Hywind floating wind turbine ( c©Equinor).

where g = 9.81 ms−2, ωp denotes the peak frequency in rad/s and α, γ and σ are
parameters related to the spectral shape. σ = 0.07 when ω ≤ ωp, and σ = 0.09 when
ω > ωp. The parameter γ is chosen to be equal to 3.0. The parameter α is determined
from the following empirical relationship,

α = 5.06
(Hs

T 2
p

)2(
1−0.287 lnγ

)
. (8.46)
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Hs = significant wave height and Tp = 2π/ωp = spectral peak wave period. For the
subsequent calculations, Hs = 10.0 m and Tp = 12 sec. The natural frequency in surge
is 0.047 rad/s, which is well below the range where the waves have noticeable energy.
This is why the second order, nonlinear term in the Volterra expansion is needed to
capture the resonant motions in surge of the MDF.

To get an accurate representation of the response process, there is a specific re-
quirement that must be observed. Since the damping ratio is only 6%, the resonance
peak of the linear transfer function for the dynamics is quite narrow. Hence, to capture
the dynamics correctly, the frequency resolution must secure a sufficient number of
frequency values over the resonance peak. This usually leads to an eigenvalue problem
with the Q-matrix of size of the order of magnitude 100× 100. Using the full repre-
sentation of this size in calculating the mean crossing rate by the general method
described here, would lead to very heavy calculations. In order to reduce this, the
effect of restricting the calculations by retaining only some of the terms in Eq. (8.13)
has been investigated.

For the specific example considered, where exactly 100 (positive) frequencies have
been used, the values of the obtained eigenvalues λ j have been plotted in Figure 8.3.
It is seen that a substantial portion of the response variance, which is given by
Var[Z2(t)] = 4 ∑

N
j=1 λ 2

j , would be lost if only 10 or 20 eigenvalues were retained. This
is also a factor to consider when deciding on the number of terms to retain.
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Figure 8.3 The 100 normalized eigenvalues λ j/λ1.

In this example, the focus is on the slow-drift response. Hence, only results for Z2(t)
will be presented. In the tables, ν̂

+
Z2

(ζ ), ν̌
+
Z2

(ζ ), ν̃
+
Z2

(ζ ), and ν
+
Z2

(ζ )) denote the mean
upcrossing rate of Z2(t) calculated by the full numerical method, the hybrid method,
the Laplace approximation, and the simplified method of Eq. (8.41), respectively.

To highlight the effect of the increment parameter h, Table 8.3 compares the results
obtained by the full numerical method for two values of h for 10 eigenvalues, that is,
for a response representation retaining the first 10 terms. The CPU time differs by
a factor of roughly 10 between the two choices of a value for h. Since the differences
between the calculated crossing rates are fairly small, the larger value was chosen to
save CPU time.

Tables 8.4 and 8.5 present the results obtained for 10 and 50 eigenvalues, respec-
tively. It is apparent that there is some variability of the calculated mean upcrossing
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Table 8.3 Comparison of calculated mean upcrossing rate ν̂
+
Z2

(ζ ) for different step lengths

η = ζ/λ1 h = 1.0 ·10−3 h = 1.0 ·10−2

2.0 8.38 ·10−3 8.38 ·10−3

5.0 3.93 ·10−3 3.93 ·10−3

10.0 5.53 ·10−4 5.50 ·10−4

15.0 5.70 ·10−5 5.65 ·10−5

20.0 5.34 ·10−6 5.26 ·10−6

25.0 4.81 ·10−7 4.71 ·10−7

rates depending on the number of eigenvalues included in the analysis. Ideally, it
would therefore be desirable to carry out the calculations with at least 50 eigenvalues.

Table 8.4 Calculated mean upcrossing rates for 10 eigenvalues

η = ζ/λ1 ν̂
+
Z2

(ζ ) ν̌
+
Z2

(ζ ) ν̃
+
Z2

(ζ )

2.0 8.38 ·10−3 8.38 ·10−3 7.41 ·10−3

5.0 3.93 ·10−3 3.93 ·10−3 3.59 ·10−3

10.0 5.50 ·10−4 5.50 ·10−4 5.23 ·10−4

15.0 5.65 ·10−5 5.65 ·10−5 5.59 ·10−5

20.0 5.26 ·10−6 5.26 ·10−6 5.36 ·10−6

25.0 4.71 ·10−7 4.71 ·10−7 4.92 ·10−7

Table 8.5 Calculated mean upcrossing rates for 50 eigenvalues

η = ζ/λ1 ν̂
+
Z2

(ζ ) ν̌
+
Z2

(ζ ) ν̃
+
Z2

(ζ )

2.0 6.55 ·10−3 6.55 ·10−3 5.93 ·10−3

5.0 3.25 ·10−3 3.25 ·10−3 2.98 ·10−3

10.0 5.04 ·10−4 5.04 ·10−4 4.70 ·10−4

15.0 5.44 ·10−5 5.44 ·10−5 5.28 ·10−5

20.0 5.19 ·10−6 5.19 ·10−6 5.20 ·10−6

25.0 4.71 ·10−7 4.71 ·10−7 4.86 ·10−7

To get a more detailed picture of how the crossing rate varies with the number of
eigenvalues retained, the mean upcrossing rate was calculated for the level η = 20 as
a function of the number of eigenvalues. The result is shown in Figure 8.4. It was also
decided to investigate the effect of updating the truncated response representation so
that it had the correct variance. This was achieved by multiplying the retained eigen-
values by a suitable factor. The effect of this updating on the calculated upcrossing
rate is also shown in Figure 8.4. The figure indicates a couple of interesting conclu-
sions. Updating for variance can lead to inaccurate results for the crossing rate for
small to moderate number of eigenvalues retained. Comparing Figures 8.3 and 8.4 it
is seen that surprisingly accurate results are obtained for even a small number of re-
tained eigenvalues when the truncation is done exactly where negative eigenvalues are
followed by positive eigenvalues. This seems to provide the right balance between the
terms in the response representation, and it indicates a useful criterion for truncating
the response representation for crossing rate calculations.
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Figure 8.4 The mean upcrossing rate of the level η = 20 as a function of the number of
retained eigenvalues.

It is also of great interest to observe that the simple Laplace approximation in fact
provides quite accurate estimates of the mean upcrossing rates, and for this method
the number of eigenvalues has practically no effect on the computational burden.
Hence, from a practical point of view, this is an extremely appealing method. In Ta-
ble 8.6, the results obtained by the hybrid method , the Laplace approximation and
also the simple approximation of Eq. (8.41) for 100 eigenvalues have been listed. It
is seen that while there is excellent agreement between the hybrid method and the
Laplace approximation, the simple approximation leads to significantly lower values.
In terms of extreme value predictions, for the example structure at hand the Laplace
approximation is within about 1% of the hybrid method, while the simple approxi-
mations would lead to an underestimation of typically 5-10% compared with the two
more accurate methods.

Table 8.6 Calculated mean upcrossing rates for 100 eigenvalues

η = ζ/λ1 ν̌
+
Z2

(ζ ) ν̃
+
Z2

(ζ ) ν
+
Z2

(ζ )

2.0 6.17 ·10−3 5.59 ·10−3 6.03 ·10−3

5.0 3.03 ·10−3 2.78 ·10−3 2.74 ·10−3

10.0 4.71 ·10−4 4.40 ·10−4 3.65 ·10−4

15.0 5.11 ·10−5 4.96 ·10−5 3.44 ·10−5

20.0 4.88 ·10−6 4.90 ·10−6 2.94 ·10−6

25.0 4.44 ·10−7 4.63 ·10−7 2.44 ·10−7

8.5.3 Wind excited structure

The third example is a simple model of a wind excited structure. It could easily be
adapted to the study of the response to wind loading of a high slender mast supporting
a large light panel for illumination at a sports stadium. An example of such a structure
is shown in Fig. 8.5.
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Figure 8.5 A light-mast at a stadium.

The theory can be extended to cover the general case of a MDOF system as dis-
cussed by Benfratello et al. (1998). However, for the purpose of illustration, a SDOF
model of structural response has been chosen.

Let the wind load on the structure be given as F(t) = cU(t)2, where c is some
constant, and U(t) denotes a stationary Gaussian process representing the wind
speed. Writing U(t) = Ū + V (t), where Ū = the mean wind speed, and V (t) de-
notes a zero mean Gaussian process, the structural response to the loading process
F̃(t) = 2cŪ V (t) + cV (t)2 will be considered. That is, the constant force term cŪ2 is
neglected. For a linear dynamic model, its effect can be added at the end.

The structural response to F̃(t) is assumed to be determined by the equation,

Z̈(t)+ 2ξ ω0 Ż(t)+ ω
2
0 Z(t) = M−1F̃(t) =

2cŪ
M

V (t)+
c
M

V (t)2, (8.47)

where ω0 is the undamped natural frequency of the system, ξ is the relative damping
and M is the total mass.

The linear transfer function of this system is clearly given by L̂(ω) = [−ω2 +
2 iξ ω0 ω + ω2

0 ]−1. For this particular force model, the Volterra series is of a degen-
erate kind. It can be shown that the QTF for the quadratic response component of
Eq. (8.47) is given by the expression c L̂(ωi−ω j)/M (Naess, 1987).

What is now needed to fully specify the Q-matrix of Eq. (8.12) is the wind velocity
spectrum SV (ω). Here, a Davenport spectrum is adopted,

ω SV (ω)

κ Ū2 =
4θ 2

(1 + θ 2)4/3 , (8.48)
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where θ = ω L/(2πŪ), κ is the roughness/drag coefficient and L is a length scale.
For the present example, a turbulence level of σ/Ū = 0.1 and 0.3 is assumed. The
corresponding drag coefficient κ is given by the relation σ/Ū =

√
6κ. For the other

parameters, Ū = 50 [m/s] and L = 1200 [m] are selected. The damping ratio ξ = 0.1
and the natural frequency ω0 = π [rad/sec]. Also, c/M = 0.5 · 10−3. The frequency
discretization of the problem ranges from −5 to 5 [rad/sec] with an increment of 0.1
[rad/sec].

In Table 8.7 are listed calculated values for the mean upcrossing rates ν
+
Z (ζ ) of the

response process Z(t) with no restrictions imposed on the covariance structure for the
case σ/Ū = 0.3. To get an idea about the influence of the correlation between W and
Ẇ , the upcrossing rate under the assumption that Σ12 = 0 has also been calculated.
This crossing rate is denoted by ν̃

+
Z (ζ ). From Table 8.7, it is seen that ν

+
Z (ζ ) and

ν̃
+
Z (ζ ) are almost equal, supporting the often assumed negligible influence on the

crossing rate of the dependence between W and Ẇ .
Both estimates ν̃

+
Z (ζ ) and ν

+
Z (ζ ), are then compared with the upcrossing rate

ν+
g (ζ ) of the linear part of the response, which is a Gaussian process. The spectrum

of the linear part of the response is,

SZ(ω) = |L̂(ω)|2
(2cŪ

M

)2

SV (ω). (8.49)

Comparing ν+
g (ζ ) with ν

+
Z (ζ ), it is observed that the relative difference between

them increases as the level ζ becomes higher, which is to be expected.
From a practical point of view, it is interesting to observe the effect on the predicted

extreme responses of the full quadratic model for the wind loading as opposed to a
Gaussian approximation. For this purpose, the following extreme value distribution
is adopted,

Fext(ζ ) = exp
(
−ν

+
Z (ζ )T

)
, (8.50)

where Fext(ζ ) is the cumulative distribution function of the extreme response during
a time interval of length T , that is, max{Z(t);0≤ t ≤ T}.

Taking into account also the contributing constant forcing term cŪ2 that was left
out, and which adds a displacement of 0.13 m, it can be verified that the extreme
values at the exceedance probability level 10−2 are about 6-7% higher for the full
quadratic model as compared to the Gaussian approximation when σ/Ū = 0.1. The
corresponding number is about 30% when σ/Ū = 0.3. Clearly, these numbers depend
on the specific examples considered, but they serve to indicate what the effect will be
of neglecting the quadratic part of the wind loading.

Table 8.7 Mean upcrossing rates against different levels. ν̃
+
Z (ζ ): numerical method assuming

Σ12 = 0; ν
+
Z (ζ ): numerical method; ν+

g (ζ ): Gaussian approximation

ζ [meters] ν̃
+
Z (ζ ) ν

+
Z (ζ ) ν+

g (ζ )

0.1 0.29891 0.28714 0.22118
0.15 0.17232 0.16506 0.12021
0.2 0.08484 0.08092 0.05119
0.3 0.01454 0.01368 0.00446
0.4 0.00181 0.00167 1.46·10−4

0.5 1.83·10−4 1.66·10−4 1.82·10−6



8.6 Appendix 1 - The Average Crossing Rate 113

8.6 Appendix 1 - The Average Crossing Rate

A heuristic proof of Eqs. (8.19) and (8.20) will be given. For a rigorous derivation,
the reader is referred to Naess (2000b). The derivation will be based on Parseval’s for-
mula, which relates pairs of Fourier transforms. First, equation (18) will be rewritten.
For this purpose the Heaviside function H(x) is introduced. It is defined as follows:
H(x) = 0 for x < 0, H(0) = 1/2 and H(x) = 1 for x > 0. For simplicity, also write
p(x) = fZŻ(ζ ,x), where ζ will be fixed. Then,

ν
+
Z (ζ ) =

∫
∞

−∞

x p(x)H(x)dx. (8.51)

The Fourier transform F and its inverse F̂ are (formally) defined as follows,

f̂ (t) = F [ f (x)] =
∫

∞

−∞

f (x)eixt dx, (8.52)

and

f (x) = F̂ [ f̂ (t)] =
1

2π

∫
∞

−∞

f̂ (t)e− ixt dt. (8.53)

Let G(x) = x p(x). Parseval’s formula provides us with the following equation (∗

denotes complex conjugation),∫
∞

−∞

G(x)H(x)dx =
1

2π

∫
∞

−∞

Ĝ(t) Ĥ(t)∗ dt. (8.54)

The Fourier transform Ĥ(t) of the Heaviside function can be shown to be given by
the relation (Bracewell, 1986),

Ĥ(t) =
i
t

+ π δ (t), (8.55)

where δ (·) denotes Dirac’s delta function. The Fourier transform pair H(x), Ĥ(t) can
only be interpreted as such in a formal manner. A certain caution should therefore
be exercised when they are used in calculations. That is, one should understand their
limitations and proper use, which requires knowledge about how the relation given in
Eq. (8.55) was established (Bracewell, 1986).

If p̂(t) denotes the Fourier transform of p(x), then Ĝ(t) = − id p̂(t)/dt. From the
definition of the characteristic function, it is obtained that,

p̂(t) =
1

2π

∫
∞

−∞

MZŻ(s, t)e− iζ s ds, (8.56)

leading to
d p̂(t)

dt
=

1
2π

∫
∞

−∞

∂MZŻ(s, t)
∂ t

e− iζ s ds. (8.57)

Hence it is found that
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ν
+
Z (ζ ) =

− i
(2π)2

∫
∞

−∞

∫
∞

−∞

∂MZŻ(s, t)
∂ t

e− iζ s
(
− i

t
+ π δ (t)

)
dt ds

= − 1
(2π)2

∫
∞

−∞

∫
∞

−∞

1
t

∂MZŻ(s, t)
∂ t

e− iζ s dt ds

− i
4π

∫
∞

−∞

(
∂MZŻ(s, t)

∂ t

)
t=0

e− iζ s ds, (8.58)

which is seen to agree with Eq. (8.19). A scrutiny of the derivation of the (formal)
Fourier transform of the Heaviside function H(·), reveals that the integral with respect
to t in the above expression should be understood as a principal value integral as
described after Eq. (8.19).

In the case of a stationary process, ν
+
Z (ζ ) = νZ(ζ )/2, where νZ(ζ ) denotes the

average crossing rate of the level ζ . The corresponding Rice formula for the crossing
rate is given as,

νZ(ζ ) =
∫

∞

−∞

x p(x)sign(x)dx, (8.59)

where sign(x) =−1 for x < 0, sign(0) = 0, and sign(x) = 1 for x > 0. Since F̂ [sign(x)] =
2i/t, it is seen from the derivation above that indeed,

ν
+
Z (ζ ) =

− i
(2π)2

∫
∞

−∞

∫
∞

−∞

∂MZŻ(s, t)
∂ t

e− iζ s
(
− i

t

)
dt ds

= − 1
(2π)2

∫
∞

−∞

∫
∞

−∞

1
t

∂MZŻ(s, t)
∂ t

e− iζ s dt ds. (8.60)

8.7 Appendix 2 - The Characteristic Function

The derivation of the formula for the characteristic function MZŻ will be based on
an integral equality which is cited, but not proved, in a less general form by Cramer
(1946). The prime (’) will be used to denote transposition of a matrix or vector, and
det(A) denotes the determinant of a square matrix A.

Theorem 8.1. Let A be a complex, symmetrical and nonsingular n× n matrix, and
assume that the real part of A is positive definite. Let d denote a complex n×1 vector.
Then the following integral equality holds,∫

∞

−∞

· · ·
∫

∞

−∞

exp
(

d′x− 1
2

x′Ax
)

dx1 . . .dxn =
(2π)n/2√

det(A)
exp
(

1
2

d′A−1 d
)
. (8.61)

Proof: Let µ = A−1 d. It is then easily verified that 2d′ x− x′Ax = −(x− µ)′A(x−
µ) + d′A−1 d. Hence, it follows that the desired result is obtained if the following
equality is proved (z = x−µ),

∫
∞−iℑ(µ1)

−∞−iℑ(µ1)
· · ·
∫

∞−iℑ(µn)

−∞−iℑ(µn)
exp
(
− 1

2
z′Az

)
dz =

(2π)n/2√
det(A)

, (8.62)

where µ = (µ1, . . . ,µn)′, ℑ(µ j) denotes the imaginary part of µ j, and dz = dz1 . . .dzn.
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By assumption, A = P + iQ where P and Q are real symmetric matrices with P
positive definite. Then there exists a real unitary matrix U such that U ′PU = D =
diag(λ1, . . . ,λn), λ j > 0 for j = 1, . . . ,n. diag(·) denotes a diagonal matrix with the
indicated arguments on the diagonal. The variable shift z→ y is made, where y = Uz.
Then, z′Az = y′Dy + iy′Q̃y, where Q̃ = U ′QU is a real symmetric matrix. A scaling of
the coordinate variables is introduced by the variable shift y→ u, where y =

√
Du, and√

D = diag(
√

λ1, . . . ,
√

λn). Then, z′Az = u′u+ iu′Q̂u, where Q̂ =
√

D
−1

Q̃
√

D
−1

is again
a real symmetric matrix. Hence, a real unitary matrix V exists such that V ′ Q̂V =
Ω = diag(ω1, . . . ,ωn). Let E = I + iΩ = diag(1 + iω1, . . . ,1 + iωn). By the variable shift
u→ v, where v = V u, it follows that z′Az = v′E v = ∑

n
j=1(1 + iω j)v2

j , v = (v1, . . . ,vn)′.

Since U and V are unitary matrices, it is observed that dz = dy = (
√

det(D))−1 du =

(
√

det(D))−1 dv. Denoting the integral on the left hand side of Eq. (8.62) by I, it is
obtained that,

I =
1√

det(D)

∫
∞−ic1

−∞−ic1

· · ·
∫

∞−icn

−∞−icn

exp
(
− 1

2

n

∑
j=1

(1 + iω j)v2
j

)
dv1 . . .dvn, (8.63)

where c j, j = 1, . . . ,n are suitable constants. Since the functions f j(z) = exp{−(1/2)(1+
iω)z2} are entire functions in the complex variable z = x+ iy, and since lim|x|→∞ f (z) = 0
uniformly in y for |y| ≤ const., it follows that the path of integration from −∞− ic j to
∞− ic j in Eq. (8.63) can be replaced by the path from −∞ to ∞ by Cauchy’s theorem.

From the standard result that
∫

∞

−∞
exp{−ax2}dx =

√
π/a for a complex constant a

provided that ℜ(a) > 0, it now follows that,

I =
1√

det(D)

n

∏
j=1

√
2π√

1 + iω j
=

1√
det(D)

(2π)n/2√
det(E)

. (8.64)

To prove Eq. (8.62), it only remains to show that det(D) ·det(E) = det(A). Invoking
the fact that U and V are unitary, it is obtained that,

det(E) = det(I + iΩ) = det(I + iQ̂) = det(I + i
√

D
−1

Q̃
√

D
−1

)

= det(
√

D
−1

D
√

D
−1

+ i
√

D
−1

Q̃
√

D
−1

)

= (det(D))−1 det(D + iQ̃) = (det(D))−1 det(P + iQ)

=
det(A)

det(D)
, (8.65)

which is what was needed to prove.
Our goal is to calculate the characteristic function,

MZŻ(u,v) = E [exp
(
iuZ + iv Ż

)
]. (8.66)

Using conditional probabilities, one may write,

MZŻ(u,v) = E
[

eiuZ E
[
eiv Ż |W

]]
= E

[
eiuZ E

[
eiv(Ż|W )

]]
. (8.67)

From Eq. (8.17) it follows that Ż = Y ′Ẇ , where Y = β +2DW , β = (β1, . . . ,βn)′ and D =
diag(λ1, . . . ,λn). Hence, (Ż|W ) = Y ′ (Ẇ |W ). (Ẇ |W = w), where w = (w1, . . . ,wn)′ ∈Rn, is
a Gaussian vector with mean value µ = Σ21 w and covariance matrix C = Σ22−Σ21 Σ12,
cf. Anderson (1958). This means that (Ż|W = w) is a scalar Gaussian variable with
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mean value m = y′ µ = y′Σ21 w and variance s2 = y′C y, where y = β + 2Dw. Invoking
the expression for the characteristic function of a Gaussian variable, it follows that
E[exp{iv(Ż|W )}] = exp{ivY ′Σ21 W − 1

2 v2 Y ′CY}. It is now obtained that,

MZŻ(u,v) = E [exp
(
iuW ′DW + iuβ

′W + ivY ′Σ21 W − 1
2

v2 Y ′CY
)
]. (8.68)

The calculation of the expected value of this equation, amounts to the calculation of
the following integral,

MZŻ(u,v) =
1

(2π)n/2

∫
∞

−∞

· · ·
∫

∞

−∞

exp
(
− 1

2
v2

β
′C β + d′w− 1

2
w′Bw

)
dw, (8.69)

where
d = (iuI + ivΣ12−2v2 DC)β , (8.70)

and
B = I−2iuD −4ivDΣ21 + 4v2DC D. (8.71)

It is recognized by inspection that the matrix B is not in general symmet-
ric. However, the expression w′Bw is a scalar quantity, which implies that w′Bw =
(w′Bw)′ = w′B′w. Hence w′Bw = w′Aw, where A is the symmetrized version of B, that
is, A = (B + B′)/2. By invoking Theorem 8.1, it is therefore obtained:

Theorem 8.2. Let the stochastic process Z(t) be represented as given by Eq. 8.17.
Then the characteristic function MZŻ(u,v) = E [exp

(
iuZ + iv Ż

)
] of the joint variable

(Z, Ż) is given by the expression,

MZŻ(u,v) =
1√

det(A)
exp
(
− 1

2
v2

β
′C β +

1
2

d′A−1 d
)
, (8.72)

where
d = (iuI + ivΣ12−2v2 DC)β , (8.73)

and
A = I−2iuD −2iv

(
DΣ21 + Σ12 D

)
+ 4v2DC D. (8.74)

Note that in the absence of a linear component, that is, when Z(t) = ∑
n
j=1 λ j Wj(t)2,

then,

MZŻ(u,v) =
1√

det(A)
. (8.75)

The marginal characteristic functions MZ(u) = E[exp{iuZ}] and MŻ(v) = E[exp{iv Ż}]
are now easily obtained by the relations MZ(u) = MZŻ(u,0) and MŻ(v) = MZŻ(0,v). In
particular,

MZ(u) =
1√

∏
n
j=1(1−2iuλ j)

exp
(
− 1

2

n

∑
j=1

u2 β 2
j

1−2iuλ j

)
, (8.76)

which is in agreement with previously derived results (Kac and Siegert, 1947; Naess,
1986). It is also obtained that,

MŻ(v) =
1√

det(Ã)
exp
(
− 1

2
v2

β
′C β +

1
2

d̃′ Ã−1 d̃
)
, (8.77)
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where
d̃ = (ivΣ12−2v2 DC)β , (8.78)

and
Ã = I−2iv

(
DΣ21 + Σ12 D

)
+ 4v2DC D. (8.79)
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9.1 Introduction

The last decade has seen a dramatic increase in the use of Monte Carlo methods
for solving stochastic engineering problems. There are primarily two reasons for this
increase. First, the computational power available today, even for a laptop computer,
is formidable and steadily increasing. Second, the versatility of Monte Carlo methods
make them very attractive as a way of obtaining solutions to stochastic problems.
The drawback of Monte Carlo methods for a range of problems has been that the
required numerical calculations may take days, weeks or even months to do. But
this situation is changing, some numerical problems that required several days of
computer time for their solution just a few years ago can now be solved in minutes
or hours. This has really opened the door for the use of Monte Carlo-based methods
for solving a wide array of stochastic engineering problems. In this chapter the focus
is on adapting Monte Carlo methods for estimation of extreme values of stochastic
processes encountered in various engineering disciplines.

9.2 Simulation of Stationary Stochastic Processes

The approach to the simulation of stationary stochastic processes favored in this
book, is the spectral representation method (Shinozuka and Deodatis, 1991). The
main reason for this is its simplicity and transparency for practical applications.

The procedure is described in Subsection 9.2.2, where Eq. (9.15) is a key result.
Useful background information for this is contained in Subsection 9.2.1. Combining
this with Example 9.2.4 provides a hands-on guide of how to simulate realizations of
a stationary Gaussian process.

The use of the fast Fourier transform (FFT) technique can substantially speed up
the production of realizations of stationary Gaussian processes, cf. Shinozuka (1974);
Newland (1991).

9.2.1 Realizations of stochastic processes

Monte Carlo methods can be used for any input-output system subjected to a
stochastic process such that for every realization of the input stochastic process a
corresponding realization of the output process can be calculated. The basic idea un-
derlying the Monte Carlo method is that of producing a sample of output/response
time histories from a sample of input/loading time histories. This makes it possible to
estimate various statistics of the output/response process based on the available sam-
ple of realizations. Hence, a key element in the Monte Carlo method is therefore the
realizations of a stochastic process. For their simplicity, the focus here is on a couple
of widely used ways of representing stationary stochastic processes, and a discussion
is given of how realizations of such processes are generated, see also Shinozuka and
Jan (1972); Shinozuka and Deodatis (1991).

A simple, but useful representation of a stationary stochastic process X(t) can be
obtained as follows,
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X(t) =
N

∑
j=1

{
A j cosω jt + B j sinω jt

}
, ∞ < t < ∞, (9.1)

where, for j = 1, . . . ,N, the ω j are positive constants, the A j and the B j are random
variables with E[A j] = E[B j] = 0, E[A2

j ] = E[B2
j ] = σ2

j , and E[A jB j] = 0 for j = 1, . . . ,N.
Also, E[A jAk] = E[B jBk] = E[A jBk] = 0 for j 6= k. When these conditions are satisfied,
it can be shown that X(t) is a (weakly) stationary process with,

mX = E[X(t)] = 0, (9.2)

and

CX (τ) = E[(X(t)−mX )(X(t + τ)−mX )] =
N

∑
j=1

σ
2
j cosω jτ. (9.3)

The first step of the procedure is to specify what kind of random variables A j
and B j are assumed to be. A common choice in many cases is to assume that these
variables are independent and normally distributed with zero mean value and known
standard deviations σ j. A realization of X(t) is then obtained when a set of outcomes
of the random variables A j and B j has been generated. In this connection, it is useful
to make the following observation: if Ã j is normally distributed with zero mean and
standard deviation equal to 1.0, then A j = σ jÃ j is normally distributed with mean
zero and standard deviation equal to σ j. Similarly for B j. Eq. (9.1) may therefore be
written in the form,

X(t) =
N

∑
j=1

σ j
{

Ã j cos(ω jt)+ B̃ j sin(ω jt)
}
, (9.4)

where Ã j and B̃ j, j = 1, . . . ,N, is now a set of independent, standard normally dis-
tributed variables. There are computer programs that may be used to generate in-
dependent outcomes of a standard, normally distributed variable. It is seen that 2N
outcomes are needed for this example. Specifically, assume that ã j and b̃ j, j = 1, . . . ,N
are the obtained outcomes from such a program. The corresponding realization x(t)
is then,

x(t) =
N

∑
j=1

σ j
{

ã j cos(ω jt)+ b̃ j sin(ω jt)
}
. (9.5)

This procedure can be repeated as many times as needed to produce the requested
sample size of realizations. It is, of course, understood here that each realization is
generated independently of all others. This procedure is illustrated with an application
to ocean waves in Example 9.2.4.

The following representation is also frequently used, especially when ergodic prop-
erties are desirable,

X(t) =
N

∑
j=1

a j cos(ω jt + Φ j), (9.6)

where a j and ω j, j = 1, . . . ,N are positive constants, and {Φ j}N
j=1 is a set of independent

random variables that are uniformly distributed over (0,2π). It may be shown that
X(t) is ergodic with respect to the mean value and the autocorrelation.
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Generating realizations of this process is now quite straight-forward. It is seen that,
in fact, only outcomes of the uniformly distributed phase angles Φ j, j = 1, . . . ,N are
needed. If R j, j = 1, . . . ,N, denote independent random variables uniformly distributed
on (0,1), usually referred to as random numbers, then clearly one may put Φ j = 2πR j.
Hence, by invoking a random number generator, usually available on any computer,
outcomes of Φ j, j = 1, . . . ,N can be easily generated. Let r j, j = 1, . . . ,N denote a set
of independent random number outcomes. A realization x(t) of X(t) is then,

x(t) =
N

∑
j=1

a j cos(ω jt + 2πr j). (9.7)

9.2.2 Variance spectra

Fourier analysis is routinely used to decompose the time histories of load and
response as sums or integrals of cos(·) and sin(·) terms over the frequency domain. It
is known how the transfer function gives a direct connection between the amplitudes
at each frequency for the load and response, provided the system is linear and time
invariant. A time history that is periodic can be decomposed as a sum over a finite or
countably infinite number of frequencies. If it is not periodic, the decomposition must
be expressed as an integral. It can be shown that this is possible only if the time history
dies out with time. Regarding the realizations of stationary stochastic processes, they
will not generally be periodic. Nor will they decrease with time because the variance
is constant, and this is a measure of the fluctuations around the mean value. A direct
frequency decomposition of the realizations of a stationary process is therefore not
directly feasible. This difficulty is circumvented by using the autocovariance function
of a stationary process. This function will generally approach zero when its time
argument increases.

Let X(t) be a stationary process with autocovariance function CX (τ). Assume that
CX (τ)→ 0 when τ → ∞ sufficiently rapidly so that

∫
∞

−∞
|CX (τ)|dτ has a finite value,

that is, CX (τ) is assumed to be an integrable function.
The variance spectrum SX (ω) of X(t) is defined as the Fourier transform of CX (τ)

as follows,

SX (ω) =
1

2π

∫
∞

−∞

CX (τ)e−iωτ dτ. (9.8)

It was shown already in the 1930s that CX (τ) and SX (ω) constituted a Fourier
transform pair; that is, CX (τ) is given by the inverse Fourier transform as,

CX (τ) =
∫

∞

−∞

SX (ω)eiωτ dω. (9.9)

Equations (9.8) and (9.9) are often called the Wiener-Khintchine relations after
the originators, cf. Chatfield (1989).

The quantity SX (ω) is known by many names. A few names that seem appropriate
to mention here are energy spectrum, power spectral density, spectral density or just
spectrum. The name variance spectrum, ties in directly with the interpretation of
SX (ω). By putting τ = 0 in Eq. (9.9), it is obtained that,
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σ
2
X = CX (0) =

∫
∞

−∞

SX (ω)dω. (9.10)

This equation shows that SX (ω) can be interpreted as a distribution of variance along
the frequency axis, provided that SX (ω)≥ 0, and in Section 9.2.5, it is shown that this
is always the case. Negative frequencies are a mathematical convenience and have no
real physical content. If SX (ω) is to be interpreted as distribution of variance along
the frequency axis, one would therefore expect that SX (−ω) = SX (ω). This symmetry
property of SX (ω) can be shown directly from Eq. (9.8). It follows also from a rewriting
of the Wiener-Khintchine relations to real form, which is of interest in itself. Because
CX (τ) is symmetric, it follows from Eq. (9.8) that,

SX (ω) =
1

2π

∫
∞

0
CX (τ)e−iωτ dτ +

1
2π

∫
∞

0
CX (−τ)eiωτ dτ

=
1
π

∫
∞

0
CX (τ) cosωτ dτ , (9.11)

where Euler’s relation eix = cosx + i sinx is used. The last integral in the upper line
is obtained by the change of variable τ →−τ, while the lower line follows from the
symmetry property CX (−τ) = CX (τ).

From Eq. (9.11), it follows that,

SX (−ω) = SX (ω), (9.12)

because cos(−ωt) = cosωt. Eq. (9.9) can then be rewritten as,

CX (τ) = 2
∫

∞

0
SX (ω) cosωτ dω. (9.13)

If SX (ω) is a reasonably nice function, the integral on the rhs of Eq. (9.13) can be
approximated by a finite sum, viz.

CX (τ) = 2
∫

∞

0
SX (ω) cosωτ dω ≈

N

∑
j=1

2SX (ω j)∆ω cosω jτ, (9.14)

for a suitable choice of ω1 < .. . < ωN , and sufficiently small ∆ω = (ωN−ω1)/(N−1).
Let us now recollect previous results and define a stationary process,

X̃(t) =
N

∑
j=1

{
A j cosω jt + B j sinω jt

}
, (9.15)

where the random variables A j and B j satisfy the necessary conditions for stationar-
ity, cf. Eq. (9.1). In addition, σ2

j = E[A2
j ] = E[B2

j ] = 2SX (ω j)∆ω. Then, according to

Eq. (9.10), the autocovariance of X̃(t) is given as,

CX̃ (τ) =
N

∑
j=1

2SX (ω j)∆ω cosω jτ. (9.16)

A stationary process X̃(t) is thus constructed with approximately the same variance
distribution, that is, variance spectrum, as X(t). In a certain sense, X̃(t) can be said to
represent X(t). What has just been described, is a variant from a class of methods that
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is extensively used in practice to generate realizations of a given stationary process. To
get a concrete realization of a process represented by Eq. (9.15), one has to generate
outcomes of the random variables that enter the sum.

On the basis of Eq. (9.12) and the fact that negative frequencies do not really
have any physical meaning, it is common practice in engineering to use the one-sided
variance spectrum, which is denoted by S+

X (ω) in this chapter, and defined as,

S+
X (ω) =

{
2SX (ω) , ω ≥ 0,
0 , ω < 0. (9.17)

The distribution of variance is thereby concentrated to positive (physically realiz-
able) frequencies. The variance expressed in terms of the one-sided variance spectrum
is clearly,

σ
2
X =

∫
∞

0
S+

X (ω)dω. (9.18)

A typical variance spectrum produced from measured data for the wave elevation
at a point on the sea surface at a location in the North Sea is shown in Figure 9.1.
The somewhat jagged look is mostly due to low numerical resolution.

Figure 9.1 Typical ”wave spectrum” from the North Sea.

9.2.3 Units of variance spectra

In Eq. (9.10), the units of SX (ω) are the square of the units of X(t) divided by
radians per second. If X(t) models the wave elevation at a location on the ocean
surface and is measured in meters, then the units of SX (ω) are m2s/rad.

So far, the variance spectrum has only been considered as a function of circular
frequency ω with units rad/s. It is also quite common to give the variance spectrum
as a function of frequency f with units in Hertz (oscillations per second). The relation
ω = 2π f implies a rescaling of the frequency axis when ω is replaced by f . It is
therefore not correct to believe that SX (2π f ) would represent the variance spectrum
as a function of f ; this would easily lead to the wrong variance. If G+

X ( f ) denotes the
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one-sided variance spectrum as a function of f in Hz, then to conserve the variance,
it is needed to require that G+

X ( f )d f = SX (ω)dω. This leads to the relation,

G+
X ( f ) = 2πS+

X (ω). (9.19)

Exactly the same relation applies to two-sided spectra. A factor of 2π = 6.28
occurring erroneously in the variance can have a significant impact on the results in
some cases. Thus, care should be exercised when adopting values of spectral moments
by checking which kind of frequency is used in the variance spectrum.

9.2.4 Example - A realization of a wave process

In this example, the procedure for producing a realization of a stationary stochastic
process described in Subsection 9.2.1 is illustrated. In particular, it will be shown how
a realization of a stochastic process with a given variance spectrum can be generated.
To be even more specific, it will be assumed that the task is to produce an arbitrary
realization of the wave elevation X(t) at a given location in the North Sea with a
recorded wave spectrum, as depicted in Figure 9.1. Thus, it is assumed that this wave
elevation can be represented as a stationary stochastic process X(t) with a one-sided
variance spectrum G+

X ( f ), as shown in Figure 9.1. As mentioned in Section ??, there
are several alternative methods that can be used to generate realizations of a stochastic
process. Our choice here is to use the method described in Section ??, which amounts
to approximating the process X(t) with X̃(t), and then generate realizations of X̃(t)
instead.

To proceed, it is necessary to specify what kind of random variables A j and B j
to use in Eq. (9.15). The common choice in the case of wave processes on the open
ocean is to assume that these variables are independent and normally distributed with
zero mean value. To determine the standard deviation, it is necessary to decide on a
suitable discretization of the frequency axis. For many practical purposes, it would
be desirable to have a discretization that would give of the order of 103 frequencies
in the frequency range where the waves have significant energy, e.g. from 0.27 to 0.99
Hz in this case, cf. the discussion at the end of the example. Because the objective
here is to illustrate the procedure, a rather coarse frequency increment ∆ f = 0.09 Hz
will do.. That gives 8 frequencies denoted by f1, . . . , f8 ( f1 = 0.315 Hz, f j+1 = f j +0.09
Hz) in the specified frequency range. The process X̃(t) can then be written as,

X̃(t) =
8

∑
j=1

{
A j cos(2π f jt)+ B j sin(2π f jt)

}
. (9.20)

Figure 9.2 shows the relevant part of the wave spectrum in Figure 9.1 magnified along
the frequency axis to clarify how the standard deviation of A j and B j is determined.

What remains to get an approximate realization of X(t) is to generate outcomes of
the random variables that enter X̃(t). For this, an observation made in Subsection 9.2.1
is invoked: if Ã j is normally distributed with zero mean and standard deviation equal
to 1.0, then A j = σ jÃ j is normally distributed with zero mean and standard deviation

equal to σ j. Similarly for B j. Because σ j =
√

G+
X ( f j)∆ f , Eq. (9.20) may be written in

the form,
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Figure 9.2 Wave spectrum from the North Sea.

X̃(t) =
8

∑
j=1

√
G+

X ( f j)∆ f
{

Ã j cos(2π f jt)+ B̃ j sin(2π f jt)
}
, (9.21)

where Ã j and B̃ j, j = 1, . . . ,8, now constitute a set of independent, standard normally
distributed variables. Computer programs are easily available for generating indepen-
dent outcomes of a standard, normally distributed variable. It is seen that 16 is needed
for the example.

An alternative procedure is to use a table or computer program for generating
(pseudo-)random numbers, which are uniformly distributed between 0 and 1. This
can also be used by invoking the following result. If Φ(·) denotes the distribution
of a standard, normally distributed variable, and R denotes a random variable that
is uniformly distributed between 0 and 1, then the random variable Z = Φ−1(R) is
standard and normally distributed. By generating 16 independent outcomes of R:
r1, . . . ,r16, then z1 = Φ−1(r1), . . . ,z16 = Φ−1(r16) will be 16 independent outcomes of a
standard, normally distributed variable. This procedure is used here, and the results
are shown in Table 9.1, where ã j = Φ−1(r2 j−1) is an outcome of Ã j and b̃ j = Φ−1(r2 j)
is an outcome of B̃ j.

Table 9.1 A table of the numerical information needed to produce a realization of the stochas-
tic process given by Eq. (9.21).

j f j[Hz]
√

G+
X ( f j)∆ f [cm] r2 j−1 r2 j ã j b̃ j

1 0.315 1.90 0.10097 0.32533 -1.2760 - 0.4529
2 0.405 5.45 0.76520 0.13586 0.7232 - 1.0991
3 0.495 6.57 0.34673 0.54876 - 0.3942 0.1225
4 0.585 3.15 0.80959 0.09117 0.8764 - 1.3335
5 0.675 2.23 0.39292 0.74945 - 0.2717 0.6728
6 0.765 1.56 0.37542 0.04805 - 0.3175 - 1.6641
7 0.855 1.44 0.64894 0.74296 0.3825 0.6525
8 0.945 1.41 0.24805 0.24037 - 0.6807 - 0.7051
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A piece of the corresponding realization is shown in Figure 9.3, and one may get
a similar impression as when observing irregular seas out on the oceans. In practice,
there is often a need to generate many realizations to perform statistical analyses. It
is then necessary to repeat the procedure just described the requisite number of times,
and for each realization, a new set of outcomes independent of the previous ones are
chosen.

Figure 9.3 A realization of the wave elevation.

If a piece of the realization that has been generated, was shown with a duration
which was twice as long, it would have become clear that the wave pattern is repeating
itself. This is due to the way it was constructed, which indeed makes it periodic. The
period is determined by the greatest common divisor of the frequency increment and
the initial frequency of the discretization of the frequency range that is chosen. In
this case, the period becomes 1/0.045 = 22.2 s. The practical consequence of this
is that one must choose a discretization that is in correspondence with the required
length of a realization. It may be worth mentioning that for most practically relevant
discretizations, one may say that a corresponding realization will have a period that
can be assumed to be given as 1/∆ f . One does not fully avoid the problem related
to periodicity by choosing an (almost) irrational ratio between the starting frequency
and the frequency increment, or other ”smart” tricks such as choosing the frequencies
randomly within each subinterval of the discretization.

Another point worth noting is that the process X̃(t) is not ergodic. If it is desirable
to ensure this property, one may use the method described in Subsection 9.2.1. How-
ever, the difference in the practical results obtained by using this method versus the
one described here, is usually rather small if the discretization is properly done.

9.2.5 The variance spectrum directly from the realizations

When the variance spectrum was defined, it was mentioned that a realization x(t)
of a stationary process X(t) does not have a Fourier transform because it does not
decrease toward zero for large t. Intuitively, one would nevertheless expect that most
of the information regarding the frequency content of x(t) should be contained in a
finite section of x(t) if this section is large enough. A section of x(t) can be defined as
follows,
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xT (t) =

{
x(t) , 0≤ t ≤ T,
0 , elsewhere.

(9.22)

Because xT (t) is zero outside a finite interval, it has a Fourier transform, viz.

XT (ω) =
1

2π

∫
∞

−∞

xT (t)e−iωt dt =
1

2π

∫ T

0
x(t)e−iωt dt. (9.23)

It would seem natural to expect that there is a connection between XT (ω) and the
variance spectrum SX (ω). And it turns out that the connection is, in fact, quite simple.
It is written in the following way: assume that x j(t), j = 1,2, . . . are realizations of a
stationary process. Then the following equation applies,

SX (ω) = lim
T→∞

lim
N→∞

2π

T N

N

∑
j=1
|X j,T (ω)|2, (9.24)

where X j,T (ω) denotes the Fourier transform of x j,T (t), which equals x j(t) for 0≤ t ≤ T
and zero elsewhere. From Eq. (9.24), it is also immediately seen that SX (ω)≥ 0.

Equation (9.24) is based on the availability of an ensemble of realizations. As
previously discussed, there are many situations where only one realization is available.
By assuming that the process is ergodic, it can be shown that the variance spectrum
can be determined in the following way. Let x(t) denote a realization of the assumed
ergodic process X(t). Define a set of truncated Fourier transforms X( j),T (ω) over the

intervals
(
( j−1)T, jT

)
, j = 1,2, . . ., as follows,

X( j),T (ω) =
1

2π

∫ jT

( j−1)T
x(t)e−iωt dt. (9.25)

It is then obtained that,

SX (ω) = lim
T→∞

lim
N→∞

2π

T N

N

∑
j=1
|X( j),T (ω)|2. (9.26)

Equation (9.24) or (9.26) can be regarded as the basis for the fast Fourier trans-
form (FFT) algorithm for calculating spectra. This method, developed around 1965,
has assumed a dominating position among numerical methods for calculating Fourier
transforms. This is primarily due to the fact that the method is much faster than tra-
ditional methods. An extensive discussion of the FFT method for calculating Fourier
transforms is given by Newland (1991).

9.3 Monte Carlo Simulation of Load and Response

The linear or linearized equations of motion for marine structures considered in this
book and their solutions are discussed in Naess and Moan (2013). For such equations,
the comments of the previous section apply. An example of a nonlinear dynamic model
that is often adopted for an offshore structure, can be written in the following form,

MMM ẌXX(t)+CCC ẊXX(t)+ fff
(
XXX(t), ẊXX(t), t

)
= PPP(t) , (9.27)
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where MMM and CCC are suitable mass and damping matrices, respectively; fff (·, ·) =(
f kl(·, ·)

)
, k, l = 1, . . . ,n, is a nonlinear matrix function; PPP(t) = (P1(t), . . . ,Pn(t))′ de-

notes a stochastic loading process; and XXX(t) = (X1(t), . . . ,Xn(t))′ is the corresponding
response process.

The Monte Carlo method applied to such a system would consist of generating a
statistical sample of specified size N, say, of response time histories by first generating
a sample of time histories of the same size of the loading process, and then solve
Eq. (9.27) for each of the load time histories in the sample using methods of numerical
integration of dynamical system equations, cf. Argyris and Mlejnek (1991); Naess and
Moan (2013). When the desired sample of response time histories is produced, the
statistical analysis of the response may then proceed as discussed in the remaining
part of this chapter.

9.4 Sample Statistics of Simulated Response

An important element for graphic representation of sampled data from a statistical
population for which the underlying distribution function is unknown is the so-called
plotting position formula. It is based on the notion of order statistics.

Let us start by assuming that X is a continuous random variable with a distribution
F(x) and a probability density f (x). The given sample of independent observations
x1,x2, . . . ,xn is now ordered in an increasing sequence x(1)≤ x(2)≤ . . .≤ x(n). The random
variable X(m) corresponding to x(m) is called the mth order statistic, m = 1, . . . ,n. The
probability density fm(x) of X(m) follows from the observation that X(m) = x implies the
event that there are m− 1 outcomes of X with values less than (or equal to) x, and
n−m outcomes with values greater than x. According to the binomial distribution,
the probability of this event equals n!/

(
(m−1)!(n−m)!

)
F(x)m−1

(
1−F(x)

)n−m
. Hence,

it is obtained that (Casella and Berger, 2002),

fm(x) =
n!

(m−1)!(n−m)!
F(x)m−1(1−F(x)

)n−m f (x). (9.28)

It is now required to calculate E[F(X(m))]. This is given by,

E[F(X(m))] =
∫

x
F(x) fm(x)dx = m

(
n
m

)∫
x
F(x)m(1−F(x)

)n−m f (x)dx

= m
(

n
m

)∫ 1

0
Fm(1−F)n−m dF = m

(
n
m

)
m!(n−m)!

(n + 1)!
=

m
n + 1

. (9.29)

Similarly, the variance of F(X(m)) is calculated to be,

Var[F(X(m)] = E[F(X(m))
2]−E[F(X(m))]

2

=
m(m + 1)

(n + 1)(n + 2)
− m2

(n + 1)2 =
m(n + 1−m)

(n + 1)2(n + 2)
. (9.30)

The results of Eqs. (9.29) and (9.30) are useful because they provide a means of plot-
ting the sample of observations x1,x2, . . . ,xn in order to estimate the distribution F(x)
empirically. Equation (9.29) states that the expected value of the distribution func-
tion evaluated at the observation of order m is equal to m/(n+1). This result suggests
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that an optimal plotting strategy is obtained by plotting the points
(
x(m),m/(n + 1)

)
,

m = 1, . . . ,n. Equation (9.30) provides information on the variance of F(X(m)), that is,
the ordinate of the plotting point. Due to the symmetry of the expression, it attains its
maximum 1/[4(n+2)] at the median and decreases symmetrically to n/[(n+1)2(n+2)]
toward the ends of the interval [0,1]. Because the distribution function itself is not
known, these results are called distribution-free results.

The preceding results are complemented by calculating the probability that the mth
observation is not exceeded by a future observation. Now, the conditional probability
that a single observation will not exceed X(m) given that X(m) = x is equal to F(x). The
corresponding unconditional probability pm, say, is then obtained by using the law of
total probability, which gives exactly the same result as given by Eq. (9.29), that is,

pm =
∫

x
F(x) fm(x)dx =

m
n + 1

. (9.31)

This result shows that a new observation of the continuous random variable X has
equal probability of assuming a value in any of the n + 1 intervals defined by the
previous n observations. This lends further support to the optimality of the plotting
position formula expressed by Eq. (9.29).

It may be pointed out that several alternative plotting position formulas for specific
classes of distributions have been suggested over the years, which primarily aim at
correcting for sample bias. A discussion of this topic is not pursued here, but the
reader is rather referred to the literature. A discussion of particular interest related
to the estimation of return periods can be found in Makkonen (2006, 2008), where it
is argued for the use of Eq. (9.29).

A useful diagnostic tool to check the accuracy of an assumed statistical distribution
F for the observed data is obtained by comparing the fitted distribution F̂ with the
data on a quantile plot (QQ-plot) or a probability plot (PP-plot). Assuming that F̂ is
strictly increasing and continuous, the QQ-plot is obtained by comparing the ordered
data with the corresponding quantiles of the fitted distribution by plotting(

F̂−1( m
n + 1

)
,x(m)

)
. (9.32)

The name QQ-plot derives from the fact that both F̂−1
( m

n+1

)
and x(m) are estimates

of the m/(n+1)th quantile of F . If F is a good choice for the distribution of the data,
the QQ-plot should be close to the straight line of slope 1 passing through the origin.
Alternatively, the fit of F̂ to the data can be checked by the PP-plot, which is obtained
by plotting the points (

F̂
(
x(m)

)
,

m
n + 1

)
. (9.33)

A good fit is again demonstrated if the plotted graph is approximately a straight
line. The main difference between the two plots is that the QQ-plot gives a more
clear impression of the fit of the tail data, which may be of particular significance for
extreme value statistics.

It is worth noting that for a range of distribution functions QQ-plots can be con-
structed without having to estimate distribution parameters. This typically applies
to distributions characterized by a scale and a location parameter, e.g. the normal
distribution. In such cases the intercept of the line fitted to the QQ-plot would repre-
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sent location, while the slope represents scale. For example, a QQ-plot for a normal
distribution can be achieved by plotting

(
Φ−1(m/(n + 1)),x(m)

)
.

9.5 Latin Hypercube Sampling

Latin hypercube sampling (LHS) (McKay et al., 1979) is a method for effectively
reducing the sample size for Monte Carlo simulations of stochastic response processes
that depend on many random parameters. In cases where the parameters of a dynamic
model, such as mass, damping, and stiffness are modeled as random variables, the
response process will then also depend on these random variables. Specifically, let us
assume that the model depends on the random parameters Y1, . . . ,Ym. To highlight the
dependence on these parameters, a random response process X(t) of this model may
then be written as X(t) = X(t;Y1, . . . ,Ym). Because the external loading is often modeled
as a stochastic process, the response X(t;y1, . . . ,ym) becomes a stochastic process for
each sample y1, . . . ,ym of the random parameters. If m is not small, then the number
of samples needed to provide good sample statistics for the response process may
become huge if no consideration is made on how to effectively represent the statistical
variability of the random parameters. LHS is a very good and simple method for this
purpose.

LHS starts by selecting k different values from each of the m random variables in the
following manner. The interval (0,1) is divided into k equally long intervals I j = (( j−
1)/k, j/k), j = 1, . . . ,k. Let Fi(y) denote the distribution function of Yi, i = 1, . . . ,m. For
each i, k independent outcomes u1, . . . ,uk of the random number U , which is uniformly
distributed on (0,1), are produced. The resulting ordered sample for Yi is yi,1 < .. . < yi,k

where yi, j = F−1
i (( j−1)/k+u j/k). Note that ( j−1)/k+u j/k is nothing but an outcome

of a random number uniformly distributed on the interval (( j− 1)/k, j/k). A Latin
hypercube (LH) presample for Yi is then obtained as yi,r1 , . . . ,yi,rk , where r1, . . . ,rk is a
random reordering of 1, . . . ,k. Finally, an LH sample for Y1, . . . ,Ym, which will also be
of size k, is now represented by the m× k array or matrix (yi,r j ), where each column
is an element in the LH sample.

It is tacitly assumed that the random parameters are independent. If this is not
the case, LHS can also deal with correlated parameters. Standard statistical software
packages usually offer LHS as an optional sampling technique.

9.6 Estimation of Extreme Response

The view that estimation of extreme values by Monte Carlo methods is generally
prohibitive in terms of computer time, is a truth in contention. In fact, with present-
day computational power, it is possible to perform simulations on a scale that allows
estimation of extreme structural response for a range of problems. Admittedly, it is not
difficult to describe a dynamic model for which the required simulation time for direct
estimation of extreme response would be beyond any acceptable bounds, but the sys-
tems for which this is the case are steadily diminishing in step with the development
of increasingly powerful computers. This being the case, it is good reason to believe
that Monte Carlo simulation-based methods will become much more frequently used
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even for extreme value estimation than what is the case today. It is therefore consid-
ered appropriate to discuss such methods here. Note that the methods described in
this section are equally applicable to measured response time histories, obtained, for
instance, from real life experiments. In this section, only the Gumbel and the point
process methods are applied. For simplicity, only the case of positive extreme values
will be discussed. The necessary modifications to deal with other situations are usually
obvious.

9.6.1 The Gumbel method

It was pointed out in Chapter 5 that for response processes relevant for many engi-
neering structures, the appropriate extreme value distribution would almost always be
the Gumbel distribution. Therefore, let us assume that this is indeed the case for the
response process X(t), which can be simulated by a suitable procedure. Now, assume
that N independent response time histories, each of duration T , have been simulated
for a given environmental condition. For the Gumbel method, the extreme response
is then identified for each time series or block of data. These extreme value data are
assumed to be Gumbel distributed, and plotting the obtained data set of extreme
values using a Gumbel probability plot should then ideally result in a straight line. In
practice, one cannot expect this to happen, but on the premise that the data follow a
Gumbel distribution, a straight line can be fitted to the data. Due to its simplicity, a
popular method for fitting this straight line is the method of moments, cf. Section 2.6.
That is, writing the Gumbel distribution of the extreme value M(T ) as,

Prob(M(T )≤ ξ ) = exp
{
−exp

(
−a(ξ −b)

)}
, (9.34)

it was shown that the parameters a > 0 and b are related to the mean value mM and
standard deviation σM of M(T ) as follows: b = mM − 0.5772a−1 and a = 1.2826/σM
(Bury, 1975). The estimates of mM and σM obtained from the available sample there-
fore provide estimates of a and b, which leads to the fitted Gumbel distribution by
the method of moments.

Typically, a specified fractile value of the fitted Gumbel distribution is then ex-
tracted and used in a design consideration. To be specific, let us assume that the
requested fractile value is the 100(1−α)% fractile, where α is usually a small num-
ber, for example α = 0.1. To quantify the uncertainty associated with the obtained
100(1−α)% fractile value based on a sample of size N, the 95% confidence interval of
this value is often used. A good estimate of this confidence interval can be obtained
by using a parametric bootstrapping method (Efron and Tibshirani, 1993; Davison
and Hinkley, 1997), cf. Section 2.8. In our context, this simply means that the initial
sample of N extreme values is assumed to have been generated from an underlying
Gumbel distribution, whose parameters are, of course, unknown. If this Gumbel dis-
tribution had been known, it could have been used to generate a large number of
(independent) samples of size N. For each sample, a new Gumbel distribution would
be fitted and the corresponding 100(1−α)% fractile value identified. If the number of
samples had been large enough, an accurate estimate of the 95% confidence interval
on the 100(1−α)% fractile value based on a sample of size N could be found. Because
the true parameter values of the underlying Gumbel distribution are unknown, they
are replaced by the estimated values obtained from the initial sample. This fitted
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Gumbel distribution is then used as previously described to provide an approximate
95% confidence interval. Note that the assumption that the initial N extreme values
are actually generated with good approximation from a Gumbel distribution cannot
be easily verified, which is a drawback of this method. As has been pointed out, com-
pared with the POT method, the Gumbel method would also seem to use much less
of the information available in the data. This may explain why the POT method
has become increasingly popular over the past years, but the Gumbel method is still
widely used in practice.

9.6.2 The point process method

It is known from Eq. (4.31) that a reasonably good approximation of the distribu-
tion of the extreme value M(T ) is obtained from the formula,

Prob(M(T )≤ ξ ) = exp{−ν
+(ξ )T}, (9.35)

where ν+(ξ ) denotes the mean upcrossing rate of a stationary process X(t).
The method to be discussed here, relies on this particular approximation. This

implies that the mean upcrossing rate needs to be estimated from the simulated time
series. Assuming the so-called ergodic mean value property, it is obtained that

ν
+(ξ ) = lim

T→∞

1
T

n+(ξ ;T ) , (9.36)

where n+(ξ ;T ) denotes a realization of N+(ξ ;T ); that is, n+(ξ ;T ) denotes the counted
number of upcrossings during time T from a particular simulated time history. In
practice, k time histories of a suitable length T0, say, are provided by simulation. The
appropriate ergodic mean value estimate of ν+(ξ ) is then,

ν̂
+(ξ ) =

1
k T0

k

∑
j=1

n+
j (ξ ;T0) , (9.37)

where n+
j (ξ ;T0) denotes the counted number of upcrossings of the level ξ from time

history no. j. This will often be the chosen approach to the estimation of the mean
upcrossing rate.

For a suitable number k, e.g. k≥ 20−30, and provided that T0 is sufficiently large,
a fair approximation of the 95% confidence interval (CI0.95) for the value ν+(ξ ) can
be obtained as,

CI0.95(ξ ) =
(

ν̂
+(ξ )−1.96

ŝ(ξ )√
k
, ν̂

+(ξ )+ 1.96
ŝ(ξ )√

k

)
, (9.38)

where the empirical standard deviation ŝ(ξ ) is given as,

ŝ(ξ )2 =
1

k−1

k

∑
j=1

(n+
j (ξ ;T0)

T0
− ν̂

+(ξ )
)2

. (9.39)
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Note that k and T0 may not necessarily be the number and length of the actually
simulated response time series. Rather, they were chosen to optimize the estimate
of Eq. (9.39). If, initially, k̃ time series of length T̃ are simulated, then k = k̃ k0 and
T̃ = k0 T0. That is, each initial time series of length T̃ was divided into k0 time series of
length T0, assuming, of course, that T̃ is large enough to allow for this in an acceptable
way. The consistency of the estimates obtained by Eq. (9.39) can be checked by the
observation that Var[N+(ξ ; t)] = ν+(ξ ) t when N+(ξ ; t) becomes a Poisson random
variable, which by assumption occurs for large values of ξ . This leads to the equation,

s(ξ )2 =
1
k

Var

[
k

∑
j=1

N+
j (ξ ;T0)

T0

]
=

ν+(ξ )

T0
, (9.40)

where {N+
1 (ξ ;T0), . . . ,N+

k (ξ ;T0)} denotes a random sample with a possible outcome
{n+

1 (ξ ;T0), . . . ,n+
k (ξ ;T0)}. Hence, ŝ(ξ )2/k ≈ ν̂+(ξ )/(k T0). Because this last relation is

consistent with the adopted assumptions (for large ξ ), it could have been used as the
empirical estimate of the variance in the first place. It is also insensitive to the blocking
of data discussed previously because k T0 = k̃T̃ . However, the accuracy of this approach
may be poor for small to moderate values of ξ , where the Poisson assumption about
the upcrossing events may fail. In contrast, the advantage of Eq. (9.39) is that it does
not rely on any specific assumptions about the statistical distributions involved.

The idea underlying the development of the approach described here is based on
the observation that for dynamic models relevant for most engineering structures, the
mean ξ -upcrossing rate as a function of the level ξ is highly regular in a particular
way (Naess and Gaidai, 2008). As is shown later, the mean upcrossing rate tail, say,
for ξ ≥ ξ0, behaves similarly to exp{−a(ξ − b)c} (ξ ≥ ξ0), where a > 0, b ≤ ξ0, and
c > 0 are suitable constants. Hence, as discussed in detail by Naess and Gaidai (2008),
it may be assumed that,

ν
+(ξ )≈ q(ξ ) exp{−a(ξ −b)c} , ξ ≥ ξ0, (9.41)

where the function q(ξ ) is slowly varying compared with the exponential function
exp{−a(ξ −b)c}. Equation (9.41) can be rewritten as,

ln
∣∣ ln(ν+(ξ )/q(ξ )

)∣∣≈ c ln(ξ −b)+ lna , ξ ≥ ξ0 . (9.42)

It follows that by plotting ln
∣∣ ln(ν+(ξ )/q(ξ )

)∣∣ versus ln(ξ −b), it is expected that
an almost perfectly linear tail behavior will be obtained. Now, as it turns out, the
function q(ξ ) can be largely considered as a constant q, say, for tail values of ξ . This
suggests using a method for identifying the parameters q and b by optimizing the
linear fit in the tail. When this is achieved, the corresponding values of a and c can
then be extracted from the plot. This is discussed at some length in Naess and Gaidai
(2008). A plot of ln

∣∣ ln(ν+(ξ )/q
)∣∣ versus ln(ξ −b) for optimal parameters b and q will

be referred to as an optimal transformed plot. Examples of such plots will be given for
some of the examples to follow, mostly for the purpose of demonstrating the validity
of assumptions. An alternative, more extensive method for optimizing the fit to the
data is described in Chapter 5.

In engineering applications, it is quite common to assume that the observed ex-
treme value response data do follow a Gumbel distribution, cf. Subsection 9.6.1. The
problem with this approach is that classical extreme value theory cannot be used to
decide to what extent the asymptotic distribution is actually valid for a given set of
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extreme value data. Note that the asymptotic Gumbel distribution given by Eq. (9.34)
corresponds to an asymptotic upcrossing rate that is purely exponential, that is, with
c = 1 in Eq. (9.41). Hence, by adopting a much more general class of functions, with
the purely exponential functions as a subclass, to represent the upcrossing rate, as
done here, the ability to capture subasymptotic behavior is greatly enhanced. By this,
the necessity to adopt a strictly asymptotic extreme value distribution of questionable
validity is avoided. However, note that for any c > 0, the corresponding extreme value
model will be asymptotically Gumbel.

Note also that the so-called Weibull method for extreme value prediction, which is
based on the assumption that the local peak values follow a three parameter Weibull
distribution is, in fact, basically a prejudiced version of the point process method in
the sense that the parameter q is a priori given the value 1.

In cases where the approximation implied by Eq. (9.35) may be questioned, the
ACER method should be applied.

9.6.3 A comparison of methods

In this subsection, the performance of the point process method is compared with
that of the Gumbel method. This is done for the particular case of the horizontal
deck response of a jacket structure installed on the Kvitebjørn field in the North
Sea. For this kind of response process, the point process approach is very accurate
because a plot of the ACER functions shows that beyond the second ACER function,
which corresponds to the upcrossing rate for suitably sampled time series, there are
no dependence effects that need to be accounted for.

Figure 9.4 depicts the Kvitebjørn jacket platform with the superstructure re-
moved together with the corresponding three-dimensional computer model used for
the Monte Carlo simulations, see Naess et al. (2007) for details.

Figure 9.4 Left: Sketch of the Kvitebjørn platform with the superstructure removed. Right:
Computer model of the Kvitebjørn platform (Karunakaran et al., 2001).
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Table 9.2 Representative sea states.

Hs (m) Tp (s)
12.0 12.0
14.7 16.5

For the simulations discussed here, two long-crested sea states described by a JON-
SWAP wave spectrum as listed in Table 9.2, were used. Twenty independent response
time histories, each of 3 hours’ duration, were simulated for each sea state. For the
Gumbel method, the extreme horizontal deck response in the wave direction is iden-
tified for each time series. These extreme value data are then assumed to be Gumbel
distributed, and plotting each data set as a Gumbel probability plot results in Fig-
ures 9.5 and 9.6. Specifically, the observed 3-hour extremes Mk are plotted versus
− ln

(
ln(21/k)

)
, for k = 1, . . . ,20. The fitted straight line in each figure, which repre-

sents the fitted Gumbel distribution, is based on the moment estimation method, cf.
Subsection 9.6.1.

Figure 9.5 Empirical Gumbel plot of the 20 simulated 3-hour extremes of the horizontal
deck displacement for the sea state Hs = 12 m and Tp = 12 s together with the fitted Gumbel
distribution (−−−)

The 90% fractile value LG of the fitted Gumbel distribution is identified and shown
in each figure. Table 9.3 lists the obtained 90% fractile values. To quantify the un-
certainty associated with the obtained 90% fractile value based on a sample of size
20, the 95% confidence interval (CI0.95) of this value is used. A good estimate of
this confidence interval can be obtained by using a parametric bootstrapping method
(Efron and Tibshirani, 1993; Davison and Hinkley, 1997). In our context, this simply
means that the initial sample of 20 extreme values is assumed to have been generated
from an underlying Gumbel distribution, whose parameters are, of course, unknown.
If this Gumbel distribution had been known, it could have been used to generate
many samples of size 20. For each sample, a new Gumbel distribution would be fitted,
and the corresponding 90% fractile value identified. If the number of samples had
been large enough, an accurate estimate of the 95% confidence interval on the 90%
fractile value based on a sample of size 20 could be found. Because the true parameter
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Figure 9.6 Empirical Gumbel plot of the 20 simulated 3-hour extremes of the horizontal deck
displacement for the sea state Hs = 14.7 m and Tp = 16.5 s together with the fitted Gumbel
distribution (−−−)

values of the underlying Gumbel distribution are unknown, they are replaced by the
estimated values obtained from the initial sample. This fitted Gumbel distribution is
then used as previously described to provide an approximate 95% confidence interval.
Note that the assumption that the initial 20 extreme values are actually generated
from a Gumbel distribution is quite accurate in this case, as discussed later.

Invoking the parametric bootstrap, the 95% confidence interval is estimated for
each case based on 100,000 bootstrap samples. The obtained results are listed in
Table 9.3. This way of estimating the 90% fractile value of the 3-hour extreme value
distribution is referred to as the Gumbel method. The empirical densities obtained for
the predicted 90% fractile values with the CI0.95 indicated are shown in Figures 9.7
and 9.8.

Table 9.3 90% fractile values LG of the fitted Gumbel distributions

Hs (m) Tp (s) LG (m) CI0.95
12.0 12.0 0.47 (0.40, 0.54)
14.7 16.5 0.63 (0.56, 0.73)

Let us now compare the results provided by the Gumbel method previously dis-
cussed, with the results obtained by the point process method. Using a Levenberg-
Marquardt least squares optimization method, cf. Chapter 5, leads to the results
shown in Figs. 9.9 and 9.10.

As shown in Figures 9.11 and 9.12, when the mean upcrossing rate is plotted on a
logarithmic scale, the tails are closely linear. This means that the associated extreme
value distribution can be expected to be similar to a Gumbel distribution, which would
correspond to exactly linear tails, cf. Eq. (4.31). Although it may not be obvious that
the data plotted in Figures 9.5 and 9.6 come from a distribution very close to a
Gumbel distribution, the approximately linear exponential decay of the crossing rate
strongly supports this assumption. This is yet another indication of the usefulness of
the mean upcrossing rate function.
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Figure 9.7 Empirical density of the predicted 90% fractile value based on sample of size 20
for the sea state with Hs = 12 m, Tp = 12 s. The ∗ indicates the limits of CI0.95.

Figure 9.8 Empirical density of the predicted 90% fractile value based on sample of size 20
for the sea state with Hs = 14.7 m, Tp = 16.5 s. The ∗ indicates the limits of CI0.95.

Aiming at T = 3-hour extreme response prediction, one needs upcrossing rates down
to about 10−4− 10−6. Accurate estimates based on direct Monte Carlo simulation
down to this order are expensive in terms of CPU time for the considered structure.
It is therefore convenient when accurately estimated upcrossing rates down to about
10−3 can be used as a basis for extrapolation down to the appropriate response level
ξ (with ν+(ξ )≈ 10−5), as illustrated in Figures 9.9 - 9.10.

Returning now to the specific prediction of the 90% fractile of the 3-hour extreme
value distribution, LCR, Figures 9.9 and 9.10 lead to the estimates listed in Table 9.4.
The estimated 95% confidence intervals are given in Table 9.4, and indicated in the
figures. They are significantly smaller than those obtained by the Gumbel method.
The prediction accuracy is thus significantly higher for the proposed method. However,
it is also observed that there is good agreement between the LCR-values and the LG-
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Figure 9.9 Log plot of the empirical and fitted upcrossing rate with the reanchored 95%
empirical confidence band (−−) and fitted confidence band (– ·) for the sea state with Hs = 12 m,
Tp = 12 s. 90% fractile estimate = 0.47 m, with CI0.95 = (0.45, 0.50).

Figure 9.10 Log plot of the empirical and fitted upcrossing rate with the reanchored 95%
empirical confidence band (−−) and fitted confidence band (– ·) for the sea state with Hs =
14.7 m, Tp = 16.5 s. 90% fractile estimate = 0.62 m, with 95% CI0.95 = (0.58, 0.65).

values, which is to be expected because the exact extreme value distribution is very
close to a Gumbel distribution.

Table 9.4 90% fractile values LCR of the fitted Gumbel distributions

Hs (m) Tp (s) LCR (m) CI0.95
12.0 12.0 0.47 (0.45, 0.50)
14.7 16.5 0.62 (0.58, 0.65)
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Figure 9.11 Mean upcrossing rate statistics along with 95% confidence bands (−−) for the
sea state with Hs = 12 m, Tp = 12 s, and response standard deviation σ = 0.047 m. ∗ : Monte
Carlo; − − − : linear fit.

Figure 9.12 Mean upcrossing rate statistics along with 95% confidence bands (−−) for the
sea state with Hs = 14.7 m, Tp = 16.5 s, and response standard deviation σ = 0.068 m. ∗ : Monte
Carlo; − − − : linear fit.

9.6.4 Combination of multiple stochastic load effects

A prominent problem in the design of structures subjected to random loads is to
find methods for the combination of resulting load effects at high and extreme re-
sponse levels. In codified design, this is usually implemented as linear combination
rules of specified characteristic values of the individual load effects (Madsen et al.,
1986; Melchers, 1999). For nonlinear dynamic structures, the precision level of such
procedures would seem highly questionable. One of the reasons for adopting such
simplified procedures is the complexity of the task to accurately predict the extreme
value statistics of the combined load effects, even in the case of linear combinations.
Over the years, several simplified procedures have been suggested for the linear com-
bination of load effects, most notably the Ferry Borges-Castanheta method (Ditlevsen
and Madsen, 1996), Turkstra’s rule (Turkstra, 1970; Madsen et al., 1986), the load
coincidence method (Wen, 1990; Melchers, 1999), the SRSS method (Wen and Pearce,



9.6 Estimation of Extreme Response 141

1981; Wen, 1990), and the point crossing approximation method (Larrabee and Cor-
nell, 1981; Madsen et al., 1986). A main shortcoming of these combination procedures
is that they apply only to the case of independent load effect components. A method
for lifting this restriction from the point process approximation is proposed by Toro
(1984). An effort to extend Turkstra’s rule to dependent processes is described by
Naess and Royset (2000). In this section, the use of the point process method for
stochastic load effect combination problems is illustrated.

The general formulation of the load effect combination problem to be studied here
is the following:

H(t) = h[X1(t), . . . ,XN(t)], (9.43)

where the stochastic load effect component processes X1(t), . . . ,XN(t) are combined
according to a specified deterministic function h to produce the load effect combination
process H(t). The component processes may derive from a vector solution process of a
dynamic model for the structural response of an offshore platform to random waves.
They may often be modeled as stationary stochastic processes, but that is not a
requirement for the application of the point process method.

The typical problem to answer concerning the load effect combination process H(t)
is to determine the probability of exceeding a critical threshold hc during a specified
time interval T . Let us call this the failure probability and denote it by p f = p f (T ).
Defining M(T ) = max{H(t) : 0≤ t ≤ T}, it is realized that the goal is to calculate,

p f = 1−Prob(M(T )≤ h f ) . (9.44)

In many practical applications, the structure of the process H(t) is quite involved
and the dimension N can be high. This makes a direct analytical approach virtually
impossible. In such cases, Monte Carlo simulations of some sort would seem to be the
most attractive way to provide estimates of the failure probability.

Two different load effect combination examples are used for illustration purposes:
von Mises yielding stress and linear combination of non-Gaussian load effects. In both
cases, the load components are correlated stochastic processes. A Newmark integration
method was used to produce accurate response time series, cf. Naess and Moan (2013).

The load effect components Xi(t) are modeled as stationary processes, being the
response of Duffing-type systems to the same stationary Gaussian white noise excita-
tion W (t) with E[W (t)W (t + τ)] = δ (τ), where δ (·) denotes the Dirac delta function.
That is,

Ẍi + 2ζiωiẊi + ω
2
i (Xi + εX3

i ) = W (t)/mi , (9.45)

with specific damping constants ζi and resonance frequencies ωi = 2π/Ti, and mi rep-
resent masses, i = 1, . . . ,N. In this subsection N is taken to be 3.

First, the linear case, i.e., ε = 0 in Eq. (9.45), is considered. In this case, the (two-
sided) PSD of the process Xi(t) is given as Si(ω) = |Ai(ω)|2, where,

Ai(ω) =
1√

2πmi(−ω2 + 2iζiωiω + ω2
i )

, (9.46)

with i = 1,2,3. The correlation coefficient ρi j = E[Xi(t)X j(t)]/σiσ j between Xi(t) and
X j(t) is given by,

ρi j =
∫

∞

−∞

Ai(ω)A∗j(ω)dω/σiσ j . (9.47)

Here, σ2
i = Var[Xi(t)] =

∫
∞

−∞
Si(ω)dω is the variance of Xi(t), i = 1,2,3.
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von Mises stress combination

Let σx,σy,σz be axial stresses and τxy,τxz,τyz be shear stresses in a structural ele-
ment. According to the von Mises yield criterion (Madsen et al., 1986), yielding occurs
if,

(σx−σy)
2 +(σx−σz)

2 +(σy−σz)
2 + 6(τ

2
xy + τ

2
xz + τ

2
yz)≥ 2σ

2
Y , (9.48)

where σY is the yield stress. In many cases, in practice, several stress components are
zero. In the analysis carried out here, only xy-plane stresses are encountered, meaning
that σz = τxz = τyz = 0. According to the von Mises criterion, yielding then occurs if,

(σx−σy)
2 + σ

2
x + σ

2
y + 6τ

2
xy ≥ 2σ

2
Y . (9.49)

The load effect vector in three-dimensional space is introduced as,

(X1(t),X2(t),X3(t)) ∝ (σx(t),σy(t) ,τxy(t)) , (9.50)

where the components Xk(t) are determined by Eq. (9.45).
The von Mises criterion (Eq. (9.49)) states that yielding (failure) occurs when,

HvM(t) =
(
(X1−X2)2 + X2

1 + X2
2 + 6X2

3
)1/2 ≥ h f , (9.51)

where h f ∝
√

2σY .
In the linear case, (ε = 0 in Eq. (9.45)), the process HvM(t)2 becomes a quadratic ex-

pression in correlated stationary Gaussian processes. Hence, the saddle point method
described by Naess and Karlsen (2004) is applicable. Because this method is very
accurate, it provides an opportunity to check the accuracy and efficiency of the point
process method. Table 9.5 lists the damping values and resonance periods used in
Eq. (9.45) for the load effect processes Xi(t).

Table 9.5 Model parameters

i ζi Ti (s) m
1 0.04 1.8 1
2 0.04 2.0 1
3 0.04 2.2 1

For the linear case (ε = 0), it is straightforward to calculate the standard deviations
and correlation coefficients for the Xk, cf. Eq. (9.47): σ1 = 0.38, σ2 = 0.45, σ3 = 0.52,
ρ12 = 0.36, ρ13 = 0.14, ρ23 = 0.41. There is significant correlation between some of the
load effect components. For each example, 20 time series of length approximately 0.92
hours each were simulated. The total computation time for each example was less
than a minute, including simulation time and optimization.

The log plot presented in Figure 9.13 shows the optimized fitted parametric curve
for the case of linear dynamics, i.e., ε = 0, together with the confidence band gener-
ated by the fitted parametric curves to the borders of the reanchored empirical 95%
confidence band. For illustration purposes, the predicted value given by ν+(ξ ) = 10−6,
which corresponds to the 99% fractile value of a 3-hour extreme value distribution is
indicated. Predicted value = 6.84 = 10.03σ , with 95% CI = (6.60, 7.12).
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Figure 9.13 Log plot of the mean upcrossing rate of HvM(t): Monte Carlo (•), reanchored
empirical 95% confidence band (- -), fitted curve (– –), fitted confidence band (– ·). Linear
case: ε = 0. a = 0.795, b = 0.996, c = 1.607, lnq =−0.249, σ = 0.682.

In Figure 9.14, it is demonstrated that when the fitted parametric curve shown in
Figure 9.13 is replotted as an optimal transformed plot, which yields a straight line,
the empirical curve is also largely indistinguishable from a straight line, verifying the
validity of our assumption about the representation of the upcrossing rate function.
The results from saddle point calculations, which are practically exact, are also plotted
in Figure 9.14, and they are seen to agree very well with the extrapolated straight
line results.

Figure 9.14 Optimal transformed plot of the mean upcrossing rate of HvM(t): Monte Carlo
(•), empirical confidence band (- -), saddle point results (o), linear extrapolation (– –). Linear
case: ε = 0. b = 0.996, lnq =−0.249, σ = 0.682.

Figure 9.15 shows the optimized fitted parametric curve for the case of nonlinear
dynamics, i.e., ε = 1, together with the confidence band as generated previously. Pre-
dicted 99% fractile value of 3-hour extreme = 4.29 = 8.04 σ , 95% confidence interval
= (4.21, 4.36). Figure 9.16 presents the mean upcrossing rate function of HvM(t) plot-
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ted on the optimal transformed scale. It is observed that the assumption is again fully
verified.

Figure 9.15 Log plot of the mean upcrossing rate of HvM(t): Monte Carlo (•), reanchored
empirical 95% confidence band (- -), fitted curve (– –), fitted confidence band (– ·). Nonlinear
case: ε = 1.0. a = 0.082, b =−0.382, c = 3.334, lnq = 0.124, σ = 0.534.

Figure 9.16 Optimal transformed plot of the mean upcrossing rate of HvM(t): Monte Carlo
(•), empirical confidence band (- -), linear extrapolation (–). Nonlinear case: ε = 1.0. b =−0.382,
lnq = 0.124, σ = 0.534.

Linear combination of non-Gaussian load effects

To get a flexible model that also provides a convenient way of investigating the
effect of statistical dependence between load components, an example from Naess and
Royset (2000) is used. The input load components are again assumed to be given by
Eq. (9.45), with the same parameters as in the previous case study, cf. Table 9.5.
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As an example of non-Gaussian load effect component processes, memoryless trans-
formations of the input processes Xi(t) provided by Eq. (9.45) is considered. In this
section, it is assumed accordingly that,

Hlc(t) =
3

∑
i=1

Zi(t), (9.52)

with
Zi(t) = Xi(t)|Xi(t)|α , −1 < α < 1. (9.53)

Two α-values were chosen here, −0.5 and 0.5. The number of terms in the sum (9.52)
is chosen to be three, but it can be any positive integer because it does not matter
much for the Monte Carlo simulation.

Figure 9.17 shows the optimized fitted parametric curve for α =−0.5 and the case
of linear dynamics, i.e. ε = 0, together with the confidence band generated by the
allowed parametric curves. The predicted 99% fractile value of 3 hour extreme =
3.42 = 3.34 σ , with the 95% confidence interval = (3.36, 3.49). In Figure 9.18 it is
demonstrated that when the fitted parametric curve shown in Figure 9.17 is replotted
as an optimal transformed plot, the empirical curve is largely indistinguishable from
a straight line, supporting the assumption about the representation of the upcrossing
rate function.

Figure 9.17 Log plot of the mean upcrossing rate of Hlc(t): Monte Carlo (•), empirical con-
fidence band (- -), fitted curve (– –), fitted confidence band (– ·). Linear case: ε = 0. a = 0.147,
b = 0.129, c = 3.742, lnq =−1.103, σ = 1.026, α =−0.5.

Figure 9.19 shows the optimized fitted parametric curve for α = 0.5 and the case
of linear dynamics, together with the confidence band generated by the allowed para-
metric curves. The predicted 99% fractile value of 3 hour extreme = 5.15 = 7.69 σ ,
with the 95% confidence interval = (4.95, 5.37). In Figure 9.20 it is demonstrated
that when the fitted parametric curve shown in Figure 9.19 is replotted as an opti-
mal transformed plot, the empirical curve is largely indistinguishable from a straight
line, again supporting the assumption about the representation of the upcrossing rate
function.

Figures 9.21 and 9.22 show the log plot and the optimal transformed plots for the
case α =−0.5, under nonlinear dynamics with ε = 1. The predicted 99% fractile value
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Figure 9.18 Optimal transformed plot of the mean upcrossing rate of Hlc(t): Monte Carlo
(•), confidence band (- -), linear extrapolation (–). Linear case: ε = 0. b = 0.129, lnq =−1.103,
σ = 1.026, α =−0.5.

Figure 9.19 Log plot of the mean upcrossing rate of Hlc(t): Monte Carlo (•), empirical con-
fidence band (- -), fitted curve (– –), fitted confidence band (– ·). Linear case: ε = 0. a = 1.771,
b = 0.449, c = 1.280, lnq =−0.980, σ = 0.670, α = 0.5.

of the 3-hour extreme = 3.04 = 3.18 σ , with the 95% confidence interval = (3.00, 3.09).
By way of comment to the rather high optimal value for c that was found in this par-
ticular case, it may be of interest to observe that the function F(q∗(c),a∗(c),b∗(c),c)
is almost constant for a range of values from about c = 4 to 7, where the calculations
stopped. From the transformed optimal plot, the assumption is also still verified for
this case.

Figures 9.23 and 9.24 show the log plot and the optimal transformed plots for
the case α = 0.5, under nonlinear dynamics with ε = 1. The predicted 99% fractile
value of 3-hour extreme = 3.06 = 6.147 σ , with the 95% confidence interval = (2.97,
3.12). From the transformed optimal plot, it is again seen that the assumption is fully
verified also for this case.

20 maxima M j, j = 1, ..,20 are extracted, one from each realization, in order to view
it on a Gumbel plot. The latter is a plot of M j versus − ln(ln 20+1

j ), j = 1, ..,20.
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Figure 9.20 Optimal transformed plot of the mean upcrossing rate of Hlc(t): Monte Carlo
(•), confidence band (- -), linear extrapolation (–). Linear case: ε = 0. b = 0.449, c = 1.280,
lnq =−0.980, σ = 0.670, α = 0.5.

Figure 9.21 Log plot of the mean upcrossing rate of Hlc(t): Monte Carlo (•), empirical confi-
dence band (- -), fitted curve (– –), fitted confidence band (– ·). Nonlinear case: ε = 1. a = 0.014,
b =−0.456, c = 5.423, lnq =−1.048, σ = 0.958, α =−0.5.

A 95% confidence interval for the response level L90 of the Gumbel distribution not
being exceeded during time T = 500max(T1,T2,T3) (cf. Table 9.5), with probability
90% based on a sample of size 20 can be obtained by the MC technique and with
parametric bootstrapping from the fitted Gumbel distribution (Davison and Hinkley,
1997). One hundred thousand bootstrap samples where used to estimate the den-
sity of the 90% fractile, and from this density, the desired confidence interval was
extracted. Figures 9.25 and 9.26 present the L90 estimates by the point process and
Gumbel methods for the nonlinear system ε = 1, α = 0.5. Figure 9.27 presents the
parametrically bootstrapped density of L90 from the Gumbel distribution.

The estimate of L90 from the point process method is 3.70 with 95% confidence
interval (3.65,3.75). For the Gumbel method, the estimate of L90 is 3.55 with 95%
confidence interval (3.23,3.85).
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Figure 9.22 Optimal transformed plot of the mean upcrossing rate of Hlc(t): Monte Carlo (•),
confidence band (- -), linear extrapolation (–). Nonlinear case: ε = 1. b =−0.456, lnq =−1.048,
σ = 0.958, α =−0.5.

Figure 9.23 Log plot of the mean upcrossing rate of Hlc(t): Monte Carlo (•); empirical confi-
dence band (- -); fitted curve (– –); fitted confidence band (– ·). Nonlinear case: ε = 1. a = 1.872,
b = 0.030, c = 1.767, lnq =−0.527. σ = 0.498, α = 0.5.

9.6.5 Total surge response of a TLP

The next example illustrates the problem of predicting the total surge response of
a tension leg platform (TLP) in random waves. The TLP concept was developed for
production of oil at offshore fields. A simple rendition of a TLP structure is presented
in Fig. 9.28. With the tools developed in this chapter, the problem of response predic-
tion may be solved in a rather satisfactory manner. The presented material is largely
taken from Naess et al. (2007). A Monte Carlo based approach to the investigation
of the response statistics of an offshore structure is also presented in Sagrilo et al.
(2011).

The equations of motion for a floating, rigid-body TLP structure subjected to
environmental forces such as wind, waves and current would generally be written as,

MMMZ̈ZZ(t)+HHH(ZZZ(t),ŻZZ(t), t) = FFF(t) . (9.54)
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Figure 9.24 Optimal transformed plot of the mean upcrossing rate of Hlc(t): Monte Carlo (•),
confidence band (- -), linear extrapolation (–). Nonlinear case: ε = 1. b = 0.030, lnq = −0.527.
σ = 0.498, α = 0.5.

Figure 9.25 Distribution by the point process method; nonlinear system, ε = 1, α = 0.5.

Figure 9.26 Gumbel plot of 20 maxima; nonlinear system, ε = 1, α = 0.5.



150 9 Monte Carlo Methods and Extreme Value Estimation

Figure 9.27 Bootstrapped density; nonlinear system, ε = 1, α = 0.5.

Figure 9.28 A sketch of a TLP structure

Here, MMM denotes a generalized 6×6 mass matrix, ZZZ = (Z1, . . . ,Z6)T = the structure’s
response vector, while HHH denotes a nonlinear vector function. FFF(t) denotes a stochastic
loading process, which in general also depends on the response of the structure. This
point is further discussed later.

Because the main purpose of this section is to illustrate the versatility and accuracy
of the proposed method, we chose to discuss a simplified SDOF model for the surge
response of the TLP in random waves. Except for interaction effects between different
motion modes, the SDOF model allows for the introduction of most of the relevant
nonlinear effects that may influence the response of the TLP. Hence, the following
SDOF equation of motion is studied,
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M Z̈(t)+ H(Z(t), Ż(t), t) = F(t), (9.55)

where Z = Z(t) denotes the surge response of the TLP; M is the mass of the platform,
including added mass; and H is a nonlinear function to be specified. As discussed
in Chapter 8, the hydrodynamic loading process F(t) is assumed to consist of two
components: a linear, first-order (wave frequency) term F1(t), and a nonlinear, slowly
varying, second-order term F2(t).

To set up the proper dynamic model for the surge response Z(t), it is necessary to
take into account the fact that hydrodynamic loading on a floating body depends on
the motions of the body. In case of the slow drift motions of the TLP, it is of some
importance to take into account the dependence of the slow drift force F2(t) on the
slowly varying surge velocity Ż2(t). Because of a nonlinear dynamic model, a definition
of the slow drift response Z2(t) has to introduced. A suitable definition would seem
to be the following: The slow-drift response Z2(t) is obtained from the total response
Z(t) by a low-pass filter that removes all wave frequency components. In practice, this
may be achieved by a running mean operator used iteratively.

To account for the dependence of the slow drift force on the slowly varying velocity,
it is appropriate to write F2(t, Ż2(t)) rather than F2(t). However, F2(t, Ż2(t)) is not
directly available to us, but only F2(t)≡ F2(t,0) given by an equation entirely similar
to Eq. (8.7). Since, in the context of slow drift motions, Ż2(t) is small, the following
approximation is adopted,

F2(t, Ż2(t))≈ F2(t,0)+
∂F2(t,0)

∂ Ż2
Ż2(t). (9.56)

It is shown by Naess and Johnsen (1993) that for a TLP structure ∂F2(t,0)
∂ Ż2

≈
−cF2(t,0) ≡ −cF2(t) for a suitable constant c > 0 may to some extent serve as a
useful approximation to capture qualitatively the time-variant damping effect, which
is the result of the expansion in Eq. (9.56).

The first dynamic model adopted for Z(t) is now the following,

M̃ Z̈ +C Ż + K(Z + εZ3) = F1(t)+ F2(t, Ż2)≈ F(t)− cF2(t) Ż2. (9.57)

Here, M̃ = M +m̃, where m̃ is an appropriately chosen (constant) added mass. C, K, and
ε are suitably chosen positive constants. This equation is rewritten in the equivalent
form,

Z̈ + 2ωe ζ Ż + 2ωec̃F2(t) Ż2 + ω
2
e (Z + εZ3) =

F(t)
M̃

, (9.58)

where ω2
e = K/M̃, ζ = C/(2ωeM̃), and c̃ = c/(2ωeM̃).

Thus, the dynamic system is nonlinear with a Duffing-type hardening stiffness
nonlinearity and time-varying damping. For the TLP the relative damping coefficient
ζ is usually small. As a consequence, the contribution from the time-varying term is
non-negligible, especially for severe seas for which the slow drift response is significant.
The third-order term in the restoring force, generally referred to as the set down
effect, is caused by the fact that the tethers will induce the TLP to act like an
inverted pendulum. Note that the set down effect will also have an influence on the
hydrodynamic loading process, which depends not only on Ż, but also on Z. Even if
this dependence could have been taken into account, it was neglected here because it
is of minor importance.
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For the numerical simulations, a particular model of a TLP is considered, and
the corresponding LTF and QTF are computed using the second-order diffraction
program (WAMIT, 2008). For simplicity, unidirectional seas are used, meaning that
the directional argument β is skipped. This simplification should have no effect on
the conclusions based on the comparison of accuracy. The combined first-order and
second-order slowly varying surge deck motion is studied applying the single-degree-
of-freedom model. The TLP particulars are detailed in Table 9.6, and the subsurface
part of the structure is shown in Figure 9.29, but without the vertical tethers.

Figure 9.29 Sketch of the submerged part of the TLP. Units in meters

The values in Table 9.6 are used to obtain the second-order response. This means
that for the second-order response, a simplified version of Eq. (9.57) was used, where
mass M̃, stiffness K, and damping coefficient C are frequency independent, which is a
good approximation for the slow drift motion. The time-invariant damping part ζ is
considered to be 5%.

Table 9.6 Particulars of the TLP

Column diameter D (m) 10.0
Eigenperiod surge Te (s) 128.8
Relative damping ζ 0.05
Total mass (incl. added mass) M̃ (kg) 1.5 ·107

Two versions of Eq. (9.58) are used. The first version is a linear, time-invariant
model obtained by putting c̃ = ε = 0. The second version is the fully nonlinear model
where the parameter c̃ in Eq. (9.58) is chosen such that Var[2ωec̃F2(t) Ż2(t)] is about
10% of Var[2ωe ζ Ż(t)]. The parameter ε is estimated from the condition that 0.2Z(t)≥
εZ3(t) when Z(t)≤ 6σZ , i.e. even in the extreme response region, stiffness hardening
contributes not more than 20% relative to the linear part for severe sea, which lead to
ε = 1.36 ·10−4. Finally, the following approximate values were found: c̃ = 30/(M̃g) for
moderate seas, and c̃ = 90/(M̃g) for severe seas, where g = 9.81m/s2, cf. Eq. (9.60).
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The adopted parameter values are largely arbitrary, but the choices made seem to
provide a reasonable model for the chosen TLP structure.

To get an accurate representation of the response process, there is a specific require-
ment that must be observed. Because the damping ratio is only 5%, the frequency
resolution ∆ω must secure a sufficient number of frequency values over the resonance
peak. This will ensure that the second-order, difference-frequency response component
captures the TLP surge dynamics with sufficient accuracy. It is commonly required
that there are at least 5 discrete frequencies over the frequency range where |L̂(ω)|2
is equal to or higher than half of the resonance peak height max(|L̂(ω)|2), where,

L̂(ω) =
(
−ω

2 + 2iζ ωe ω + ω
2
e
)−1

. (9.59)

For the surge force QTF K̂2(ω,ω ′), a suitable initial frequency grid must be chosen for
which the values of the force QTF are calculated. The calculation of the force QTF is
generally the most time-consuming part of the numerical analysis. Therefore, the ini-
tial grid is usually rather coarse to avoid excessive computer time. For the calculations
at hand, the discrete frequency range was the following: ω1 = 2π/30.0, . . . ,ωn = 2π/4.0
(rad/s), n = 30. This necessitates the use of an interpolation procedure to be able to
provide values of the QTF on a much finer grid than the initial one to comply with
the requirement of sufficient frequency resolution to capture the dynamics of slow
drift motion. In this chapter cubic spline interpolation is used. In the particular case
considered here, the resolution requirement led to the choice ∆ω = 0.0018 rad/s and
L = 760 interpolated discrete frequencies.

The random stationary sea state is specified by a JONSWAP spectrum, which is
given as follows,

Sη(ω) =
αg2

ω5 exp

{
− 5

4

(
ωp

ω

)4
+ lnκ exp

[
− 1

2χ2

(
ω

ωp
−1
)2]}

, (9.60)

where g = 9.81 ms−2, ωp denotes the peak frequency in rad/s, and κ and χ are
parameters affecting the spectral shape. χ = 0.07 when ω ≤ ωp, and χ = 0.09 when
ω > ωp. The parameter κ is chosen to be equal to 3.3, which is a rather typical value.
The parameter α is determined from the following empirical relationship,

α = 5.06
(Hs

T 2
p

)2(
1−0.287 lnκ

)
, (9.61)

where Hs denotes the significant wave height and Tp = 2π/ωp is the spectral peak wave
period. Table 9.7 presents the sea state parameters, along with the corresponding
response standard deviations. For more results, cf. Naess et al. (2007).

Table 9.7 Representative sea state, along with response standard deviations for the linear
and nonlinear TLP model.

Hs (m) Tp (s) σZ (m), lin. σZ (m), nonlin.
10.0 11 9.3 8.2

Figure 9.30 shows the LTF for the wave exciting force amplitude, while Figure 9.31
depicts the spline interpolated QTF. Because the QTF is complex valued, only its
absolute value is plotted.
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Figure 9.30 Wave exciting force amplitude, surge LTF.

Figure 9.31 Wave exciting force amplitude, surge QTF.

For the chosen sea state, Figures 9.32 and 9.33 present the corresponding response
tail crossing rates obtained by Monte Carlo simulation for the linear system given by
putting ε = 0 and c̃ = 0 in Eq. (9.58). Figure 9.32 shows the results obtained from 1,000
realizations, which requiring less than 1 hour on a laptop computer. The crossing rate
plots are done on the transformed scale, see Eq. (9.42). Extreme response prediction
based on Eq. (9.35) will typically involve crossing rates of the orders 10−6−10−7, but
to illustrate the achieved accuracy the extrapolated results at the crossing rate level
10−10 are highlighted. Figure 9.32 also shows the highly accurate results obtained by
using a saddle point integration technique (Naess et al., 2006). These results cannot
be distinguished from those obtained by linear extrapolation of the mean upcrossing
rate function provided by Monte Carlo simulations. Hence, linear extrapolation can
be done over several orders of magnitude with high accuracy.

To illustrate the fact that good accuracy can be obtained with much shorter time
simulation records, Figure 9.33 shows the results of using only 25 hours of simulated
response time histories, which required less than 10 minutes on a standard laptop PC.

Figures 9.34 and 9.35 present response tail crossing rates for the chosen sea state
obtained by Monte Carlo simulation for the fully nonlinear model given by Eq. (9.58).
In this case the Monte Carlo simulation results are the only results available for veri-
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Figure 9.32 Optimal transformed plot of the empirical crossing rates by Monte Carlo simu-
lation (∗) with 95% confidence bands (−−) based on 1,000 hours of response time histories for
the case of linear dynamics (c̃ = ε = 0). Saddle point integration results ( ) coincide with
the optimized linear fit with b = 0.75σZ , q = 0.0205, where σZ = 9.3 m (see Table 9.7).

Figure 9.33 Optimal transformed plot of the empirical crossing rates by Monte Carlo sim-
ulation (∗) with 95% confidence bands (−−) based on 25 hours of response time histories for
the case of linear dynamics (c̃ = ε = 0); optimized linear fit ( ) with b = 0.75σZ , q = 0.020,
where σZ = 9.3 m (see Table 9.7), for the case of linear dynamics (c̃ = ε = 0).

fication of the extrapolation method for the nonlinear model, but the experience from
the linear case indicates that the results obtained from Figure 9.34 are very accu-
rate. Again, the crossing rate plots are done on the transformed scale, see Eq. (9.42),
and for illustration purposes the extrapolated results at the crossing rate level 10−10

are highlighted. These results can be compared with the corresponding results ob-
tained from only 25 h of simulated response time histories shown in Figure 9.35. The
agreement is again very good.
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Figure 9.34 Optimal transformed plot of the empirical crossing rates by Monte Carlo sim-
ulation (∗) with 95% confidence bands (−−) based on 1,000 hours of response time histories
for the fully nonlinear model; optimized linear fit ( ) with b = 0.54σZ , q = 0.0248, where
σZ = 8.2 m (see Table 9.7).

Figure 9.35 Optimal transformed plot of the empirical crossing rates by Monte Carlo simu-
lation (∗) with 95% confidence bands (−−) based on 25 hours of response time histories for the
fully nonlinear model; optimized linear fit ( ) with b = 0.54σZ , q = 0.0234, where σZ = 8.2 m
(see Table 9.7).
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10.1 Introduction

The title of this chapter is deliberately chosen to focus on the bivariate case instead
of the general multivariate. The reason is mainly one of expediency, because the
general multivariate case would easily embroil us in the necessity to roll out a heavy
machinery of notation without contributing to a deeper understanding of the issues
involved. For a discussion of the general multivariate case, the reader may consult
the book by Beirlant et al. (2004). The extension of extreme value statistics from the
univariate to the multivariate case meets with several challenges. First of all, there is
no direct simple generalization of the univariate extreme value types theorem to the
multivariate case, and in particular, this also applies to the bivariate case.

Developed on the basis of Gumbel’s logistic and mixed models (Gumbel, 1960b,a,
1961; Gumbel and Mustafi, 1967)), the later results on possible asymptotic bivari-
ate extreme value distributions became, in a sense, too general, which poses severe
problems for practical applications. Significant efforts have been made to model and
estimate a function which describes the dependence structure between extreme com-
ponents, cf. e.g. Coles and Tawn (1991, 1994). However, there are no precise estimation
tools that allow us to decide on the joint distribution of the bivariate extremes from
a given set of bivariate data. Of course, the marginal data sets can be used to derive
estimates of the marginal extreme value distributions, as in Zachary et al. (1998);
de Haan and de Ronde (1998), but the joint distribution is still a long way off.

A popular method of trying to cope with the problem of bivariate extremes is to
adopt a copula to represent the joint distribution structure. This copula is then usu-
ally combined with asymptotic extreme value distributions to represent the marginal
distributions, typically of the GEV type (Coles, 2001). For this purpose, a range of
different copulas have been proposed (Tawn, 1988; Waal and van Gelder, 2005), see
also Castillo et al. (2005) for a compendious treatment of bivariate copulas. Even in
the case of the bivariate extreme value copula (Pickands, 1981; Balakrishnan and Lai,
2009), due to the properties of the dependence function, generally speaking, there are
an infinite number of models. Therefore, the main problem with this approach is that
it is rather ad hoc. That is, there seems to be no appropriate theoretical justification
for choosing one particular copula over the other.

It is therefore of considerable interest to note that the ACER method can eas-
ily be extended to several dimensions, in particular, to two (Naess, 2011). By this
fact, a vehicle is obtained for providing a nonparametric statistical estimate of the
bivariate extreme value distribution inherent in a bivariate time series. It will be
seen that the bivariate ACER function is able to cover both spatial and temporal
dependence characteristics of the given time series. Thus, it covers all simultaneous
and non-simultaneous extreme events. From a practical point of view, this makes it
possible to investigate the true behavior of the bivariate extreme value distribution
for a particular case, and at the same time check the validity of the proposed copula
models for bivariate extremes.

As a first effort in investigating the functional representation of the empirically
estimated bivariate ACER surface, the bivariate extreme value copula approach will
be adopted. Specifically, the Asymmetric logistic and Gumbel logistic models are
used, combined with asymptotically consistent marginal extreme value distributions
based on the univariate ACER functions. Since the univariate ACER functions have
proved to portray accurately the marginal tail behaviour, this will offer an opportunity
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to verify to some extent the viability of copula models to capture the dependence
structure of bivariate extreme value distributions.

The performance of the bivariate ACER method will be illustrated by application
to two measured bivariate time series. The first consists of simultaneous wind speed
data measured at two stations off the coast of Norway. The second time series consists
of simultaneous wind speed and wave height data measured at an offshore location
in the North Sea. For some other examples on the application of the bivariate ACER
method, see e.g. Gaidai et al. (2019); Xu et al. (2022)

10.2 Componentwise Extremes

Assume that (X1,Y1),(X2,Y2), . . . is a sequence of iid bivariate random variables
having distribution function F(x,y). Let Mx,N = max1≤i≤N Xi and My,N = max1≤i≤N Yi.
Then MN = (Mx,N ,My,N) is a vector of componentwise maxima, where the index i for
which the component time series X1,X2, . . . and Y1,Y2, . . . assume their extreme may
be different between the two series. Hence, MN does not necessarily correspond to an
observed vector of the original time series.

The search for the limiting forms of the bivariate extreme value distributions follows
more or less the pattern of the univariate case by studying MN as N→∞. By way of a
first observation, the marginal distributions of the asymptotic bivariate extreme value
distribution should by necessity be given by the asymptotic univariate extreme value
distributions. Since the marginals are known, the representations may, in fact, be sim-
plified a little by assuming that both Xi and Yi have the standard Fréchet distribution
F(z) = exp(−1/z), z > 0. By transformation of variables, any other marginal distribu-
tion can be obtained. With this specific choice of marginal, a special case of the GEV
distribution with parameters µ = 0, σ = 1 and γ = 1 is at hand. Now, it follows that
Prob(Mx,N ≤ z) = exp(−N/z), or, equivalently, Prob(Mx,N/N ≤ z) = exp(−1/z), z > 0.
The same result applies to My,N . Hence, to obtain standard univariate results for each
margin, the re-scaled vector,

M∗N = (Mx,N/N,My,N/N), (10.1)

should be considered.
The main result of this section is the following:

Let M∗N = (M∗x,N ,M
∗
y,N) be defined by Eq. (10.1) where the (Xi,Yi) are iid random

vetors with standard Fréchet marginal distributions. Then if,

Prob(M∗x,N ≤ x,M∗y,N ≤ y)→ G(x,y), as N→ ∞, (10.2)

where G is a non-degenerate distribution function, G has the form,

G(x,y) = exp{−V (x,y)}, x > 0, y > 0, (10.3)

where

V (x,y) = 2
∫ 1

0
max

(
w
x
,

1−w
y

)
dH(w), (10.4)

where H is a distribution function on [0,1] satisfying the mean value constraint
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0
wdH(w) = 1/2. (10.5)

The distributions obtained as limits in Eq. (10.2) are called the class of bivariate
asymptotic extreme value distributions. According to this result, this class is in a 1-1
correspondence with the set of distributions H on [0,1] satisfying Eq. (10.5). So, this
rather remarkable result tells us that for any such distribution function on [0,1], a
valid bivariate asymptotic extreme value distribution is obtained.

Two simple examples may serve as illustration. Denote by W a random variable
with distribution function H. First, let W have the two possible outcomes 0 and 1,
and Prob(W = 0) = Prob(W = 1) = 0.5. Hence the distribution function H has jumps
at 0 and 1, so that dH(0) = 0.5 and dH(1) = 0.5. The condition given by Eq. (10.5)
is satisfied, and V (x,y) = x−1 + y−1 by Eq. (10.4), so that the corresponding bivariate
extreme value distribution becomes,

G(x,y) = exp{−(x−1 + y−1)}= exp{−x−1}exp{−y−1)}, x > 0, y > 0, (10.6)

which clearly illustrates the case of two independent variables with standard Fréchet
marginals. The opposite case of two fully dependent variables is obtained by consid-
ering a degenerate random variable with unit mass at W = 0.5. The corresponding
distribution function then has one jump at w = 0.5. i.e. dH(0.5) = 1. Eq. (10.5) is
satisfied, and the corresponding bivariate extreme value distribution is,

G(x,y) = exp{−max(x−1,y−1)}, x > 0, y > 0, (10.7)

where the marginals are still standard Fréchet.
To obtain the general situation for any GEV marginal, it is now only necessary to

transform the marginals from standard Fréchet to the required members of the GEV
family. Specifically, by defining,

x̃ =

{
1 + γx

(x−µx

σx

)}1/γx

and ỹ =

{
1 + γy

(y−µy

σy

)}1/γy

, (10.8)

it follows that the complete set of bivariate asymptotic extreme value distributions is
determined by distribution functions of the form,

G(x,y) = exp{−V (x̃, ỹ)}, (10.9)

provided [1 + γx(x− µx)/σx] > 0 and [1 + γy(y− µy)/σy] > 0, and where the function
V satisfies Eq. (10.4) for some distribution function H, satisfying Eq. (10.5). The
marginal distributions are GEV with parameters (µx,σx,γx) and (µy,σy,γy), respec-
tively.

10.3 Bivariate ACER Functions

Consider a bivariate stochastic process Z(t) =
(
X(t),Y (t)

)
with dependent com-

ponent processes, which has been observed over a time interval, (0,T ) say. Assume
that the sampled values (X1,Y1), . . . ,(XN ,YN) are allocated to the (usually equidistant)
discrete times t1, . . . , tN in (0,T ). Our goal in this section is to construct a methodol-
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ogy that allows us to accurately determine empirically the joint distribution function
of the extreme value vector MN = (Mx,N ,My,N), where Mx,N = max

{
X j ; j = 1, . . . ,N

}
,

and with a similar definition of My,N . Specifically, the goal is to estimate P(ξ ,η) =
Prob(Mx,N ≤ ξ ,My,N ≤ η) accurately for large values of ξ and η .

For notational convenience, it is expedient to introduce the non-exceedance event
Ck j(ξ ,η) =

{
X j−1≤ ξ ,Yj−1≤η , . . . ,X j−k+1≤ ξ ,Yj−k+1≤η

}
for 1≤ k≤ j≤N +1. Then,

from the definition of P(ξ ,η) it follows that,

P(ξ ,η) = Prob
(
CN+1,N+1(ξ ,η)

)
= Prob

(
XN ≤ ξ ,YN ≤ η |CNN(ξ ,η)

)
· Prob

(
CNN(ξ ,η)

)
...

=
N

∏
j=2

Prob
(
X j ≤ ξ ,Yj ≤ η |C j j(ξ ,η) · Prob

(
C22(ξ ,η)

)
. (10.10)

Following the pattern of the derivations of the univariate ACER functions in Chap-
ter 5, it will be shown in Section 10.6, based on Eq. (10.10) and the properties of
conditional probability, that a sequence of approximations may be introduced which
converges to the target distribution P(ξ ,η). In practice, following the derivations in
Section 10.6, it is therefore assumed that the following representation applies for a
suitably chosen k, cf. Eq. (10.37),

P(ξ ,η)≈ exp
{
−

N

∑
j=k

(
αk j(ξ ;η)+ βk j(η ;ξ )− γk j(ξ ,η)

)}
; ξ ,η → ∞ , (10.11)

where αk j(ξ ;η) = Prob
(
X j > ξ |Ck j(ξ ,η)

)
, βk j(η ;ξ ) = Prob

(
Yj > η |Ck j(ξ ,η)

)
and

γk j(ξ ,η) = Prob
(
X j > ξ ,Yj > η |Ck j(ξ ,η)

)
. Also in this chapter, the convention is

used that ξ ,η → ∞ is to be understood as large values relative to the typical values,
and not strictly as limits at infinity. Note that Eq. (10.11) applies equally well to
stationary and nonstationary time series. This is due to the fact that the possible
time dependence of the conditional exceedance probabilities αk j(ξ ;η), βk j(η ;ξ ) and
γk j(ξ ,η) has been retained, which is reflected in the presence of the time parameter
j.

From Eq. (10.11) it emerges that for the estimation of the bivariate extreme
value distribution, it is necessary and sufficient to estimate the sequence of func-

tions
{

αk j(ξ ;η) + βk j(η ;ξ )− γk j(ξ ,η)
}N

j=k. To get a more compact representation, it

is expedient to introduce the concept of a k’th order bivariate average conditional
exceedance rate (ACER) function as follows,

Ek(ξ ,η) =
1

N− k + 1

N

∑
j=k

(
αk j(ξ ;η)+ βk j(η ;ξ )− γk j(ξ ,η)

)
; k = 1, 2, . . . (10.12)

Hence, when N� k,

P(ξ ,η)≈ exp{−(N− k + 1)Ek(ξ ,η)} ; ξ ,η → ∞ . (10.13)

The numerical estimation of the bivariate ACER function for the observed station-
ary or non-stationary time series consists in counting of the appropriate exceedance
events. The estimation procedure is derived in more details in Section 10.7.



162 10 Bivariate Extreme Value Distributions

10.4 Functional Representation of the Empirically Estimated
Bivariate ACER Functions

From the definition of Ek(ξ ,η) follows that the product Ek(ξ ,η) · (N− k + 1) rep-
resents the expected number of the bivariate observations Z j = (X j, Yj) such that
their components exceed corresponding levels ξ and η (both simultaneous and non-
simultaneous) and follow after at least k−1 previous simultaneous non-exceedances.
Therefore the bivariate ACER function Ek(ξ ,η) is able to capture the temporal and
spatial dependence structure of the considered bivariate time series. Moreover, as is
discussed in Section 10.6, in practice the existence of an effective ke � N such that
P(ξ ,η) = Pke(ξ ,η) = exp{−(N− ke + 1)Eke(ξ ,η)} can be assumed.

This implies the capability to obtain high quantiles of the bivariate extreme value
distribution. Thus, the joint T -year return period contour associated with the event
that either Mx,N or My,N or both is exceeded, that is{(

Mx,N > ξ T
)
∪
(
My,N > ηT

)
∪
(
Mx,N > ξ T ∩My,N > ηT

)}
, is represented by,

1−F1yr(ξ
T , η

T ) =
1
T
, (10.14)

where F1yr(ξ ,η) is the joint distribution function of the annual maxima. Assuming
that the duration of observation period of the bivariate process Z(t) is ny years, then,
with k = ke,

F1yr(ξ ,η) = exp
{
− N− k + 1

ny
Ek(ξ ,η)

}
. (10.15)

From Eqs. (10.14) and (10.15) follows that the joint T -year return levels (ξ T , ηT ) are
obtained as solution of the implicit equation:

Ek(ξ
T , η

T ) =− log
(

1− 1
T

)
ny

N− k + 1
. (10.16)

It is evident, that empirically estimated k-th order bivariate ACER does not pro-
vide enough information for estimation of high quantiles of the joint extreme value
distribution. In addition, the exact behavior of the bivariate ACER as a continuous
function of two variables cannot be decided using available statistical data. There-
fore, the sub-asymptotic functional form of the ACER surface Ek(ξ ,η) can possibly
be obtained approximately by the copula representation of a bivariate extreme value
distribution.

From the result by Sklar (1959), for any pair of random variables (X , Y ) with
marginal distribution functions Fx(ξ ) and Gy(η), the joint distribution function
Hxy(ξ , η) = Prob(X ≤ ξ , Y ≤ η) can be presented by a bivariate copula C(u,v) as
follows: Hxy(ξ , η) = C

(
Fx(ξ ), Gy(η)

)
, cf. e.g. Nelsen (2006) or Balakrishnan and Lai

(2009). This result applies to any bivariate extreme value distribution as well.
Considering the above and using the result of Pickands (1981), any bivariate ex-

treme value distribution Hxy(ξ , η) with marginal univariate extreme value distribu-
tions Fx(ξ ) and Gy(η) is given by the formula,

Hxy(ξ , η) = exp

{
log
(
Fx(ξ )Gy(η)

)
·D
(

log
(
Fx(ξ )

)
log
(
Fx(ξ )Gy(η)

))}, (10.17)
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where the Pickands dependence function D(·) is a convex function and satisfies D(x) :
[0,1] 7−→ [max(x, 1− x), 1], cf. Gudendorf and Segers (2010).

We assume that asymptotically consistent marginal extreme value distributions
Fx(ξ ) and Gy(η) are represented by the corresponding univariate ACER functions,
that is,

Fx(ξ )≈ exp
{
− (N− k + 1)ε

x
k (ξ )

}
, ξ ≥ ξ1 ,

Gy(η)≈ exp
{
− (N− k + 1)ε

y
k (η)

}
, η ≥ η1 ,

(10.18)

where the sub-asymptotic functional form of the univariate ACER function is repre-
sented as εx

k (ξ ) = qx
k exp{−ax

k(ξ−bx
k)

cx
k} with a similar definition of ε

y
k (η), cf. Chapter 5.

Now, substituting Eq. (10.18) into Eq. (10.17) the following representation of the
bivariate extreme value distribution applies:

Hxy(ξ , η) = exp

{
− (N− k + 1)

(
ε

x
k (ξ )+ ε

y
k (η)

)
·D
(

εx
k (ξ )

εx
k (ξ )+ ε

y
k (η)

)}
. (10.19)

On the other hand, as it has been discovered before in Eq. (10.13), the bivariate
extreme value distribution can be expressed through the bivariate ACER function:
Hxy(ξ ,η) = exp{−(N− k + 1)Ek(ξ ,η)}. Thereby, the functional form of the bivariate
ACER surface can possibly be obtained by:

Ek(ξ ,η) =
(

ε
x
k (ξ )+ ε

y
k (η)

)
D

(
εx

k (ξ )

εx
k (ξ )+ ε

y
k (η)

)
. (10.20)

Consequently, our aim now is to find the dependence function D(·) that would provide
optimal fit of the parametrical surface defined by Eq. (10.20) to the empirical bivariate
ACER Êk(ξ ,η).

Subject to the form of the dependence function D(·), different parametric differen-
tiable and non-differentiable models can be considered. By setting D(x) = θx2−θx+1,
where 0≤ θ ≤ 1, the Type A bivariate extreme value distribution, or Gumbel mixed
model, is obtained, cf. e.g. Gumbel (1960a,b), Gumbel and Mustafi (1967). Another
differentiable model is acquired by setting D(x) = [xm +(1−x)m]1/m for m≥ 1. This is
the Type B distribution or Gumbel logistic model (Gumbel, 1961; Hougaard, 1986).
The functional form of the bivariate ACER surface in the Gumbel logistic case be-
comes,

Gk(ξ ,η) =
[(

ε
x
k (ξ )

)m
+
(
ε

y
k (η)

)m
] 1

m
. (10.21)

The Type C distribution, also known as the biextremal model (Tiago de Oliveira,
1984), can be considered as an example of a non-differentiable model. The dependence
function in this case is D(x) = max(x, 1−θx) for 0≤ θ ≤ 1.

In the literature, differentiable models have usually been of most interest, and they
have been used to analyze bivariate environmental events. Yue et al. (1999) and Yue
(2000), apply the Gumbel mixed model to rainfall data in order to provide storm
frequency analysis. Yue (2001a,b) has also studied the Gumbel logistic model with
application to flood peak – flood volume pair of bivariate data.

In the work by Yue and Wang (2004), a comparison between the Gumbel mixed
and the Gumbel logistic models has been made. The authors argued that both models
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are appropriate and give similar estimates of the joint distribution of two Gumbel-
distributed random variables whose Pearson product moment correlation coefficient
is: 0≤ ρ ≤ 2/3. When ρ > 2/3 the Gumbel mixed model cannot be applied, see also
Tiago de Oliveira (1982). For this reason, it was decided to consider the Gumbel
logistic model as one that fits better the objectives of the present work.

In the dependence function D(·) for the Gumbel logistic model, Tawn (1988) added
extra parameters φ and θ to get further flexibility. This leads to the Asymmetric
logistic model, which sets D(x) = [φ mxm + θ m(1− x)m]1/m + (θ −φ)x + 1−θ with 0≤
θ ≤ 1, 0 ≤ φ ≤ 1, m ≥ 1. The functional form of the bivariate ACER surface in the
Asymmetric logistic case is obtained as,

Ak(ξ ,η) =
[(

φε
x
k (ξ )

)m
+
(
θε

y
k (η)

)m
] 1

m
+(1−φ)ε

x
k (ξ )+(1−θ)ε

y
k (η). (10.22)

The optimal parameters m∗ for Gk(ξ ,η) and θ ∗, φ ∗ and m∗ for Ak(ξ ,η), can be found
by minimizing a mean square error function. This is discussed only for the case of
Ak(ξ ,η), since the case of Gk(ξ ,η) then follows easily. Specifically, the mean square
error function for Ak(ξ ,η) is defined as,

F(m,θ ,φ) =
Nη

∑
j=1

Nξ

∑
i=1

w′i j

(
log Êk(ξi,η j)− logAk(ξi,η j)

)2
, (10.23)

where Nξ ,Nη are numbers of levels ξ and η , respectively, at which the ACER function
have been empirically estimated, and w′i j = wi j/∑∑wi j with,

wi j =
(
logCI+(ξi,η j)− logCI−(ξi,η j)

)−2
, (10.24)

denoting normalized weight factors that put more emphasis on the more reliable
estimates.

The constrained optimization problem with the objective function F defined in
Eq. (10.23), is written as, {

F(m,θ ,φ)→min ,
{m,θ ,φ} ∈ S ,

(10.25)

with a constraints domain,

S =
{
{m,θ ,φ} ∈ R3 ∣∣ θ , φ ∈ [0, 1]; m ∈ [1, +∞)

}
. (10.26)

10.5 Numerical Examples

10.5.1 Wind speed measured at two adjacent weather stations

In this section, the results obtained by Naess and Karpa (2015a) will be discussed.
The simultaneous wind speed data measured along the Norwegian coast at Sula and
Nordøyan Fyr weather stations (station numbers are 65940 and 75410, respectively),
were analyzed to obtain numerical estimates of bivariate extreme wind speeds. Fig-
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ure 10.1 shows the geographical locations of measurement sites. The hourly maximum

Figure 10.1 Map of a part of Norway with the marked weather stations: A – Sula station, B
– Nordøyan Fyr station

of the three seconds wind gust (10 meters above the ground) were recorded during 13
years (1999 - 2012).

Figure 10.2 demonstrates the plot of the observed data. This plot reveals a rather
strong dependence between the two time series.

Figure 10.2 Coupled observations of Wind speed data observed at the Sula station (ξ axis)
and at the Nordøyan Fyr station (η axis).

The Pearson product-moment correlation coefficient is found to be ρ = 0.73. The
Kendall’s rank correlation coefficient is τ = 0.5, while Spearman’s ρ equals 0.68, which
also indicates a nonlinear relationship between Sula and Nordøyan wind speeds.

It was decided to divide the data series into 13 one-year records for the analysis. By
this, also the standard deviation of the ACER function estimates can be calculated
fairly accurately.
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The univariate ACER functions were estimated first, using the Matlab-based stan-
dalone downloadable application (Karpa, 2012). In Figures 10.3 - 10.4 the sequence of
ε̂1 . . . ε̂96 are plotted versus different wind speed levels. Both figures reveal that there
is significant temporal dependence between consecutive data. It is also seen that this
dependence effect is largely accounted for by k = 24 since there is a marked degree
of convergence in the tail of ε̂k for k ≥ 24 in both cases. Here, for k = 96, which cor-
responds to conditioning on data recorded up to 4 days earlier, ε̂96 is considered to
represent the final converged results, since ε̂96 ≈ ε̂k for k > 96 in the tail. Therefore,
there is no need to consider conditioning of an even higher order than 96. So, effec-
tively, ke = 96 for our data. Also note that 4 days is a typical separation of wind speed
data adopted in the declustering process to achieve independence between the data
used in e.g. a peaks-over-threshold analysis. Figures 10.3 - 10.4 also demonstrate that
for extreme value estimation, ε̂1 can be used since the ACER functions all coalesce
in the far tail. This makes it possible to choose k = 1, which makes much more data
available for estimation, with a possible reduction of uncertainty in estimation as a
result.

Figure 10.3 Comparison between ACER estimates for different degrees of conditioning. Wind
speed data from the Sula station, cf. Figure 6.9.

The sequence of estimated bivariate ACER surfaces Êk(ξ ,η) is shown in Fig-
ure 10.5. Matlab programs for ACER 2D analyses are available, cf. Karpa (2014).
Êk(ξ ,η) with k = 1 is the uppermost. As it is seen from the figure, the cross-section
of the surfaces at a high value of the wind speed level η gives the univariate ACER
functions of the wind speed data from the Sula station, while the cross-section at a
high level of ξ represents the univariate ACER of the time series from the Nordøyan
Fyr.

Due to the observed convergence, the ACER surface for k = 96 is very close to
the surface obtained by taking the logarithm of the exact bivariate extreme value
distribution.

Parameters of the optimal Asymmetric logistic (AL) and Gumbel logistic (GL)
surfaces are presented in Table 10.1.

Figures 10.6 - 10.7 show the contour plots of the optimized Asymmetric logistic
Ak(ξ ,η) and the optimized Gumbel logistic Gk(ξ ,η) fits to the data for Êk(ξ ,η)
surface for k = 1 and k = 96, respectively. The contour lines of three surfaces are



10.5 Numerical Examples 167

Figure 10.4 Comparison between ACER estimates for different degrees of conditioning. Wind
speed data from the Nordøyan Fyr station.

Figure 10.5 Comparison between Bivariate ACER surface estimates for different degrees of
conditioning. Êk(ξ ,η) surfaces are plotted on a logarithmic scale.

Table 10.1 Optimal parameters of AL and GL fits.

k AL GL
1 mA = 2.44, θ = 0.86, φ = 0.92 mG = 2.01
96 mA = 4.53, θ = 0.97, φ = 0.97 mG = 3.87

plotted for those levels of ξ and η , where the bivariate ACER surface Êk(ξ ,η) have
been empirically estimated.

The figures reveal that the empirical bivariate ACER surface Êk captures high
correlation between the data, and so do the optimally fitted Gk and Ak surfaces. It
is also seen that the behaviour of the estimated ACER surface in the case k = 96 in
Figure 10.7 affirms high uncertainty due to deficiency of data. However, the optimal
surfaces G96 and A96 capture the statistical properties of the bivariate observations.

It is noticeable that the level of agreement between the estimated bivariate ACER
and both the optimized Asymmetric logistic and the Gumbel logistic surfaces is
equally significant. Yet, it is also important to keep in mind that the empirical bi-
variate ACER Êk is the only discrete surface. The MATLAB (2009) built-in routine
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Figure 10.6 Contour plot of the empirically estimated Ê1 surface, and the optimized Gumbel
logistic G1 and optimized Asymmetric logistic A1 surfaces based on marginal univariate ACER.
Boxes indicate levels on a logarithmic scale.

Figure 10.7 Contour plot of the empirically estimated Ê96 surface, and the optimized Gum-
bel logistic G96 and optimized Asymmetric logistic A96 surfaces based on marginal univariate
ACER. Boxes indicate levels on a logarithmic scale.

contourc that has been used to obtain the figures, calculates the contour lines by
producing a regularly spaced grid determined by the dimensions of a surface. There-
fore, it evidently generates a certain spacing inaccuracy of the ACER Êk surface level
lines plot. In addition, the figures ascertain that the optimized Asymmetric logistic
and Gumbel logistic surfaces conform at a level sufficient to affirm that they actually
coincide.

Thereby, the optimized Gumbel logistic model with asymptotically consistent
marginals obtained from the optimized univariate ACER, can be used as the para-
metric representative of the bivariate ACER surface estimated from the given data
set.
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Also, comparison of the contour lines of G1 and G96 that correspond to the same
return period levels shows fairly good agreement in the tail considering the high un-
certainty for the case k = 96. To highlight the results that would be obtained by
adopting the common approach of assuming Gumbel marginal extreme value distri-
butions combined with a suitable copula model, in Figure 10.8 are plotted the 50 and
100 year return period levels obtained by using the Asymmetric logistic model with
asymptotically consistent marginals obtained from the optimized univariate ACER
marginals together with the corresponding return levels obtained by using the Gum-
bel logistic model with Gumbel marginals fitted by the method of moments. It is clear
that the discrepancy is significant, which is primarily caused by the use of asymptotic
Gumbel marginals. Finally, it is noted that the bivariate ACER methodology has been
studied in more detail in an initial study on synthetic data with known extreme value
distribution, and therefore a known 100-year return period level

(
ξ 100yr, η100yr

)
. To

get an idea about the performance of the ACER method and the existing Gumbel
logistic model with Gumbel marginals fitted by the method of moments, Monte Carlo
simulations were carried out to produce 100 bivariate data samples. It was observed
that the predicted 100-year return period levels were consistently better for the ACER
method.

Figure 10.8 Contour plot of the return period levels for the optimized Asymmetric logistic
A1 surfaces (solid line —) and the Gumbel logistic model with the Gumbel marginals GMM
(dash-dot line – ·–). Boxes indicate return period levels in years.

10.5.2 Wind speed and wave height measured at a North Sea
weather station

This example presents results obtained by Naess and Karpa (2015b). Wind speed
(WS - 3 hours mean [m/s]) and significant wave height (Hs - total sea [m]) data
measured in the Norwegian sea at location N 65.29, E 7.32 were analyzed to obtain
numerical estimates of the bivariate extreme value distribution. Figure 10.9 shows
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the geographical position of the measurement site. The data were recorded during 54

Figure 10.9 Map of a part of Norway with the marked location.

years (1957 - 2011), 8 times per day (every three hours).
Figure 10.10 demonstrates the plot of the observed data. As it is seen from the

plot, there is a rather strong dependence between the two time series.
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Figure 10.10 Coupled observations of wind speed data (ξ axis) and significant wave height
data (total sea, η axis).

The Pearson product-moment correlation coefficient is found to be ρ = 0.79. The
Kendall’s rank correlation coefficient is τ = 0.56 and Spearman’s ρ is equal to 0.7,
which also indicates a nonlinear connection between WS and Hs.

It should be noted that the available bivariate observations have low accuracy. This
especially concerns the significant wave height data, where the graduating mark is 0.1
meter, and on average, there are 98 unique numerical values of the Hs data per year.
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Obviously, for fairly accurate estimation of the bivariate ACER functions, more data
wouuld be required. In order to get a good sample size of records (realizations), it
was decided to divide the data series into 18 three-years records for the analysis. By
this procedure, also the standard deviation of the ACER function estimates can be
calculated fairly accurately.

As in the previous example, the univariate ACER functions ε̂k were estimated
first, using the Matlab-based standalone downloadable application (Karpa, 2012). In
Figures 10.11 - 10.12, ε̂k is plotted versus different levels of wind speeds and wave
heights, respectively, for different values of k. From both figures, it is clearly seen that
there is significant time dependence between WS observations, as well as between Hs
data. It is also understood that this dependence effect is largely accounted for by
k = 16 since there is a marked degree of convergence in the tail of ε̂k for k≥ 16 in both
cases. Obviously, k = 16 corresponds to exceedances separated by at least two days
of non-exceedances for three hours observations. For k ≥ 32, which corresponds to
four days declustered data, full convergence has been achieved. Figures 10.11 - 10.12
also demonstrate that for extreme value estimation, ε̂2 can be used since the ACER
functions for k ≥ 2 all converge in the far tail. Again, this clearly demonstrates the
power of an ACER function plot as a diagnostic tool to decide on the value of k needed
for extreme value estimation in a particular case. In spite of significant dependence
effects for the WS and Hs data with lower magnitudes, for the extreme values this is
largely absent. This makes it possible to choose k = 2, which makes much more data
available for estimation, with a possible reduction of uncertainty in estimation as a
result.
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Figure 10.11 Comparison between ACER estimates for different degrees of conditioning.
Wind speed data.

Figures 10.13 - 10.14 show the plots of the optimized parametric fit to the data for
ε̂k for k = 2 for both time series. In particular, 100-year return level value and its 95%
CI are estimated parametrically and plotted. For the wind speed data, the optimal
parameters are: q = 0.05, b = 0.1, a = 1.9 ·10−4, c = 3.14, while in case of Hs data, the
parameters of the optimal curve are: q = 0.04, b =−2.27, a = 0.02, c = 2.23.

Figure 10.15 demonstrates the empirically estimated bivariate ACER surfaces
Êk(ξ ,η) for different values of k on a logarithmic scale. Êk(ξ ,η) with k = 1 is the
uppermost. As it is seen from the figure, the cross-section of the surfaces at a high
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Figure 10.12 Comparison between ACER estimates for different degrees of conditioning.
Significant wave height (total sea).
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Figure 10.13 Plot of ε̂2(ξ ) versus wind speeds ξ on a logarithmic scale for the optimized
parameter values; ξ1 = 14.5.

level of the wave height η gives the univariate ACER functions of the wind speed data,
while the cross-section at a high wind speed level represents the univariate ACER of
the Hs time series, respectively.

The same arguments as in the univariate case are applied to make the decision
about the bivariate ACER surface to be used in the analyses. That is, as long as the
surfaces for k ≥ 2 all converge in the tail and estimation of Ê2(ξ ,η) is more accurate
due to availability of more data, we would choose the surface with the degree of
conditioning k = 2.

The optimal parameters of the Asymmetric logistic fit were found to be: mAL = 7,
θ = 1 and φ = 0.91. Since the additional parameters θ and φ are close to one, it would
seem reasonable to consider a Gumbel logistic model. The same optimization proce-
dure as in the Asymmetric logistic case, was applied to obtain the optimal dependence
parameter of the Gumbel logistic copula mGL = 4.78.
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Figure 10.14 Plot of ε̂2(η) against wave heights η on a logarithmic scale for the optimized
parameter values; η1 = 4.5.

Figure 10.15 Comparison between Bivariate ACER surface estimates for different degrees of
conditioning. Êk(ξ ,η) surfaces are plotted on a logarithmic scale.

Figures 10.16 - 10.17 show the contour plots of the optimized Asymmetric logistic
fit A L 2(ξ ,η) to the data for the Ê2(ξ ,η) surface and also the contour plots of the
optimized Gumbel logistic surface G L 2(ξ ,η).

In Figure 10.16, contour lines of the three surfaces are plotted for those levels of ξ

and η , where the bivariate ACER surface Ê2(ξ ,η) have been empirically estimated.
Contour lines that correspond to the return period levels are presented in Figure 10.17.

The figures reveal that the empirical bivariate ACER surface Ê2 captures high cor-
relation between the data and so do the optimally fitted G L 2 and A L 2 surfaces.
Note that the contour lines of the bivariate ACER surface of fully correlated data
would show up as lines that consist of only horizontal and vertical line segments.
This happens because for such data, Hxy(ξ , η) = min

(
Fx(ξ ), Gy(η)

)
, which implies

that Ek(ξ ,η) = max
(
εx

k (ξ ),εy
k (η)

)
, cf. Eq. (10.18). It is seen that the level of agree-

ment between the estimated bivariate ACER and optimized Asymmetric logistic and
Gumbel logistic surfaces is equally significant. Thereby, the optimized Gumbel logistic
model with asymptotically consistent marginals obtained from the optimized univari-
ate ACER, can be used as the parametric representative of the bivariate ACER surface
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estimated from the given data set. The Matlab programs for ACER 2D analyses from
Karpa (2014) were used to obtain the results presented in this section.
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Figure 10.16 Contour plot of the empirically estimated Ê2(ξ ,η) surface (•), optimized Gum-
bel logistic G L 2(ξ ,η) (◦) and optimized Asymmetric logistic A L 2(ξ ,η) (—) surfaces. Boxes
indicate levels on a logarithmic scale.
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Figure 10.17 Contour plot of the return period levels for Ê2(ξ ,η) surface (•), optimized
Asymmetric logistic A L 2(ξ ,η) (—) and optimized Gumbel logistic G L 2(ξ ,η) (◦) surfaces.
Boxes indicate return period levels in years.
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10.6 Appendix 1: The Sequence of Conditioning
Approximations

Consider a bivariate stochastic process Z(t) =
(
X(t),Y (t)

)
with dependent compo-

nent processes, which has been observed over a time interval, (0,T ) say. Assume
that the sampled values Z1 = (X1,Y1), . . . ,ZN = (XN ,YN) are allocated to the (usu-
ally equidistant) discrete times t1, . . . , tN in (0,T ). The goal is to determine the
joint distribution function of the extreme value vector MN =

(
Mx,N ,My,N

)
, where

Mx,N = max
{

X j ; j = 1, . . . ,N
}

, and with a similar definition of My,N . Specifically, the
goal is to estimate P(ξ ,η) = Prob

(
Mx,N ≤ ξ ,My,N ≤ η

)
accurately for large values of

ξ and η .
In the following, the implementation of a sequence of approximations based on

conditioning is outlined, where the first is a one-step memory approximation. This
approximation concept is described by Naess (1985a, 1990a).

Hereafter, whenever necessary to ease the notation, ζ = (ξ , η) is used with a com-
ponentwise ordering relationship for Zi, e.g. Zi ≤ ζ means Xi ≤ ξ andYi ≤ η . Also, the
event Ck j(ζ ) = Ck j(ξ ,η) =

{
Z j−1 ≤ ζ , . . . ,Z j−k+1 ≤ ζ

}
of k−1 consecutive componen-

twise non-exceedances (k ≥ 2) is introduced. Then, from the definition of P(ξ ,η), it
emerges that,

P(ξ ,η) = P(ζ ) = Prob
(
CN+1,N+1(ζ )

)
= Prob

(
ZN ≤ ζ |CNN(ζ )

)
· Prob

(
CNN(ζ )

)
=

N

∏
j=2

Prob
(
Z j ≤ ζ |C j j(ζ )

)
· Prob

(
C22(ζ )

)
.

(10.27)

The first approximation of the sequence is obtained by assuming that the observed
data pairs are independent, that is, data points Zi and Z j are statistically independent
for all i, j, i 6= j, so that all conditioning in Eq. (10.27) can be neglected.

In this special case, it is obtained that,

P(ξ ,η)≈ P1(ξ ,η) =
N

∏
j=1

Prob
(
Z j ≤ ζ

)
=

N

∏
j=1

(
1−Prob(X j > ξ )−Prob(Yj > η)+Prob(X j > ξ ,Yj > η)

)
.

(10.28)

Now, the designations α1 j(ξ ;η) = Prob(X j > ξ ), β1 j(η ;ξ ) = Prob(Yj >η) and γ1 j(ξ ,η) =
Prob(Z j > ζ ) for 1≤ j ≤ N are introduced. It should be noted that although neither
α1 j(ξ ;η) depends on η nor β1 j(η ;ξ ) depends on ξ , yet this notation is kept for the
correct further derivations.

Eq. (10.28) can now be rewritten as,

P(ξ ,η)≈ P1(ξ ,η) =
N

∏
j=1

{
1−α1 j(ξ ;η)−β1 j(η ;ξ )+ γ1 j(ξ ,η)

}
≈exp

{
−

N

∑
j=1

(
α1 j(ξ ;η)+ β1 j(η ;ξ )− γ1 j(ξ ,η)

)}
; ξ ,η → ∞ ,

(10.29)
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where the approximation 1 − x ≈ exp(−x) has been applied to the sum

∑
N
j=1
(
α1 j(ξ ;η)+ β1 j(η ;ξ )− γ1 j(ξ ,η)

)
, cf. Chapter 5.

In general, the variables Z j are statistically dependent in the componentwise sense.
In this case, the first genuine conditioning approximation is obtained by neglecting
all previous data except the immediate predecessor in Eq. (10.27). Consequently, the
following one-step memory approximation is adopted,

P(ξ ,η)≈ P2(ξ ,η) =
N

∏
j=2

Prob
(
Z j ≤ ζ |C2 j(ζ )

)
·Prob

(
C22(ζ )

)
=

N

∏
j=2

Prob
(
Z j ≤ ζ |Z j−1 ≤ ζ

)
·Prob

(
Z1 ≤ ζ

)
.

(10.30)

Note, that C2 j(ζ ) =
{

Z j−1 ≤ ζ
}

. This may be rewritten as,

P2(ξ ,η) =
N

∏
j=2

(
1−Prob

(
X j > ξ |Z j−1 ≤ ζ

)
−Prob

(
Yj > η |Z j−1 ≤ ζ

)
+Prob

(
X j > ξ ,Yj > η |Z j−1 ≤ ζ

))
·Prob

(
Z1 ≤ ζ

)
.

(10.31)

By introducing the notation α2 j(ξ ;η) = Prob
(
X j > ξ |C2 j(ζ )

)
, β2 j(η ;ξ ) = Prob

(
Yj >

η |C2 j(ζ )
)

and γ2 j(ξ ,η) = Prob
(
Z j > ζ |C2 j(ζ )

)
for 2 ≤ j ≤ N, it is obtained as in

Eq. (10.29), that for the high values of ξ and η ,

P2(ξ ,η) =
N

∏
j=2

{
1−α2 j(ξ ;η)−β2 j(η ;ξ )+ γ2 j(ξ ,η)

}
·
{

1−α11(ξ ;η)−β11(η ;ξ )+ γ11(ξ ,η)
}

≈ exp
{
−

N

∑
j=2

(
α2 j(ξ ;η)+ β2 j(η ;ξ )− γ2 j(ξ ,η)

)
−
(
α11(ξ ;η)+ β11(η ;ξ )− γ11(ξ ,η)

)}
; ξ ,η → ∞ .

(10.32)

It has been observed in the univariate case that conditioning on one previous data
point is sometimes enough to capture the effect of dependence in the time series
to a large extent (Naess and Gaidai, 2009; Karpa and Naess, 2013). However, there
are also cases where this is not sufficient. This can only be ascertained by having
available a method that displays the complete picture concerning the importance
of dependence on the extreme value distribution. Our proposed solution to this is
obtained by introducing a sequence of conditioning approximations beyond the one-
step approximation above.

Going back to Eq. (10.27), and conditioning on k−1 previous data points, where k =
2, . . . ,N and j ≥ k, the following sequence of approximations to P(ξ ,η) is introduced,

Pk(ξ ,η) =
N

∏
j=k

Prob
(
Z j ≤ ζ |Ck j(ζ )

)
·Prob

(
Ckk(ζ )

)
. (10.33)
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Then, k = 2 means conditioning on only the previous observation, as it has been done
in Eq. (10.30).

By introducing the notations αk j(ξ ;η) = Prob
(
X j > ξ |Ck j(ζ )

)
, βk j(η ;ξ ) = Prob

(
Yj >

η |Ck j(ζ )
)

and γk j(ξ ,η) = Prob
(
Z j > ζ |Ck j(ζ )

)
, for k ≤ j ≤ N, it can now be shown

that,

N

∏
j=k

Prob
(
Z j ≤ ζ |Ck j(ζ )

)
≈ exp

{
−

N

∑
j=k

(
αk j(ξ ;η)+ βk j(η ;ξ )− γk j(ξ ,η)

)}
; ξ ,η → ∞ .

(10.34)

Similarly, it is found that,

Prob
(
Ckk(ζ )

)
≈ exp

{
−

k−1

∑
j=1

(
α j j(ξ ;η)+ β j j(η ;ξ )− γ j j(ξ ,η)

)}
; ξ ,η → ∞ . (10.35)

This leads to the result,

Pk(ξ ,η)≈exp
{
−

N

∑
j=k

(
αk j(ξ ;η)+ βk j(η ;ξ )− γk j(ξ ,η)

)
−

k−1

∑
j=1

(
α j j(ξ ;η)+ β j j(η ;ξ )− γ j j(ξ ,η)

)}
; ξ ,η → ∞ , (10.36)

and the sequence of bivariate distributions Pk(ξ ,η), k = 1,2, . . ., is defined by Eq. (10.36).
Thereby, based on the definition of the extreme value distribution P(ξ ,η) and the

properties of conditional probability, a set
{

Pk(ξ ,η)
}N

k=1 of conditional probability
distributions has been constructed, which converges to the target distribution P(ξ ,η)
of the extreme value MN in the limit as k increases for ξ ,η → ∞.

For most applications, and for practical significance, the following assumption on
this sequence of approximations is made: there is an effective ke satisfying ke�N such
that P(ξ ,η) = Pke(ξ ,η). Then, P1(ξ ,η) ≤ P2(ξ ,η) ≤ . . . ≤ Pke(ξ ,η) = P(ξ ,η). It may
be noted that for a k-dependent stationary bivariate stochastic process Z(t), that is,
for data where Zi and Z j are independent componentwise whenever | j− i| > k, then
P(ξ ,η) = Pk+1(ξ ,η) exactly, as in the univariate case.

It will be verified that the property ke� N is indeed satisfied for the wind speed
data analysed in the present paper. Also, under this assumption, ∑

k−1
j=1

(
α j j(ξ ;η) +

β j j(η ;ξ )− γ j j(ξ ,η)
)

is generally negligible compared to ∑
N
j=k
(
αk j(ξ ;η) + βk j(η ;ξ )−

γk j(ξ ,η)
)
. This leads to the approximation (k = ke),

P(ξ ,η)≈ Pk(ξ ,η)≈ exp
{
−

N

∑
j=k

(
αk j(ξ ;η)+ βk j(η ;ξ )− γk j(ξ ,η)

)}
; ξ ,η → ∞ ,

(10.37)

from which it emerges that for the estimation of the bivariate extreme value distri-
bution, it is sufficient to estimate the sequence of functions

{
αk j(ξ ;η) + βk j(η ;ξ )−

γk j(ξ ,η)
}N

j=k.



178 10 Bivariate Extreme Value Distributions

10.7 Appendix 2: Empirical Estimation of the Bivariate ACER
Functions

To get a more compact representation, it is expedient to introduce the concept of
k’th order bivariate average conditional exceedance rate (ACER) function as follows,

Ek(ξ ,η) =

N
∑
j=k

(
αk j(ξ ;η)+ βk j(η ;ξ )− γk j(ξ ,η)

)
N− k + 1

, k = 1, 2, . . . (10.38)

Hence, when N� k,

Pk(ξ ,η)≈ exp{−(N− k + 1)Ek(ξ ,η)} ; ξ ,η → ∞ . (10.39)

A few more details on the numerical estimation of the ACER functions are useful.
It is useful to start by introducing a set of random functions. For k = 2, . . . ,N, and
k ≤ j ≤ N, let,

Ak j(ξ ;η) = 1
{

X j > ξ ∩ Ck j(ζ )
}
,

Bk j(η ;ξ ) = 1
{

Yj > η ∩ Ck j(ζ )
}
,

Gk j(ξ ,η) = 1
{

Z j > ζ ∩ Ck j(ζ )
}
,

Ck j(ξ ,η) = 1
{

Ck j(ζ )
}
,

(10.40)

where 1{A } denotes the indicator function of some event A .
From these definitions it follows that, for instance,

αk j(ξ ;η) =
E[Ak j(ξ ;η)]

E[Ck j(ξ ,η)]
, (10.41)

where E[·] denotes the expectation operator. A similar equation holds for βk j(η ;ξ )
with Bk j(η ;ξ ) instead of Ak j(ξ ;η) in the numerator and for γk j(ξ ,η) with Gk j(ξ ,η)
instead of Ak j(ξ ;η), by analogy.

Assuming ergodicity of the process Z(t) =
(
X(t),Y (t)

)
, then obviously Ek(ξ ,η) =(

αkk(ξ ;η)+βkk(η ;ξ )−γkk(ξ ,η)
)

= . . .=
(
αkN(ξ ;η)+βkN(η ;ξ )−γkN(ξ ,η)

)
, and it may

be assumed that for the bivariate time series at hand,

Ek(ξ ,η) = lim
N→∞

∑
N
j=k
(
ak j(ξ ;η)+bk j(η ;ξ )−gk j(ξ ,η)

)
∑

N
j=k ck j(ξ ,η)

, (10.42)

where ak j(ξ ;η), bk j(η ;ξ ), gk j(ξ ,η) and ck j(ξ ,η) are the realized values of Ak j(ξ ;η),
Bk j(η ;ξ ), Gk j(ξ ,η) and Ck j(ξ ,η), respectively, for the observed time series.

Clearly, lim
ξ ,η→∞

E[Ck j(ξ ,η)] = 1. Hence,

lim
ξ ,η→∞

Ẽk(ξ ,η)/Ek(ξ ,η) = 1 , (10.43)

where
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Ẽk(ξ ,η) = lim
N→∞

∑
N
j=k

(
E[Ak j]+E[Bk j]−E[Gk j]

)
N− k + 1

. (10.44)

The advantage of using the modified bivariate ACER function Ẽk(ξ ,η) for k≥ 2 is that
it is somewhat easier to use for non-stationary or long-term statistics than Ek(ξ ,η).
This aspect is discussed in Chapter 5, see also Karpa and Naess (2013). Since our
focus is on the values of the ACER functions at the extreme levels, any function may
be used that provides correct predictions of the appropriate ACER function at these
extreme levels.

Now, let us look at the problem of estimating confidence intervals for the bivariate
ACER function. If several realizations of the time series Z(t) =

(
X(t),Y (t)

)
are provided

or the time series can be appropriately sectioned into several records, e.g. several
annual, or other time span records, the sample estimate of Ek(ξ ,η) would be,

Êk(ξ ,η) =
1
R

R

∑
r=1

Ê
(r)
k (ξ ,η) , (10.45)

where R is the number of realizations (samples). Ê
(r)
k (ξ ,η) is estimated using the result

from Eq. (10.42) for the stationary time series, or using the result from Eq. (10.44) for
non-stationary time series, where the index (r) refers to realization no. r. The sample
standard deviation ŝk(ξ ;η) then can be estimated by the standard formula,

ŝk(ξ ;η)2 =
1

R−1

R

∑
r=1

(
Ê

(r)
k (ξ ,η)− Êk(ξ ,η)

)2
. (10.46)

Assuming that realizations are independent, Eq. (10.46) leads to a good approximation
of the 95% confidence interval CI =

(
CI−(ξ ,η),CI+(ξ ,η)

)
for the value Ek(ξ ,η),

where,

CI±(ξ ,η) = Êk(ξ ,η)± τ · ŝk(ξ ,η)√
R

, (10.47)

and τ = t−1
(

(1− 0.95)/2, R− 1
)

is the corresponding quantile of the Student’s t-
distribution with R−1 degrees of freedom.
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11.1 Introduction

The initial motivation for developing the methods presented in this chapter was
the search for a practical solution to the air gap problem for offshore structures. Over
the years several reports had been filed detailing damage of the deck structure of
offshore platforms due to wave impacts. In fact, such damage seemed to occur more
frequently than could be expected from predictions based on standard theory. These
wave impacts are highly undesirable events as they may, in the worst case, compromise
the structural integrity of the platform deck. Hence, considerable attention was being
paid to this problem over some time, and now reasonably good predictive tools have
become available, as will be demonstrated in this chapter.

It was eventually realized that the standard procedure for predicting the extreme
wave crest height to be expected at a given platform location is largely based on
extreme value statistics for a single point (Forristall, 2006). It is clear that if this is
used as a basis for predicting the probability of wave impact on the deck structure,
then the fact that there is also a significant area effect on the extreme crest height
distribution over the deck area is neglected. Hence, for a proper solution of the air
gap problem, it is necessary to model the ocean surface as a random field so that
also the spatial aspect can be correctly dealt with (Forristall, 2006). For the case of a
homogeneous Gaussian random wave field, this aspect is also discussed by Socquet-
Juglard et al. (2005); Baxevani and Rychlik (2006).

Recently, a new, simplified method for predicting the space-time extreme value
statistics of homogeneous Gaussian random fields has been proposed (Naess and Bat-
sevych, 2010). In the present chapter it is shown that this simplified method can be
extended to deal with homogeneous non-Gaussian random fields, and, in particular,
with the special case of a second-order homogeneous ocean wave field (Naess and Bat-
sevych, 2012). Additionally, a new semi-parametric representation of the space-time
extreme value distribution for quite general homogeneous random fields over rectan-
gular domains is proposed. It is demonstrated that both the simplified method as well
as the new semi-parametric method makes it possible to make good predictions of the
extreme crest heights over the deck area for jacket platforms, which are assumed to be
transparent for the big waves. Even if the second-order ocean wave field is intrinsically
non-Gaussian, its deviation from a Gaussian field is not very significant. Therefore,
to implement a more stringent test of the two methods proposed, an example of a
strongly non-Gaussian field has also been included. And both methods will be shown
to provide accurate extreme value predictions for this case as well.

The proposed simplified approach, as opposed to the new quasi-parametric method,
can be easily modified to also provide good solutions of the air gap problem for a
TLP or a semi-submersible platform, provided measured or simulated time series of
the ocean surface elevation or air gap at a sufficient number of points below the deck
structure are available, which properly account for the motions of the platform and
the effect of the structure on the wave field. Due to the interaction effects between
the wave field and the structure, the wave field is not homogeneous in space under
the platform deck, even if the incoming wave field is of this type. Hence, a prediction
method that can deal with a random field that is nonhomogeneous in space while
stationary in time will be required. The simplified method proposed in this chapter
can provide such a prediction tool.

Over the last 20 years or so, several approximations for the extreme value dis-
tributions of a real-valued random field X(x, t), where x = (x1, . . . ,xd) ∈ D ⊆ Rd and
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t ∈T ⊆R have been proposed, of which a few are mentioned, (Adler, 1981; Vanmarcke,
1983; Sun, 1993; Maes and Breitung, 1997; Ditlevsen, 2004). Of particular interest are
two books which provide substantial theoretical results, mainly for Gaussian random
fields (Piterbarg, 1996; Adler and Taylor, 2007).

11.2 Spatial-Temporal Extremes for Gaussian Random Fields

Let X = X(x, t) denote a zero mean random field defined on Rd×R, and let,

X̂ = X̂(D×T ) = max{X(x, t);x ∈D , t ∈T } , (11.1)

where T denotes a time interval, specifically, T = (0,T ) for a given T .
In Chapter 14 of Adler and Taylor (2007), the following result is proved for a

smooth Gaussian random field,∣∣Prob(X̂ ≥ ξ )−E[φ(Aξ (X ,D×T ))]
∣∣< O

(
e−αξ 2/(2σ2)

)
, (11.2)

where φ(Aξ (X ,D×T )) denotes the Euler characteristic of Aξ (X ,D×T ), which is the
excursion set of X over D×T . That is, Aξ (X ,D×T ) = {(x, t) ∈D×T : X(x, t)≥ ξ},
σ2 is the variance of X (assumed constant), and α > 1 is a constant that can be
identified as discussed by Adler and Taylor (2007). Certain restrictions apply to the
geometry of the domain D . Instead of going into details about this formula, a largely
equivalent result will be given, which is due to Piterbarg (1996). This result applies
to a homogeneous Gaussian field, which has a simple geometry for D , typically a
nice convex domain e.g. like a rectangle or a sphere. Any numerical representation of
the homogeneous random field X by necessity leads to a truncation of the spectral
density (assumed to exist). Hence, there is no practical limitation in assuming that
the spectral density of X has bounded support, which leads to smoothness of any
order. Piterbarg’s (asymptotic) formula, cf. Chapter 1 of (Piterbarg, 1996), can then
be written as (ξ = uσ , u→ ∞ ),

Prob(X̂ ≤ σu)' PA(u) = exp
{
−ϕ(u)(2π)(d+1)/2Hd(u)Vd

}
, (11.3)

where ' denotes asymptotically equal, Hk(u) = (−1)kϕ(u)−1(d/du)kϕ(u) is a Her-
mite polynomial of order k, ϕ is the standard normal probability density, that is,

ϕ(u) = (
√

2π)−1e−u2/2, Vd = m(D×T )/m(V ), m(V ) = (2πσ)d+1/
√

detΛ (Λ is defined
by Eq. (11.5) below), where m(A ) denotes the Lebesgue measure (volume) of the
domain A .

Before the calculation of Vd is discussed any further, a slight detour is made and
some basic results are presented as detailed by Krogstad et al. (2004). Denoting the
spectral density of X by Ψ(k,ω), its covariance function γ(x, t) is given as,

γ(x, t) =
∫
Rd+1

ei(kx′+ωt)
Ψ(k,ω)dkdω. (11.4)

Denote by Λ = (Λi j) the essentially nonsingular covariance matrix of the gradient
∇X(x, t) = (∂X/∂x1, . . . ,∂X/∂xd ,∂X/∂ t) evaluated in the point x = 0, t = 0,
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Λi j = Cov(∇i X(0,0),∇j X(0,0))

=−∇i ∇j γ(0,0) =
∫
Rd+1

rir jΨ(r)dr, (11.5)

where r = (r1, . . . ,rd ,rd+1) = (k1, . . . ,kd ,ω).
A linear space transformation A : D×T → D̃× T̃ is now performed with the help

of a nonsingular (d + 1)× (d + 1) matrix A,

ỹ = Ax̃ , (11.6)

where x̃ = (x, t) = (x1, . . . ,xd , t), then a new Gaussian random field X̃(ỹ) defined as,

X̃(ỹ) = X(A−1ỹ)/σ (11.7)

has unit variance, σ̃ = 1, and the covariance matrix of the gradient of X̃ is given by,

Λ̃ =
1

σ2 (A−1)T
ΛA−1 . (11.8)

Since Λ is a symmetrical matrix, the transformation A =
√

d + 1σ−1 Λ 1/2 is well
defined and results in Λ̃ = (d + 1)−1I. For this special case of the Gaussian random
field X̃(ỹ) corresponding to the mentioned covariance matrix Λ̃ , a complementary
extreme value distribution can be obtained for the particular case of a rectangular
domain ∆ with edges oriented along the coordinate axes, that is, ∆ =⊗d+1

i=1 [0,Li], where
⊗ denotes a Cartesian product. This probability can be written as,

Prob( ˆ̃X > u) ' ϕ(u)
d+1

∑
k=1

Hk−1(u)

[2π(d + 1)]k/2 Σk(L)+
∫

∞

u
ϕ(x)dx , (11.9)

where L = (L1, . . . ,Ld+1) and Σk(L) is the k-th elementary symmetric polynomial,
defined as,

Σk(L) = ∑
1≤ j1< j2<···< jk≤d+1

L j1 ·L j2 · · ·L jk . (11.10)

This result is obtained as a special case of Theorem 5.1 in Piterbarg (1996).
Now, let us rewrite Eq. (11.9) for the case of the Gaussian field X(x, t) having vari-

ance σ and diagonal covariance matrix of general form, ΛX = diag(λ1, . . . ,λd+1). This
case is important since an arbitrary Gaussian field Z(z, t) with covariance matrix ΛZ
can be brought into this form by performing a rotation A (AT = A−1) of the coor-
dinate axes to the principal directions. As a consequence, only rectangular domains
with edges oriented along principal directions are considered.

It is now easy to check that for X(x, t),

Prob(X̂ > uσ) ' ϕ(u)
d+1

∑
k=1

(2π)k/2Hk−1(u)Σk(q)+
∫

∞

u
ϕ(t)dt, (11.11)

where q = (q1,q2, · · · ,qd+1), qi = Li/`
0
i , `0

i = 2πσ/
√

λi, i = 1, . . . ,d + 1.
For high levels u, and, correspondingly, small exceedance probabilities, one may

write,
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Prob(X̂ ≤ uσ) = 1−Prob(X̂ > uσ)' exp
{
−Prob(X̂ > uσ)

}
(11.12)

' PB(u) = exp

{
−ϕ(u)

d+1

∑
k=1

(2π)k/2Hk−1(u)Σk(q)

}
.

This formula (referred to in the following as PB) is in agreement with the “con-
ventional” Piterbarg’s asymptotic formula Eq. (11.3) (referred to as PA) if only the
leading term of the sum in Eq. (11.12) are taken into account, as Σd+1(q) = Vd . The
leading term in the exponent of PB (and the only one in PA) provides the probability
of the exceedance from inside the volume of the domain D ×T , while other terms
of PB represent probability of exceedance for the lower-dimensional manifolds associ-
ated with the boundaries of the domain, like faces, edges, and vertices in the case of
3 dimensional ∆ . Therefore, if one wants to quantify the exceedance probability for a
rectangle ∆ , one of whose spatial sizes, say L1, tends to zero, PA must be rewritten
for the lower-dimensional case. This demands in particular using Vd−1 instead of Vd ,
as the last tends to zero, while the same formula PB will work for all ranges of ∆ ,
that is, there is no need to change it upon a “squeeze” of one of the dimensions.

To check the validity of both PA and PB, a comparison of them will be made
against numerical results for (1+1)- and (2+1)-dimensional Gaussian fields. For the
(2+1)-dimensional Gaussian field, the explicit expression for PB is,

PB(u) = exp
{
− exp(−u2/2)

[
qx + qy + qt

+
√

2π u(qx qy + qx qt + qy qt)+ 2π qx qy qt (u2−1)
]}

. (11.13)

Here qx = q1 = L1/`
0
1, qy = q2 = L2/`

0
2, qt = q3 = L3/`

0
3, and `0

1 = 2πσ/
√

Λxx, `0
2 =

2πσ/
√

Λyy, `
0
3 = 2πσ/

√
Λtt = Tz = 2π/ωz, where,(

Λxx
Λyy

)
=
∫ (

k2
x

k2
y

)
Ψ(k,ω)dω dk , (11.14)

Λtt = ω
2
z σ

2 =
∫

ω
2
Ψ(k,ω)dω dk . (11.15)

The last equality in Eq. (11.15) defines the zero-upcrossing (circular) frequency ωz. A
more general result corresponding to the special case of Eq. (11.13) with qt = 0 was
derived already by Ditlevsen (1971).

It can be shown that the rhs of Eq. (11.3) has the following Gumbel distribution
as its max-stable asymptotic limit (Krogstad et al., 2004),

G(uσ) = exp
{
− exp

[
−hV (u−hV )

]}
, (11.16)

where the parameter hV is obtained by solving the equation,

Vd h2
V e−h2

V /2 = 1 , (11.17)

which has the approximate solution,

hV =
√

2logVd + 2log(2logVd) . (11.18)
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11.3 A Simplified Approach

The first step is rewriting Eq. (11.1) as follows,

X̂ = max
0≤t≤T

{max
x∈D

X(x, t)} . (11.19)

A stochastic process consisting of spatial extremes is then introduced,

X̂D (t) = max
x∈D

X(x, t) . (11.20)

It is now assumed that a finite set of points {xi}M
i=1 can be chosen so that

X̂D (t)≈ max
1≤i≤M

X(xi, t) , (11.21)

for each t ∈ (0,T ), and that,

X̂ ≈ max
1≤n≤N

X̂D (tn)≈ max
1≤n≤N

{ max
1≤i≤M

X(xi, tn)} , (11.22)

for a suitable discretization of the time interval (0,T ), 0 ≤ t1 < .. . < tN ≤ T . For
each n, n = 1, . . . ,N, denote by xin a point so that max

1≤i≤M
X(xi, tn) = X(xin , tn), and let

X̃n = X(xin , tn). Then
X̂ ≈ max

1≤n≤N
X̃n , (11.23)

If the sampling times tn are sufficiently dense in (0,T ), then the time series X̃n can
be considered as quasi-continuous in time, and an accurate discrete representation of
a smooth stochastic process X̃(t) so that X̂ ≈ max

0≤t≤T
X̃(t).

The derivations in this section applies also to the case of a nonhomogeneous field,
and the extreme value distribution FX̂ (ξ ) is then with good approximation given by
the equation,

FX̂ (ξ )≈ exp
{
−
∫ T

0
ν

+
X̃ (ξ ; t)dt

}
, (11.24)

where ν
+
X̃ (ξ ; t) denotes the average upcrossing rate of the level ξ by X̃(t) at time t.

This approximation is contingent on the assumption that the probability of initial
exceedance can be neglected. For estimation purposes, Eq. (11.24) is rewritten as,

FX̂ (ξ )≈ exp{−ν
+
X̃ (ξ )T} , (11.25)

where the time average ν
+
X̃ (ξ ) is given as,

ν
+
X̃ (ξ ) =

1
T

∫ T

0
ν

+
X̃ (ξ ; t)dt , (11.26)

which is in a form suitable for empirical estimation from time series. However, it should
be clear that in the case of a nonhomogeneous field, the extreme value predictions
can only refer to the initial space-time domain D ×T , if no additional modelling or
structure is introduced.

The comparison between Eqs. (11.3), (11.12), and (11.25) reveals that− log(PB(ξ/σ))
is not a multiplicative function with respect to T (or, equivalently, qt) in contrast to
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− log(PA(ξ/σ)) and − log(FX̂ (ξ ))≈ ν
+
X̃ (ξ )T . More precisely,

PA(ξ/σ) = exp{−ν
+
A (ξ )T} , (11.27)

PB(ξ/σ) = exp{−ν
+
0 (ξ )−ν

+
B (ξ )T} , (11.28)

where, for the 3-dimensional case,

ν
+
A (uσ) = 2π qx qy (u2−1)exp(−u2/2)/Tz,

ν
+
B (uσ) = ν

+
A (uσ)+

[
1 +
√

2π u(qx + qy)
]

exp(−u2/2)/Tz, (11.29)

ν
+
0 (uσ) = (qx + qy +

√
2π uqx qy)exp(−u2/2) ,

as it immediately follows from Eq. (11.13) since qt = L3/`
0
3 = T/Tz. The term ν

+
0 (ξ ),

the only one which survives in PB when T → 0, gives the probability of an initial
exceedance event on the ’boundary’ D of the D×T domain. Since the most interest-
ing cases in practice would typically have domains where the time dimension is much
greater then the spatial ones, which leads to max(qx,qy)� qt , ν

+
0 (ξ ) will be safely

neglected for the numerical examples in this chapter. A similar approximation was
also implemented in Eq. (11.24).

From Eqs. (11.3) and (11.16), it is seen that the mean upcrossing rate tail, say for
ξ ≥ ξ0, behaves in a manner largely determined by a function of the form exp{−a(ξ −
b)c} (ξ ≥ ξ0), where a, b and c are suitable constants. It is therefore assumed that
the mean upcrossing rate function of X̃(t) can be represented as,

ν
+(ξ )≈ q(ξ ) exp{−a(ξ −b)c} , ξ ≥ ξ0 , (11.30)

for a suitable choice of ξ0, where the function q(ξ ) is slowly varying compared with
the exponential function exp{−a(ξ − b)c} for tail values of ξ , cf. Naess and Gaidai
(2008). Now, typically, the function q(ξ ) can be largely considered as a constant for
tail values of ξ . This suggests an extrapolation strategy obtained by replacing q(ξ )
by a suitable constant value, q say.

The adopted procedure for identifying appropriate values for the parameters
a,b,c,q, assuming a constant q, follows closely the optimization method detailed in
Chapter 5. It is based on minimizing the following mean square error function with
respect to the four arguments,

F(q,a,b,c) =
N

∑
j=1

w j
∣∣ log ν̂

+(ξ j)− logq + a(ξ j−b)c∣∣2 , (11.31)

where ν̂+(ξ j) is the empirical estimate of the upcrossing rate at the level ξ j (ξ0 ≤ ξ1 ≤
. . . ≤ ξN), w j denotes a weight factor that puts more emphasis on the more reliable
estimates of ν̂+(ξ j). The choice of weight factor is to some extent arbitrary. Here,
a weight factor will be used based on the confidence interval associated with the
empirical estimate of the upcrossing rate ν̂+(ξ j).
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11.4 Spatial-Temporal Extremes for Non-Gaussian Random
Fields

In this section, the discussion is limited to random wave fields with two spatial
dimensions. However, it should be quite obvious how to extend the methods discussed
to higher dimensional spaces. Accordingly, let X = X(x, t) denote a zero mean random
field defined on R2×R, and let

X̂ = X̂(D×T ) = max{X(x, t);x ∈D , t ∈T } , (11.32)

where T denotes a time interval, specifically, T = (0,T ) for a given time T , and D is
the area of interest.

Except for the case of homogeneous Gaussian fields, and memoryless transforma-
tions of them, the asymptotic distribution function of X̂ is unknown (Piterbarg, 1996;
Adler and Taylor, 2007). In this section, the focus is on the case of second-order
homogeneous wave fields. Since they are non-Gaussian, and cannot be obtained by
a simple transformation of a Gaussian field, the standard theory of Gaussian fields
does not apply. However, even if no simple formulas can be derived for extremes of
second-order wave fields, the simplified empirically based approach described in the
previous section, may still be applied, cf. (Naess and Batsevych, 2010).

The points {xi}M
i=1 of Eq. (11.21) for the case of a wave field are typically chosen

as the nodal points of a rectangular grid with a mesh size determined by the smallest
significant wave length of the field. A mesh size equal to one tenth of this smallest
wave length would be sufficient. Then to ensure the approximation in Eq. (11.22),
the (equidistant) discretization of the time interval (0,T ), 0 = t0 < t1 < .. . < tN ≤ T .
∆ t = t j− t j−1 can in most practical cases be chosen as one tenth of the spectral peak
period. The robustness of the results with respect to discretization can be verified by
refining the mesh size in space and time.

Although the main focus of this section is on second order ocean waves, the ap-
plicability of the methods discussed are far more wide ranging. However, for more
general cases the validity of the approximation in Eq. (11.22) may require a more
careful consideration. For a homogeneous random field which has a spectral density
of bounded support, which can often be assumed in applications, then the field is
infinitely smooth and there will be uniform bounds on the rate of change of the field.
Hence, a finite grid will always exist that secures the validity of the approximation
in Eq. (11.22) within a given accuracy. For more general cases, assuming that the
field has continuously differentiable realizations with uniformly bounded derivatives
on bounded domains, then again the validity of Eq. (11.22) within a specified level of
accuracy is guaranteed for a suitable choice of the grid. Usually in practice, physical
rather than mathematical arguments can be used to justify this approximation.

An alternative procedure is now introduced based on a detailed study of the extreme
value statistics of Gaussian random fields described by Piterbarg (1996); Adler and
Taylor (2007). Consider a rectangular domain D = Lx×Ly, where Lx denotes an
interval of length Lx, and similarly, Ly denotes an interval of length Ly. Neglecting
the probability of initial exceedance, which is acceptable for long time intervals, it is
then postulated that the distribution of X̂(D×T ) for a homogeneous random field X
can be written as,

FX̂ (ξ ) = exp
{
−
(
ν

+
0 (ξ )+ ν

+
x (ξ )Lx + ν

+
y (ξ )Ly + ν

+
xy(ξ )LxLy

)
T
}
. (11.33)
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Here ν
+
0 (ξ ) denotes the one-point upcrossing rate of the level ξ . ν+

x (ξ ) (ν+
y (ξ )) repre-

sents corrections to the one-point upcrossing rate due to extensional effects in the
x (y) direction, while ν+

xy(ξ ) corrects for area effects. In particular, ν
+
0 (ξ ) is the

mean upcrossing rate of the stochastic process X(x, t) for an arbitrary, fixed point
x. ν+

x (ξ ) is determined by introducing the stochastic process X̂Lx(t) = max
x∈Lx×{y0}

X(x, t),

for a suitably fixed value y0, and writing the mean upcrossing rate of this process as
ν

+
0 (ξ )+ν+

x (ξ )Lx. This defines the mean normalized upcrossing rate ν+
x (ξ ). Similarly,

ν+
y (ξ ) is determined by introducing the stochastic process X̂Ly(t) = max

x∈{x0}×Ly
X(x, t),

for a suitably fixed value x0, and writing the mean upcrossing rate of this process as
ν

+
0 (ξ ) + ν+

y (ξ )Ly. This, then, defines the mean normalized upcrossing rate ν+
y (ξ ).

Finally, ν+
xy(ξ ) is determined by writing the mean upcrossing rate of the process

X̂D (t) = X̂Lx×Ly(t) = max
x∈Lx×Ly

X(x, t) as ν
+
0 (ξ )+ ν+

x (ξ )Lx + ν+
y (ξ )Ly + ν+

xy(ξ )LxLy. Com-

bining this with the previous relations provides a way to obtain ν+
xy(ξ ). These functions

can be estimated in a manner similar to the procedure to be described next. The ad-
vantage of the representation provided by Eq. (11.33) is that the calibration of the
right hand side needs to be done for only one rectangular domain. After that, the for-
mula can then be used for any other rectangular domain (with the same orientation).

While the procedure for estimating the upcrossing rate functions described above,
is one way to achieve this, a somewhat different approach is used here. Instead of
describing the procedure in full generality, it will be detailed as applied to the specific
example in the section on numerical examples. The edges of the chosen rectangular
domain for the calibration, which was 300m×300m, were divided into subintervals of
length 25m. An aggregate of rectangular subdomains Dmn, m,n = 0,1, . . . ,12, where
Dmn = (0, 25 ·m)× (0, 25 · n), is then created. Note that this includes the degenerate
domains (0,0), (0, 25 ·m)× (0,0) and (0,0)× (0, 25 · n). A linear regression approach
based on the upcrossing rate of the area extremes process for each of the result-
ing rectangular domains Dmn obtained for m,n = 0,1, . . . ,12 was used to estimate
ν

+
0 (ξ j),ν

+
x (ξ j),ν

+
y (ξ j),ν

+
xy(ξ j) for each value of ξ j, j = 1, . . . ,J, which denotes a preas-

signed range and number of ξ -levels leading to meaningful estimates of the various
upcrossing rates from the data.

In the following, ν+(ξ ) will be used as a generic notation denoting either the mean
or the time averaged upcrossing rate, as the case may be. A key issue for prediction of
extreme values is the estimation of ν+(ξ ). Also for the case considered in this section,
it is assumed that the mean upcrossing rate tail, say for ξ ≥ ξ0, behaves in a manner
largely determined by a function of the form exp{−a(ξ −b)c} (ξ ≥ ξ0) where a, b and
c are suitable constants. Consequently, it is assumed that the mean upcrossing rate
function of X̃(t) can be represented as,

ν
+(ξ )≈ q(ξ ) exp{−a(ξ −b)c} , ξ ≥ ξ0 , (11.34)

for a suitable choice of ξ0, where the function q(ξ ) is slowly varying compared with
the exponential function exp{−a(ξ −b)c} for tail values of ξ , cf. (Naess and Gaidai,
2008). The function q(ξ ) can be largely considered as a constant for tail values of
ξ . This points to an extrapolation strategy based on replacing q(ξ ) by a suitable
constant value, q say.

The adopted procedure for identifying appropriate values for the parameters
a,b,c,q, assuming a constant q, is largely identical to that of the previous section.
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11.5 Empirical Estimation of the Mean Upcrossing Rate

In the previous section it was shown that the key to providing estimates of the
extreme values of the response process X(t) on the basis of simulated response time
histories, is the estimation of the mean upcrossing rate. By assuming the requisite
ergodic properties of the response process for a short-term condition, the mean up-
crossing rate is conveniently estimated from the ergodic mean value. That is, it may
be assumed that,

ν
+(ξ ) = lim

t→∞

1
t

n+(ξ ;0, t) , (11.35)

where n+(ξ ;0, t) denotes a realization of N+(ξ ;0, t), that is, n+(ξ ;0, t) denotes the
counted number of upcrossings during time t from a particular simulated time history
for which the starting point t = 0 is suitably chosen. In practice, k time histories of a
specified length, T0 say, are simulated. The appropriate ergodic mean value estimate
of ν+(ξ ) is then

ν̂
+(ξ ) =

1
k T0

k

∑
j=1

n+
j (ξ ;0,T0) , (11.36)

where n+
j (ξ ;0,T0) denotes the counted number of upcrossings of the level ξ by time

history no. j. This will be the approach to the estimation of the mean upcrossing rate
adopted in this chapter.

For a suitable number k, e.g. k≥ 20, and provided that T0 is sufficiently large, a fair
approximation of the 95 % confidence interval for the value ν+(ξ ) can be obtained as

CI0.95(ξ ) =
(

C−(ξ ) , C+(ξ )
)

, where

C±(ξ ) = ν̂
+(ξ )±1.96

ŝ(ξ )√
k
, (11.37)

and the empirical standard deviation ŝ(ξ ) is given as

ŝ(ξ )2 =
1

k−1

k

∑
j=1

(n+
j (ξ ;0,T0)

T0
− ν̂

+(ξ )
)2

. (11.38)

Note that k and T0 may not necessarily be the number and length of the actually
simulated response time series. Rather, they may be chosen to optimize the estimate
of Eq. (11.38). If initially, k̃ time series of length T̃ are simulated, then k = k̃k0 and
T̃ = k0T0. That is, each initial time series of length T̃ has been divided into k0 time
series of length T0, assuming, of course, that T̃ is large enough to allow for this in
an acceptable way. The consistency of the estimates obtained by Eq. (11.38) can be
checked for large values of ξ by the observation that Var[N+(ξ ;0, t)] = ν+(ξ )t since
N+(ξ ;0, t) is then a Poisson random variable by assumption. This leads to the equation

ŝ(ξ )2 =
1
k

Var

[
k

∑
j=1

N+
j (ξ ;0,T0)

T0

]
=

ν+(ξ )

T0
, (11.39)
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where {N+
1 (ξ ;0,T0), ...,N+

k (ξ ;0,T0)} denotes a random sample with a possible outcome
{n+

1 (ξ ;0,T0), ...,n+
k (ξ ;0,T0)}. Hence, ŝ(ξ )2/k ≈ ν+(ξ )/kT0. Since this last relation is

consistent with the adopted assumptions, it could have been used as the empirical
estimate of the sample variance in the first place. It is also insensitive to the blocking
of data discussed above since kT0 = k̃T̃ . However, the advantage of Eq. (11.38) is that
it applies whatever the value of ξ , and it does not rely on any specific assumptions
about the statistical distributions involved.

11.6 Numerical Examples for Gaussian Random Fields

Since a major motivation for developing the approach discussed in this chapter is
application to random ocean wave fields, the numerical examples presented will be
for zero mean, homogeneous Gaussian fields specified by spectral densities defined in
terms of a so called JONSWAP spectrum S(ω), which is a one-sided spectrum, and a
directional spreading function D(θ) (Sarpkaya and Isaacson, 1981):

S(ω) =
αg2

ω5 exp

{
− 5

4

(
ωp

ω

)4
+ lnγ exp

[
− 1

2σ2

(
ω

ωp
−1
)2]}

, ω > 0, (11.40)

where g = 9.81 m sec−2, ωp denotes the peak frequency in rad/sec and α, γ and σ are
parameters related to the spectral shape. σ = 0.07 when ω ≤ ωp, and σ = 0.09 when
ω > ωp. The parameter γ is chosen to be equal to 3.0. The parameter α is determined
from the following empirical relationship (Naess et al., 2007),

α = 5.06
(Hs

T 2
p

)2(
1−0.287 lnγ

)
(11.41)

Hs = significant wave height and Tp = 2π/ωp = spectral peak wave period. Hs = 14.0
m and Tp = 16 sec are chosen for all the following examples.

D(θ) =
22s−1Γ 2(s + 1)

πΓ (2s + 1)
cos2s (θ −θ0)

2
, (11.42)

where θ0 is the main wave direction, chosen so that θ0 = 0, and then −π < θ ≤ π. The
choice of spreading parameter s = 8, which is a typical value often used.

The extreme value distributions PA and PB may be considered as having been de-
rived under the Poisson assumption, i.e when independence of individual upcrossings
or exceedances is assumed, supplemented by Rice-like formulas for the exceedance
rates ν

+
A (ξ ) and ν

+
B (ξ ). Thus PA and PB are liable to work in case of a wide-band

spectrum Ψ(k,ω), as they do in the one-dimensional case of a random process. It is
therefore to be expected that for the narrow-band case, there will be some discrepancy
between the exact values and the predictions provided by PA and PB. Also the sim-
plified approach proposed in this chapter is based on the use of the mean upcrossing
rate function. However, this approach can easily be amended to cope with statistical
dependence between the peak values in the extracted time series by using the ACER
method, cf. Chapter 5.

Another aspect that comes into question in the case of a random ocean wave field,
is the effective dimension of the field. Due to the dispersion relation, which implies a
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strong coupling between frequency and wave number, the time and space dimensions
of the wave field will likewise be strongly coupled, indicating a degeneracy. In fact, the
dispersion relation implies that all the mass of the spectral density function Ψ(k,ω)
will be localized on a surface in (ω,k)-space.

Numerical results obtained for three examples will now be presented for d ≤ 2.
The simulations of the example random fields were carried out on a standard desktop
computer, and the required CPU time was of the order of one hour for each case. For
each of the examples, predictions of the 99.9% quantile of a three hour extreme value
distribution by the proposed method (marked by an asterix in the relevant figures)
and the analytical method are also provided.

11.6.1 1+1-dimensional Gaussian field

In the first example, a wide-band 1+1-dimensional Gaussian field is considered. It
has a spectral density given as,

Ψ(ω,k) = S(|ω|)S(|k|) , (11.43)

where S(·) is defined by Eq. (11.40). This is clearly an artificial example, but it serves
the purpose of securing no interaction between the time and space dimensions of the
random field. It is therefore to be expected that the theoretical formulas with d = 1
should apply. A plot of the spectral density is shown in Figure 11.1, while part of a
realization of the associated Gaussian random field is given in Figure 11.2. Plots of the
empirical and theoretical results are presented in Figures 11.3 and 11.4 for one single
point (L1 = 0), which corresponds to an ordinary Gaussian temporal process, and for
an interval (L1 = 100), respectively. It is seen that the empirical and theoretical results
are in very good agreement in the tail for both cases, and that the predictions of the
99.9% quantile in the three hour extreme value distributions are in good agreement.

Figure 11.1 The spectral density Ψ(ω,k) of the 1+1-dimensional Gaussian field.
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Figure 11.2 Part of a realization of the 1+1-dimensional Gaussian random field.

Figure 11.3 Plot of the empirical log10(ν+(ξ )) (· · ·), analytical log10(ν
+
B (ξ )) (thick solid line),

optimal fitted curve (− · −) with both empirical (dotted lines) and fitted (dashed lines) 95%
confidence band for a point L1 = 0 for Example 1. Predictions of 99.9% quantile: 5.22 (analyt-
ical); 5.06 and 95% CI = (4.93, 5.18) (proposed method).

11.6.2 1+1-dimensional Gaussian sea

The second example is a 1+1-dimensional Gaussian sea, which corresponds to the
limiting case of long-crested waves. In this case the power spectral density assumes
the form,

Ψ(ω,k) =
1
4

S(|ω|)δ

(
k− ω|ω|

g

)
, (11.44)

where the dispersion relation for deep water waves is implemented in the form of a
delta function. The resulting degeneracy would expectedly have some influence on the
extreme value distribution. In the present case, the wave field can be represented as,

X(t,x) = Re
{ N

∑
j=0

√
S(ω j)∆ω ·C j eiω jt−i

ω2
j

g x
}
, (11.45)
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Figure 11.4 Plot of the empirical log10(ν+(ξ )) (· · ·), analytical log10(ν
+
B (ξ )) (thick solid line),

optimal fitted curve (− · −) with both empirical (dotted lines) and fitted (dashed lines) 95%
confidence band for an interval L1 = 100 m for Example 1. Predictions of 99.9% quantile: 6.09
(analytical); 6.11 and 95% CI = (6.03, 6.18) (proposed method).

where C j are complex N(0,1)-distributed random variables, that is, C j = R j + iS j with
R j and S j two independent N(0,1/2)-distributed variables.

Part of a realization of the Gaussian random wave field generated by Eq. (11.45),
is plotted in Figure 11.5. It is clearly seen how the strong coupling between frequency
and wave number manifests itself.

Figure 11.5 Part of a realization of the long-crested random wave field.

Plots of the empirical and theoretical results are presented in Figures 11.6 and
11.7 for a point (L1 = 0), which again corresponds to an ordinary Gaussian temporal
process, and for an interval (L1 = 100 m). It is seen that the empirical and theoretical
results are still in complete agreement in the tail for the one-point case, while there
is a significant discrepancy between the results for L1 = 100 m. In fact, the results for
L1 = 100 m are only slightly higher than the corresponding results for the one-point
case, illustrating the effect of the degeneracy on the extreme values. It is interesting
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to observe that if the normalization constant `0
1 is calibrated to the empirical results,

very accurate predictions are obtained, and they remain accurate for other domains
without recalibration. This will be illustrated in the next example.

Figure 11.6 Plot of the empirical log10(ν+(ξ )) (· · ·), analytical log10(ν
+
B (ξ )) (thick solid line),

optimal fitted curve (− · −) with both empirical (dotted lines) and fitted (dashed lines) 95%
confidence band for a point L1 = 0 for Example 2. Predictions of 99.9% quantile: 5.22 (analyt-
ical); 5.27 and 95% CI = (5.14, 5.41) (proposed method).

Figure 11.7 Plot of the empirical log10(ν+(ξ )) (· · ·), analytical log10(ν
+
B (ξ )) (thick solid line),

optimal fitted curve (− · −) with both empirical (dotted lines) and fitted (dashed lines) 95%
confidence band for an interval L1 = 100m for Example 2. Predictions of 99.9% quantile: 5.70
(analytical); 5.47 and 95% CI = (5.36, 5.58) (proposed method).
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11.6.3 A short-crested Gaussian sea

In this example a model of a short-crested Gaussian random sea way is simulated.
It corresponds to a case where the main direction of propagation of the waves is the
x-direction. Having assumed deep water, the relation between the wave number vector
and the spreading angle will be k = (kx,ky) = (ω2/g)

(
cosθ ,sinθ

)
. The spectral density

of the random field X can then be expressed as

Ψ(k,ω) =
∫

S(ω)D(θ)δ

(
kx−

ω2

g
cosθ

)
δ

(
ky−

ω2

g
sinθ

)
dθ . (11.46)

This leads to the expressions,

Λxx =
∫

k2
x Ψ(k,ω)dω dk = Dc ω

4
c σ

2/g2 ,

Dc =
∫

D(θ) cos2(θ)dθ ,

ω
4
c =

1
σ2

∫
ω

4S(ω)dω = (2π/tc)4 ,

Λyy =
∫

k2
y Ψ(k,ω)dω dk = (1−Dc)ω

4
c σ

2/g2 ,

Λtt =
∫

ω
2
Ψ(k,ω)dω dk = ω

2
z σ

2 , (11.47)

`0
1 = 2πσ/

√
Λxx =

2πg√
Dcω2

c
=

gt2
c

2π
√

Dc
,

`0
2 = 2πσ/

√
Λxx =

2πg√
1−Dcω2

c
=

gt2
c

2π
√

1−Dc
,

`0
3 = 2πσ/

√
Λtt = 2π/ωz = Tz,

qx = L1/`
0
1, qy = L2/`

0
2 qt = L3/`

0
3 = T/Tz ,

where (L1,L2,T ) is the size of the rectangular domain of interest.
Calculating the values of the parameters using the formulas above gives the val-

ues `0
1 = 135 m and `0

2 = 280 m. Plotting the empirical against the theoretical results
obtained for the calculated parameter values for L1 = L2 = 0, L1× L2 = 100m× 0,
L1×L2 = 0×100m and L1×L2 = 100m×100m leads to Figures 11.8 - 11.11.

It is seen from these figures that there is also in this case a significant effect of di-
mensional degeneracy. Since the main wave direction is along the x-axis, the strongest
effect of dimensional degeneracy is to be expected for the cases L1×L2 = 100m× 0
and L1×L2 = 100m×100m, which is also corroborated by the plots.

As mentioned in the previous example, by tuning the parameters `0
1 and `0

2 to
the empirical results, the tuned theoretical predictions become very accurate. The
tuning can be done for each dimension separately. That is, `0

1 is calibrated to the
results for the case L1×L2 = 100m× 0, while `0

2 is calibrated to the results for the
case L1× L2 = 0× 100m. It has been verified that the calibrated values apply also
to other domain sizes. For the particular example at hand, it was found that the
tuned parameters are `0

1 = 474 m, `0
2 = 477 m. The results obtained by using the tuned

parameters have also been plotted in Figures 11.8 - 11.11 together with the predictions
of the 99.9% quantiles. It is seen that fairly good agreement is now achieved for all
cases.
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Figure 11.8 Plot of the empirical log10(ν+(ξ )) (· · ·), analytical log10(ν
+
B (ξ )) (thick solid line),

optimal fitted curve (− · −) with both empirical (dotted lines) and fitted (dashed lines) 95%
confidence band for L1 = L2 = 0 for Example 3. Predictions of 99.9% quantile: 5.22 (analytical);
5.13 and 95% CI = (5.01, 5.25) (proposed method).

Figure 11.9 Plot of the empirical log10(ν+(ξ )) (· · ·), analytical log10(ν
+
B (ξ )) (original: thick

dashed line; tuned: thick solid line), optimal fitted curve (− · −) with both empirical (dotted
lines) and fitted (dashed lines) 95% confidence band for the interval L1 × L2 = 100m× 0 for
Example 3. Predictions of 99.9% quantile: 5.47 (tuned analytical); 5.33 and 95% CI = (5.26,
5.40) (proposed method).

It has been mentioned already that the tuned version of PB seems to give accurate
predictions for practically any size. This has been verified for a range of domain sizes
providing substantial support for this assertion. It is also of interest to investigate
to what extent PA can give accurate predictions. If tuned to each particular size, it
could perhaps provide reasonable predictions, but that is impractical. Let us therefore
illustrate how it performs using the same tuned parameters as previously established,
that is, `0

1 = 474 m, `0
2 = 477 m. The results for the two square domains of size 100m×

100m and 300m×300m have been plotted in Figures 11.12 and 11.13. It is seen that
there is a significant discrepancy between the tuned PA results and the empirical
results for the smaller domain, while there is good agreement for the large one, giving
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Figure 11.10 Plot of the empirical log10(ν+(ξ )) (· · ·), analytical log10(ν
+
B (ξ )) (original: thick

dashed line; tuned: thick solid line), optimal fitted curve (− · −) with both empirical (dotted
lines) and fitted (dashed lines) 95% confidence band for the interval L1 × L2 = 0× 100m for
Example 3. Predictions of 99.9% quantile: 5.47 (tuned analytical); 5.31 and 95% CI = (5.18,
5.41) (proposed method).

Figure 11.11 Plot of the empirical log10(ν+(ξ )) (· · ·), analytical log10(ν
+
B (ξ )) (original: thick

dashed line; tuned: thick solid line), optimal fitted curve (− · −) with both empirical (dotted
lines) and fitted (dashed lines) 95% confidence band for the square domain L1×L2 = 100m×
100m for Example 3. Predictions of 99.9% quantile: 5.72 (tuned analytical); 5.74 and 95% CI
= (5.56, 5.89) (proposed method).

a good indication of the importance of the neglected terms in PA. If the domain is
too small, the leading term is not sufficient to obtain accurate estimates.

The value of the 99% fractile of a three hour extreme value distribution, which
corresponds to ν+ = 10−6, as a function of the size of a square domain has been plotted
in Figure 11.14. It is seen that the extreme values show a fairly strong dependence
on the area of the domain. For prediction of extremes over e.g. the deck area of an
offshore structure, which would typically be about 100m×100m, it is seen that the
area effect amounts to 10-15% larger extremes than predicted by a one-point estimate.
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Figure 11.12 Plot of the empirical log10(ν+(ξ )) (· · ·), analytical log10(ν
+
A (ξ )) (original: thick

dash dot line; tuned: thick solid line) results for the square domain L1×L2 = 100m×100m for
Example 3. Empirical 95% confidence band (thin dashed lines).

Figure 11.13 Plot of the empirical log10(ν+(ξ )) (· · ·), analytical log10(ν
+
A (ξ )) (original: thick

dash dot line; tuned: thick solid line) results for the square domain L1×L2 = 300m×300m for
Example 3. Empirical 95% confidence band (thin dashed lines).

11.7 Numerical Examples for Non-Gaussian Random Fields

11.7.1 A second-order wave field

Since a major motivation for developing the approach discussed in this chapter
is application to random ocean wave fields, the numerical example presented will be
for a zero mean, homogeneous second-order short-crested random wave field. It has
been shown, cf. e.g. (Toffoli et al., 2008), that such a wave field can be built up in
the following way. First, let η(t,r,θ) denote the wave elevation of a long-crested sea
propagating in the direction specified by the angle θ , where r = xcosθ +ysinθ . Then
η(t,r,θ) = η1(t,r,θ) + η2(t,r,θ). Here the linear, first-order part η1(t,r,θ) is given by
the relation,



200 11 Space-Time Extremes of Random Fields

Figure 11.14 The 99% fractile value of a three hour extreme value distribution as a function
of the size of a square domain with x = L1 = L2 for the short-crested Gaussian sea.

η1(t,r,θ) =
N

∑
k=1
|Ck|cos(χk), (11.48)

where Ck = |Ck|eiεk , k = 1, . . . ,N, is a set of independent complex random vari-
ables, whose real and imaginary parts are independent and normally distributed as
N (0,S(ωk)∆ω). χk = rk −ωkt + εk, where rk = ω2

k r/g. S(ω) is the JONSWAP spec-
trum, which was introduced in the previous section. The non-linear, second-order
part η2(t,r) has the following representation,

η2(t,r,θ) =
N

∑
k,l=1

(
mkl |CkCl |cos(χk)cos(χl)

−Mkl |CkCl |sin(χk)sin(χl)
)
, (11.49)

where mkl = (2g)−1 min(ω2
k ,ω

2
l ) and Mkl = (2g)−1 max(ω2

k ,ω
2
l ).

The short-crested wave field X(x,y, t) is then obtained by superposition of m long-
crested wave fields as follows,

X(x,y, t) =
m

∑
k=1

√
D(θk)∆θ η(t,xcosθk + ysinθk,θk) (11.50)

where D(θ) denotes the directional spreading function.
In the numerical example a specific model of a short-crested, second-order random

sea way is simulated. It corresponds to a case where the main direction of propagation
of the waves is the x-direction. Having assumed deep water, the relation between the
wave number vector and the spreading angle will be k = (kx,ky) = (ω2/g)

(
cosθ ,sinθ

)
.

The spectral density in terms of wave numbers and frequency of the first-order part
of the random field X can then be expressed as

Ψ(k,ω) =
∫

π

−π

S(ω)D(θ)

·δ
(

kx−
ω2

g
cosθ

)
δ

(
ky−

ω2

g
sinθ

)
dθ . (11.51)
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Figure 11.15 Part of a realization of the short-crested, second-order random wave field.

Part of a realization of the short-crested, second-order random wave field is shown
in Fig. 11.15. The standard deviation of the wave field was estimated to be σ = 3.53m.
From the simulated wave field, the four upcrossing rate functions of Eq. (11.33) have
been estimated by the linear regression approach described in Section 11.4 on space-
time extremes. The results are shown in Figures 11.16 - 11.19 together with the
optimally fitted curves obtained by the point process procedure.

Figure 11.16 The one-point upcrossing rate ν
+
0 (ξ ), cf. Eq. (11.33).

The prediction results obtained by the simplified empirical approach in combina-
tion with the point process procedure have been plotted in Figures 11.20 - 11.23.
Similarly, the results obtained by the parametric approach of Eq. (11.33) are also
plotted. In the figures the predicted 99.9% fractile value of the three hour extreme
value distribution obtained by the simplified approach has been indicated by an aster-
isk. This fractile value is achieved at ν+ = 10−7. It is seen that the agreement between
the two approaches proposed in this chapter is very good for the cases studied.

The value of the 99.9% fractile of a three hour extreme value distribution as a
function of the size of a square domain has been plotted in Figure 11.24. It is seen
that the extreme values show a fairly strong dependence on the area of the domain.
For prediction of extremes over e.g. the deck area of an offshore structure, which
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Figure 11.17 The upcrossing rate ν+
x (ξ ), cf. Eq. (11.33).

Figure 11.18 The upcrossing rate ν+
y (ξ ), cf. Eq. (11.33).

Figure 11.19 The upcrossing rate ν+
xy(ξ ), cf. Eq. (11.33).

would typically be about 100m×100m, it is seen that the area effect may amount to
as much as 15-20% larger extreme crest heights than predicted by one-point estimates.
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Figure 11.20 Case 1: Single point. Plot of the empirical upcrossing rate log10(ν+(ξ )) (· · ··),
of the optimal fitted curve for the simplified approach (−−−), of log10(ν

+
P (ξ )) (solid line)

for the parametric approach. Both empirical (dotted lines) and fitted (dash-dotted lines) 95%
confidence bands are shown. Predictions of 99.9% quantile: 5.80 and 95% CI = (5.75, 5.84)
(simplified method); 5.77 (calibrated parametric).

Figure 11.21 Case 2: 100× 100m2. Plot of the empirical upcrossing rate log10(ν+(ξ )) (· · ··),
of the optimal fitted curve for the simplified approach (−−−), of log10(ν

+
P (ξ )) (solid line)

for the parametric approach. Both empirical (dotted lines) and fitted (dash-dotted lines) 95%
confidence bands are shown. Predictions of 99.9% quantile: 6.98 and 95% CI = (6.73, 7.23)
(simplified method); 6.89 (calibrated parametric).

11.7.2 A Student’s t random field

To test the proposed methods on a strongly non-Gaussian random field, what
shall be referred to as a Student’s t field has been constructed. This was done in the
following manner. Let X(x, t) = η1(t,x,0), where η1(t,x,0) is as defined in the previous
example. X(x, t) is then a homogeneous Gaussian random field of zero mean with one
spatial dimension. Let X j(x, t), j = 1, . . . ,4 denote independent copies of X(x, t). The
random field Z(x, t) is now constructed as follows,

Z(x, t) =
X(x, t)√

1
4 ∑

4
k=1 X j(x, t)2 + σ

20

, (11.52)
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Figure 11.22 Case 3: 300× 300m2. Plot of the empirical upcrossing rate log10(ν+(ξ )) (· · ··),
of the optimal fitted curve for the simplified approach (−−−), of log10(ν

+
P (ξ )) (solid line)

for the parametric approach. Both empirical (dotted lines) and fitted (dash-dotted lines) 95%
confidence bands are shown. Predictions of 99.9% quantile: 7.35 and 95% CI = (7.11, 7.62)
(simplified method); 7.45 (calibrated parametric).

Figure 11.23 Case 4: 500× 500m2. Plot of the empirical upcrossing rate log10(ν+(ξ )) (· · ··),
of the optimal fitted curve for the simplified approach (−−−), of log10(ν

+
P (ξ )) (solid line)

for the parametric approach. Both empirical (dotted lines) and fitted (dash-dotted lines) 95%
confidence bands are shown. Predictions of 99.9% quantile: 7.79 and 95% CI = (7.50, 8.10)
(simplified method); 7.72 (calibrated parametric).

where σ2 denotes the variance of X(x, t). The added term σ/20 in the denominator
is introduced to avoid near singularities in the generated fields and make sure that it
satisfies the conditions discussed after Eq. (11.22). Part of a realization of the resulting
random field is shown in Figure 11.25.

In Figures 11.26 and 11.27 are shown the obtained results for ν
+
0 (ξ ) and ν+

x (ξ ),
respectively. These figures clearly display the strongly non-Gaussian characteristics of
this random field.

Figure 11.28 shows the one-point prediction result, while Figure 11.29 shows the
prediction results for an interval of size 100 m. It is seen that there is a strong exten-
sional effect on the predicted extreme values. It is also clearly demonstrated that the
predictions obtained by the two proposed methods are in excellent agreement.
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Figure 11.24 The 99.9% fractile value of a three hour extreme value distribution as a function
of the size of a square domain with x = Lx = Ly.

Figure 11.25 Part of a realization of the Student’s t random field.

Figure 11.26 The one-point upcrossing rate ν
+
0 (ξ ), cf. Eq. (11.33).

11.8 Comments

Analytical formulas for the extreme value distribution of a homogeneous Gaussian
random field has been discussed at some length, and some properties of these formulas
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Figure 11.27 The upcrossing rate ν+
x (ξ ), cf. Eq. (11.33).

Figure 11.28 Single point. Plot of the empirical upcrossing rate log10(ν+(ξ )) (· · ··), of the
optimal fitted curve for the simplified approach (−−−), of log10(ν

+
P (ξ )) (solid line) for the

parametric approach. Both empirical (dotted lines) and fitted (dash-dotted lines) 95% con-
fidence bands are shown. Predictions of 99.9% quantile: 32.33 and 95% CI = (30.25, 34.69)
(simplified method); 32.33 (calibrated parametric).

have been highlighted. It has been shown that by proper calibration, the analytical
formulas provide good results also for the case of a Gaussian random sea.

Provided there is no degeneracy in the dimensionality of the Gaussian random
field, the extreme value distribution PA is asymptotically accurate with respect to
the level ξ as well as to the size of the domain, while PB is asymptotically accurate
with respect to the level ξ for any size.

The region of applicability of the approximation PB is suggested to be ν
+
B (ξ ) ≤

10−2. It is then formulated in terms of the value of ν
+
B rather then for the level ξ , and

it appears to be valid for a domain of arbitrary size L1×L2.
The accuracy of the proposed prediction procedure obtained by optimal fitting to

the simulated data has also been amply demonstrated. This leaves the door open for
accurate prediction of extremes of non-Gaussian random fields. While the analytical
formulas are restricted to homogeneous Gaussian fields, no such restriction applies to
the proposed prediction method.

A simplified, empirically based procedure for prediction of space-time extremes
of homogeneous non-Gaussian random fields has been presented. The advantage of
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Figure 11.29 x = 100m. Plot of the empirical upcrossing rate log10(ν+(ξ )) (· · ··), of the optimal
fitted curve for the simplified approach (−−−), of log10(ν

+
P (ξ )) (solid line) for the parametric

approach. Both empirical (dotted lines) and fitted (dash-dotted lines) 95% confidence bands are
shown. Predictions of 99.9% quantile: 48.92 and 95% CI = (47.73, 49.78) (simplified method);
47.70 (calibrated parametric).

this method is its flexibility and general applicability, while it appears to be accurate
and robust. A drawback of the method is that if the spatial domain is changed, the
whole analysis has to be repeated. In an effort to ameliorate this situation, a quasi-
parametric representation of the extreme value distribution for rectangular domains
is proposed. When this approach applies, it has the advantage that it only needs to
be calibrated for one rectangular domain. After that, it applies to any rectangular
domain (with the same orientation). The case studies presented show that the two
methods proposed seem to provide very good practical tools for the prediction of
space-time extremes of random fields.
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12.1 Introduction

As part of the efforts to reduce the vulnerability to flooding, it is of paramount
importance to have available flooding charts that spell out the risk of flooding for a
given location. This risk is typically expressed as the flooding levels associated with
various return periods, e.g. the 100 year flooding level. In Norway the concerns about
flooding events are primarily connected with two types of flooding: On the one hand,
in rivers and lakes, which are mainly related to melting snow; and on the other, along
the coast, which are mainly due to a combination of offshore storm surges and tides.
In this chapter the attention is limited to coastal areas. Specifically, the extreme value
statistics of sea levels measured at three stations along the Norwegian coastline will
be investigated: Oslo, Heimsjø and Honningsv̊ag, see Figure 12.1. This provides an
excellent opportunity to compare the performance of the following four methods for
extreme value estimation: The Annual Maxima (AM) method (Chapter 2), the Peaks-
Over-Threshold (POT) method (Chapter 3), the ACER method (Chapter 5), and also
the Revised Joint Probabilities (RJP) method (Tawn and Vassie, 1989; Tawn, 1992)
(see also Batstone et al. (2009) for modifications of the RJP method). Since the RJP
method has not been discussed previously in this book, it will be explained in some
detail here. This chapter largely follows the work presented by Skjong et al. (2013).

0 200 400 600 km

scale approx 1:17,000,000

●

●

●

Oslo

Heimsjo

Honningsvag

Figure 12.1 Map with locations of the sea level measuring stations considered in this paper.
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12.2 Data Sets

The data sets used in this chapter are water level measurements and tidal pre-
dictions for three locations on the Norwegian coast. Water level measurements are
collected by automated equipment, while the tidal predictions are based on standard
numerical models.

There is one data set from the south of Norway, Oslo. Tidal variations are not
as large an influence on the water level here as it is further north. The location is
referred to as surge-dominant . The total height of sea levels are also lower here than
further north. There is one data set from the middle of Norway, Heimsjø, and one
from the far north, Honningsv̊ag. The sea levels are much more influenced by tides
here; the locations are tide-dominant . The data sets are not in the public domain, but
were provided by the Norwegian Hydrographic Service, a division of the Norwegian
Mapping Authority.

The sea level measurements are done either hourly or every 10 minutes. For the 10
minute data, hourly measurements have been extracted for use with the POT, RJP
and ACER methods. There are several reasons for this: Firstly, the RJP method uses
tidal predictions which were provided as hourly sea levels. Secondly, many locations
have hourly data for older periods and ten minute measurements for the recent years.
In order to use both data sets, values every hour are extracted from the more fre-
quent observations. Thirdly, the literature used in the theoretical studies have hourly
measurements. Methodological comparisons are therefore made simpler.

If not otherwise noted, all references to the height of the sea level are in centimeters
relative to a mean sea level. All return periods are, if not otherwise noted, given in
years.

Oslo

For the measurement station in Oslo, there are available hourly measured sea levels
from December 10, 1914, to December 31, 1991, and 10 minute interval data from Oc-
tober 1, 1991, to September 16, 2010. These are uncorrected for post-glacial rebound,
which is an important factor in the Oslo area. To correct for this, 4 mm/year have been
added to data points for years after 1988 and the same amount has been subtracted
per year before 1988, according to the formula currentValue+0.4 ·(currentYear−1988).
This was found in a previous report (Hansen and Roald, 2000), and is based on the
fact that 1988 was the base year to calculate mean sea level (MSL) in Oslo.

For the same periods, tidal sea level predictions are available. These are based on
a numerical model, the details of which are not publicly available.

Heimsjø

Heimsjø is located on the coast of Sør-Trøndelag, and the measurement station is
found at latitude 63◦26′ N and longitude 09◦07′ E. Data are available as hourly mea-
surements from November 1, 1928, to December 31, 1990, and as 10-minute interval
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measurements from November 1, 1990, to September 16, 2010. Tide predictions are
also available for the same periods.

Honningsv̊ag

Honningsv̊ag is found at the very north of Norway, in Finnmark. The location of
the measurement station is latitude 70◦59′ N and longitude 25◦59′ E. Measured values
exist in hourly form from from June 5, 1970, to December 31, 1988, and as 10 minute
data from June 1, 1988, to September 16, 2010. Corresponding tidal predictions are
also available.

12.3 Annual Maxima Method

As we know from Chapter 2, the annual maxima (AM) method is based on the
assumption that MN = max{X1, ...,XN}, where X1, ...,XN are independent observations
within a block size of one year, is distributed according to the generalized extreme
value (GEV) distribution.

For the published work done on Norwegian sea levels, the shape parameter of
the GEV distribution is assumed to be fixed at zero. This means that the Gumbel
distribution is adopted, which can be ascertained by studying the underlying statistics
and their domain of attraction. However, results for the case of a non-zero shape
parameter will also be presented below. This is done because it has been argued that
the GEV distribution to be used should be decided on the basis of the extreme value
data (Coles, 2001). It will be shown that this can be a misguided advice.

12.3.1 Application to water level measurements

Oslo

Oslo has data available from all years from 1914 to 2010 - except 1939, from which
there are no available measurements. In addition, some of the years with available data
have important data missing. For instance, there are only 312 data points in 1914,
all from the month of December. This means that there is a very real possibility that
the real annual maximum is excluded. In 1915, there is much missing data from the
important autumn and winter months, where annual maxima are often found. This
year is therefore also excluded from consideration. In 1972, there are no measurements
in February, July, August, September and October, which means that so much data
are missing that the probability that the year’s maximum is left out is large. 1974 lacks
data for July, August and September, and 1991 only has data for October, November
and December. Both these are excluded. Finally, measurements for 2010 only go to
September 16, so its maximum is also dropped from consideration.
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For the Gumbel model, the parameter estimates are µ̂ = 167.31 (2.074) and σ̂ =
18.630 (1.497). For the GEV model, µ̂ = 168.21 (2.233), σ̂ = 19.030 (1.579) and γ̂ =−
0.089 (0.070). Standard errors are shown in parentheses.

With the data as specified above, estimates of return period levels together with
maximum likelihood 95% confidence intervals are published in Table 12.1 for the
Gumbel and GEV models. The obtained results agree fairly well with published values
collected from a report by the Norwegian Map Authority (Hansen and Roald, 2000),
which were also based on the AM method.

Table 12.1 Estimates of return levels and 95% confidence intervals for Oslo.

Gumbel model GEV model
R = 1/p ẑp CI ẑp CI

5 195.2 (188.4, 202.1) 194.9 (188.7, 201.1)
10 209.2 (200.4, 218.0 207.0 (199.1, 214.9)
20 222.6 (211.9, 233.4) 217.9 (207.4, 228.3)
100 253.0 (237.7, 268.2) 240.1 (220.5, 259.7)
200 265.9 (248.7, 283.2) 248.8 (223.9, 273.8)

The return level plot in Figure 12.2 shows that all points stay within the 95%
confidence intervals for both models. The two curves follow slightly different paths;
the Gumbel model in Figure 12.2(a) fits fairly well to all points, while the GEV model
in Figure 12.2(b) fits generally better to most points but poorly to the rightmost
point. Since the estimated shape parameter is negative, the return levels of the GEV
model are bounded at µ̂ − σ̂/γ̂ = 381.7 (cm), while the Gumbel model return levels
are unbounded.
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1 2 5 10 20 50 100 200

14
0

16
0

18
0

20
0

22
0

24
0

26
0

Return period

R
et

ur
n 

le
ve

l

●

●

●●●
●
●●●
●

●●●
●
●
●●●●●

●●
●●●
●●●
●●●●

●●●
●●●●

●●
●●●●●

●●●
●●●●●

●
●●

●●●
●●

●●
●●

●●
●
●●●●●●●

●●●●●
●

●
●

●

● ●

● ●

●

(b) GEV model

Figure 12.2 Return level plots for the AM methods, Oslo.



214 12 A Case Study - Extreme Water Levels

Heimsjø

Heimsjø has data for all years from 1928 to 2010. As with Oslo, some years are
missing so much data that it is likely that the true annual maximum has been left out.
One example is 1934, where data for all the first seven months are missing. This year
is left out of the analysis. 1938 has missing data for January, February and December;
important months where the real annual maximum is likely to be. 1943 lacks data for
months January to April. 1959 lacks any data from September to December, and has
little from February and August. Finally, 2010 lacks data for the last months of the
year. All these years are therefore left out.

For the Gumbel model, the parameter estimates are µ̂ = 311.84 (1.399) and σ̂ =
11.685 (0.978). For the GEV model, µ̂ = 312.69 (1.480), σ̂ = 11.889 (1.022) and γ̂ =−
0.137 (0.066). Estimates of return levels are presented in Table 12.2.

The return level plots in Figure 12.3 show the curves of the Gumbel and GEV
models, together with confidence intervals and observed data points. The Gumbel
model in Figure 12.3(a) seems to slightly overestimate the points at high levels, while
the GEV model in Figure 12.3(b) perhaps underestimates them. All points are within
confidence intervals, however. The GEV model return levels are bounded at 399.7 cm.

Table 12.2 Estimates of return levels and 95% confidence intervals for Heimsjø.

Gumbel model GEV model
R = 1/p ẑp CI ẑp CI

5 329.4 (324.8, 333.9) 328.8 (325.0, 332.7)
10 338.1 (332.3, 343.9) 335.7 (331.0, 340.4)
20 346.5 (339.5, 353.6) 341.7 (335.8, 347.6)
100 365.5 (355.5, 375.6) 353.3 (343.2, 363.3)
200 373.7 (362.4, 385.0) 357.5 (345.2, 369.9)
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Figure 12.3 Return level plots for the annual maxima methods, Heimsjø.
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Honningsv̊ag

Honningsv̊ag has data for all years from 1970 to 2010, except 1985. Most of the
years have acceptable amounts of data, but four years are missing important data:
1970 has no data from January to May, 1988 nothing in February and very little in
March, 1989 nothing in August and September and 2010 nothing from October to
December. All these are excluded from the model fitting.

For the Gumbel model, parameter estimates are µ̂ = 331.08(2.087) and σ̂ =
11.812(1.458). For the GEV model, µ̂ = 332.85(2.285), σ̂ = 12.344(1.626) and γ̂ =
−0.277(0.115). Estimates of return levels are given in Table 12.3.

Table 12.3 Estimates of return levels and 95% confidence intervals for Honningsv̊ag.

Gumbel model GEV model
R = 1/p ẑp CI ẑp CI

5 348.8 (342.0, 355.6) 348.0 (343.2, 352.8)
10 357.7 (349.0, 366.3) 353.5 (348.3, 358.7)
20 366.2 (355.6, 376.7) 357.8 (351.7, 363.9)
100 385.4 (370.4, 400.4) 365.0 (355.3, 374.7)
200 393.6 (376.7, 410.6) 367.2 (355.6, 378.7)

The probability and quantile plots show that there are fewer points available for
the model estimation than for Oslo and Heimsjø. The fit is still quite good overall,
and similar to the other two locations - even though only a few points are on the line,
the points seem to follow a sort of oscillating S shape around the optimal straight
line.

The return level plots in Figure 12.4 show the trend of the Gumbel and GEV
models. Again it can be seen that the fit is not impressive, although the data points
stay within the confidence bounds. As for Oslo and Heimsjø, the estimated shape
parameter is negative, γ̂ = −0.2771, meaning that the Gumbel model gives higher
estimates for the return levels for high return periods. Thus, it would appear that the
higher return levels might be overestimated by the Gumbel model in Figure 12.4(a)
and somewhat underestimated by the GEV in Figure 12.4(b). The GEV return levels
are bounded at 377.4 cm, quite far below even the 200 year return level of the Gumbel
model. This is clearly not a sensible situation, and points to the hazard of using
essentially curve fitting to decide on which GEV to use for estimating long return
period sea levels.

12.4 The Peaks-Over-Threshold Method

For many physical processes, the assumption of temporally independent observa-
tions is unrealistic. Stationarity is usually a more plausible assumption, and it says
that even though observations or data may be dependent, their stochastic properties
are temporally homogeneous. A GEV distribution remains an appropriate model for
block maxima of stationary series, and a GP distribution can also be shown to remain
appropriate for threshold excesses, see Beirlant et al. (2004).
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Figure 12.4 Return level plots for the annual maxima methods, Honningsv̊ag.

The degree of dependence between data points is in some sense quantified in the
extremal index θ , which satisfies 0 < θ ≤ 1, cf. Section 2.9. This parameter can be
interpreted as a measure of the tendency of the process to cluster at extreme levels,
and one can informally say that the inverse of the extremal index is the limiting mean
cluster size. This means that if θ = 0.5, then extreme values would approximately
arrive in groups of two.

For the block maxima case, dependence is mostly absorbed in the parameters,
which have to be estimated anyway. However, some change is necessary for threshold
excess modeling. A common method used to overcome this issue is declustering, where
the generalized Pareto distribution is instead fitted to the maxima of clusters. These
clusters are identified by some empirical rule.

The easiest method of cluster identification is taking a threshold and saying that
subsequent observations must be above this threshold to be part of the current cluster.
A modification can be made by allowing one or more subsequent observations to
be below the threshold before the current cluster is left. Selecting the amount of
subsequent observations allowed before a cluster is left, is done by selecting a number
for r, the allowed distance between observations above the threshold. For instance,
this means that if observation number 50 and observation number 55 are both above
the threshold u, they would be in the same cluster for r≥ 5 since the distance between
the observations is 5. For r < 5, they would be considered to be from different clusters.

To be able to use a POT model in practice, the threshold u must be selected,
as discussed in Chapter 3. In the mean residual life plots for the three data sets
that are analyzed in this chapter, the choice of u0 has been clearly marked. Another
method is available, based on fitting the model to a wide range of thresholds. In
Eq. (3.10) it was used that there is a linear relationship between scale parameters σu
above a valid threshold u0. Furthermore, shape parameters γu should be constant. By
reparametrizing the scale parameter to σ∗u = σu− γuu, one obtains a parameter which
should also be constant above u0. The plot of (u,γu) and (u,σ∗u ) is hereby called the
stability plot. Stability plots are also presented for the three available data sets.
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Having chosen the reference level u0, one would typically calculate the return period
levels for several values of u≥ u0. This is obtained by using the following formulas:

xN = u + σ [(Nnyζuθ)γ −1]/γ, (12.1)

for the case of γ 6= 0, and
xN = u + σ ln(Nnyζuθ), (12.2)

for γ = 0. Here N = number of years, ny = the average number of observations per
year, ζu = Prob(X > u), θ = the extremal index.

The parameters of the Generalized Pareto distributions in this section are estimated
by maximum likelihood. This was done with the maximum likelihood procedure in
the fpot function in the evd library in R. Standard errors for the GP parameters
come from this R function as well, and are extracted from a numerical approximation
of the observed information. Confidence intervals for the parameters are then calcu-
lated by using the approximate normality of the maximum likelihood estimator. The
uncertainty in ζu is ignored since it is usually small compared to the errors of the
other parameters (Coles, 2001).

12.4.1 Application to water level measurements

Oslo

Figure 12.5(a) shows the mean residual life plot for Oslo. To select an appropriate
threshold, one would search for approximate linearity within the confidence bounds.
The vertical line shows the choice made at 134 cm. The figure does not paint a
completely clear picture, as is the case with most real data sets, but from around the
indicated spot and up to about 200 cm there is a certain level of linearity.

Figure 12.5(b) shows the effect of threshold selection on the model parameters.
Ideally, the shape and modified scale parameters should be invariant to threshold
change as long as the data are above the minimum threshold. One can see that this
is basically the case from the beginning of the plot and up to about 170-175 cm. A
threshold of 134 cm is within this range, and cannot be rejected based on Figure 12.5.

Having selected a threshold, one would go on to select the allowed distance between
points in a cluster, r. Figure 12.6(a) shows the behaviour of the extremal index as the
allowed distance between observations in a cluster is increased. The extremal index
declines quite sharply until about r = 12, then almost flattens out before declining
faster again. A similar tapering in the steepness of the curve is seen at about r = 24,
and possibly at about r = 36.

With hourly observations, these changes in steepness coincide with the 12 hour
cycle of the lunar tidal component. It is therefore safe to assume that extreme storms
above u = 134 may last from one high tide to another. This suggests selecting a value
of r larger than 12 to encapsulate the full length of such storms. But it does not seem
plausible to have r much larger, since if the tide was the dampening factor, then the
subsequent rising tide should bring the storm with it up to extreme levels again.

More insight into the choice of r is granted by looking at Figure 12.6(b), which
shows the development of the 200 year return level as r is increased from 1 to 40. The
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Figure 12.5 Threshold selection plots for the POT model for Oslo.

return level stays approximately constant from r = 1 to r = 5, but increases relatively
sharply from there and up to r = 8. It then decreases just as sharply, before staying
relatively constant from r = 12 up to about r = 22. It then drops sharply, before staying
constant up to r = 36. For r ∈ (1,5) and r ∈ (12,22), the return level is approximately
the same. Having argued that r should not be much larger than 12, a value of r = 1
is chosen since this gives approximately the same result while using more data. Note
that r = 1 means that a new cluster starts as soon as one value is below the threshold.
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Figure 12.6 Change in extremal index and 200 year return level as calculated by the POT
model for Oslo.
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With the threshold at 134 cm, the model parameters were estimated to be γ̂ =
0.019(0.025) and σ̂ = 13.993(0.494) by the fpot function in the evd package in R.
Probability and quantile plots indicate that the model with estimated parameters
fits well to the maxima of the identified clusters. From the 778199 points in the data
series, 7364 points are above the chosen threshold, giving an estimate of the exceedance
probability ζ of ζ̂ = 0.0095. From the 7364 points above the threshold, 1675 clusters
were identified, giving an extremal index of θ̂ = 0.2275. All this gives the return level
estimates shown in Table 12.4.

The return level plot is shown in Figure 12.7. All data points are contained within
the confidence bounds of the fitted model, and most of them stay on or very close to
the line. Points above 185 cm behave somewhat more erratically than those below,
but not to a dramatic extent. This level corresponds approximately to the level at
which the stability of parameters, as displayed in Figure 12.5(b), begins to wear off.
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Figure 12.7 Return levels (cm) for increasing return periods (years) for Oslo.

Heimsjø

Figure 12.8(a) shows the mean residual life plot for the Heimsjø data. Approximate
linearity is found around the vertical line, which is placed at u = 287 cm. The stability
plot in Figure 12.8(b) shows the effect on the model parameters of threshold change
around the 287 cm mark. Above approximately 280 cm and up to around 325-330 cm,
the parameters are approximately constant.

An appropriate value of r is sought for the identification of independent clusters and
the estimation of the extremal index. Figure 12.9(a) shows how the extremal index
estimate behaves. It is close to piecewise constant, with significant drops at around
r = 10 to 12 and at r = 24. Figure 12.9(b) shows that there is quite little difference
between the estimate for r = 1 and larger r. The difference is somewhat larger than
was found for Oslo, however, and r is chosen to include storms crossing from one tide
to another. This leads to the choice r = 13.



220 12 A Case Study - Extreme Water Levels

200 250 300 350

0
5

10
15

20
25

30

Threshold u (cm)

M
ea

n 
E

xc
es

s

(a) Mean of exceedances of increasing thresh-
olds (cm).

260 280 300 320

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

Threshold u (cm)

S
ha

pe

260 280 300 320

−
20

0
−

10
0

0
10

0

Threshold u (cm)

M
od

ifi
ed

 s
ca

le

(b) Stability of parameters for increasing
threshold (cm).

Figure 12.8 Threshold selection plots for the POT model for Heimsjø.
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Figure 12.9 Change in extremal index and 200 year return level as calculated by the POT
model for Heimsjø.

With the 287 cm threshold, model parameters are estimated as σ̂ = 13.709(0.653)
and γ̂ =−0.116(0.030). Probability and quantile plots show a fair agreement with the
fitted model. However, for the highest sea levels, there is an issue with the model
fit, which will be discussed below. From the 686867 points in the Heimsjø data set,
2363 points are above 287 cm, giving an estimate of the exceedance probability ζ of

ζ̂ = 0.0034. From the points above the threshold, 733 clusters were identified, giving
an extremal index of θ̂ = 0.310.
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Return level estimates are presented in Table 12.4. They go from slightly over-
shooting to slightly undershooting the published return levels, but all are certainly
within confidence bounds.

As mentioned above, for the highest sea levels, there are some issues with the model
fit. This is better seen by looking at the return level plot in Figure 12.10, which shows
irregularities after about 330 cm - corresponding to the level after which parameters
in Figure 12.8(b) are no longer near-constant. The five highest points are above the
model line, and it seems possible that return levels for long return periods can be
underestimated.
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Figure 12.10 Return levels (cm) for increasing return periods (years) for Heimsjø.

Honningsv̊ag

The mean residual plot in Figure 12.11(a) shows tendencies of linearity within con-
fidence bounds slightly before the 280 cm mark. A threshold of 278 cm is selected,
indicated by the vertical black line. The stability plot in Figure 12.11(b) is far from
constant up to around 275-280 cm, but from there it is reasonable to call the param-
eters near-constant up to perhaps 310 cm. The threshold u = 278 is therefore barely
within the acceptable area as far as the stability plot is concerned.

To find an appropriate level of r, Figure 12.12(a) is inspected. Honningsv̊ag is tide-
dominant like Heimsjø, and the same pattern is shown here as was observed there;
the extremal index plot is approximately piecewise constant. Figure 12.12(b) shows a
similar pattern as that for Heimsjø as well, but the differences in return levels are much
larger. The values for r ≤ 10 and r > 24 are about the same, however. The difference
is large enough to not be within the confidence intervals, and r = 13 is chosen since it
was argued earlier for a r ≥ 12.

A threshold of 278 cm gives estimated model parameters of σ̂ = 14.692(0.530) and
γ̂ =−0.025(0.026). Probability and quantile plots show a fair agreement with the fitted
model. However, as for Heimsjø, for the highest sea levels, there is an issue with the
model fit. There are 330883 sea level measurements in the Honningsv̊ag data, 9264
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Figure 12.11 Threshold selection plots for the POT model for Honningsv̊ag.
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Figure 12.12 Change in extremal index and 200 year return level as calculated by the POT
model, for Honningsv̊ag.

of which are above 278 cm. This makes for an estimate of the exceedance probability
ζ of ζ̂ = 0.0280. From the points above the threshold, 1590 clusters were identified,
giving an extremal index of θ̂ = 0.172.

Estimated return levels are presented in Table 12.4.
As indicated above, the quantile plot shows that a few of the most extreme data

points are off the fitted model curve, with Figure 12.13 giving a clearer impression.
It looks likely that higher return levels may be overestimated, although all points are
within confidence intervals.
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Figure 12.13 Return levels (cm) for increasing return periods (years) for Honningsv̊ag.

Table 12.4 Return level estimates and 95% confidence intervals for the POT model.

Oslo Heimsjø Honningsv̊ag
R = 1/p ẑp CI ẑp CI ẑp CI

5 200.5 (189.3, 213.9) 329.5 (321.7, 338.8) 351.6 (338.1, 368.3)
10 211.1 (197.0, 228.5) 335.3 (325.9, 347.0) 360.5 (344.2, 380.9)
20 221.9 (204.7, 243.8) 340.7 (329.5, 354.8) 369.2 (350.1, 393.8))
100 247.6 (221.7, 282.2) 351.7 (336.5, 372.0) 388.8 (362.5, 424.6)
200 258.9 (228.8, 300.0) 355.8 (338.9, 378.9) 397.0 (367.4, 438.3)

12.5 Revised Joint Probabilities Method

The revised joint probabilities (RJP) method is an attempt by Tawn (1992) to
improve the joint probabilities method employed by Pugh and Vassie (1980). Whereas
they assume that hourly surge levels are independent, Tawn argues that this is clearly
a false assumption. Instead, he uses that for a stationary sequence Y1, ...,Yn, . . .,

Prob(max{Y1, ...,Yn}< y)≈ [Prob(Y1 < y)]nθ (12.3)

for large y, and 0 < θ ≤ 1. θ is the extremal index, and θ−1 is defined as the limit
of θ−1(y) as y tends towards the upper end point of the distribution of Y . θ−1(y) is
defined as the mean of the distribution of cluster sizes. The extremal index can be
equal to 1 for both dependent and independent sequences, when the sequence behaves
like an independent sequence at high levels. Unfortunately, as will be demonstrated
in the section on the ACER method, for the data analysed in this chapter, θ(y) does
not seem to be a robust parameter relative to its dependence on y. In fact, it will be
seen that θ(y) may display significant dependence on y while there is clear evidence
that θ(y)→ 1 when y increases. However, in the present chapter, the extremal index
is estimated as would be typically done in the RJP method.

The RJP method relies on a componentwise analysis of the sea level Z. It is divided
into three components, Zt = Mt + Xt +Yt , where Mt is the mean sea level, Xt the tidal
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level and Yt the surge level. For the purpose of this discussion, Mt = 0 for all t. The
tidal level Xt is estimated by a numerical model.

If N is the number of hours in a year, the surge levels Y1, ...YN are taken to
be a realization of a stationary sequence. It is then assumed that (Coles, 2001)
Prob(max{Y1, ...,YN} ≤ y) = Fs(y)Nθs = G(y; µs,σs,γs) for large values of y, say y > u. Fs
is the marginal distribution for surges, while θs (0≤ θs ≤ 1) is the extremal index for
surges. It follows that,

Fs(y) = exp

{
−(Nθs)

−1
[

1 + γs
y−µs

σs

]−1/γs
}

for y > u, (12.4)

on {y : 1 + γs(y−µs)/σs > 0}, with σs > 0 and arbitrary γs and µs.
If T is the tidal cycle length in hours, it follows that (Tawn, 1992),

Prob(max{Z1, ...,ZT} ≤ z) = Prob(
T⋂

t=1

Yt ≤ z−Xt}=

{
T

∏
t=1

Fs(z−Xt)

}θ

, (12.5)

where θ is an hourly sea level extremal index (θs ≤ θ ≤ 1). Combining Eqs. (12.4) and
(12.5) gives the RJP distribution for annual maximum sea levels,

G(z) = exp

{
−θ(T θs)

−1
T

∑
t=1

[
1 + γs

z−µs−Xt

σs

]−1/γs
}
, (12.6)

where z > u + max{X1, ...,XT}.
Eq. (12.6) shows the case where the surge distribution Fs(·), and therefore its pa-

rameters µs,σs and γs, are independent of the concomitant tidal level. Unfortunately,
the assumption that tide and surge are independent processes is poor in shallow water
areas, where turbulent frictional processes on the sea bed cause the tide and surge
components to interact. This causes effects such as surge values at high tides being
damped and surges on the rising tide being amplified (Dixon and Tawn, 1994). These
effects vary from site to site however, so it is attempted to model the interaction on
the residuals from the observed surges.

The tidal range from lowest observed tide (LAT) to highest observed tide (HAT)
is split into nb equi-probable bands, i.e. each band has an equal amount of observed
measurements. For each of the tidal observations, there is a concurrent surge observa-
tion. This means that if there are nb tidal bands and nobs observations in total, there
are nobs/nb observations of both the tide and surge in each band.

If the tide and surge were independent, an equal amount of points should also be
expected to exceed a given level u. But if there is interaction, then the least number
of points should be in the top band where surges are damped. Similarly, the largest
number should be in the middle bands where surges are magnified. The amount of
discrepancy between bands will therefore be a quantifiable measure of the tide-surge
interaction.

The level u is now chosen to be a high empirical quantile of the surge distribution,
zq for q = 0.9975. For the independent case, there should then be (1−q) ·nobs/nb = v
observations in each band. nb = 5 is chosen as in Dixon and Tawn (1994), meaning nobs ·
0.0025/5 = v observations per tidal band. In actuality, since independence is a flawed
assumption, Ni surges per band are observed, for i = 1, ...,nb. To put the interaction
into a quantifiable setting, a standard χ2 test statistic is used, χ2 = ∑

5
i=1(Ni− v)2/v2.
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If Ni ≈ v, then χ2 will be small. Tide and surge are deemed to interact with 95 %
confidence if the test statistic is above the associated 4 degrees of freedom table value
of χ2

4,0.95 = 9.488.
To account for the tide-surge interaction, the method used in Dixon and Tawn

(1994) is adopted, where the surge series is location-scale normalized by S∗t = (Yt −
a(Xt))/b(Xt), where a(Xt) and b(Xt) are some tide-dependent functions. {S∗t } is then
supposed to be stationary, and established methods can be used to estimate the
associated model parameters µs∗ , σs∗ and γs∗ . The parameter estimates for the original
surge series are then given by µs(X) = µs∗b(X)+a(X), σs(X) = σs∗b(X), and γs(X) = γs∗ .

Equation (12.6) is then modified to

G(z) = exp

{
−θ(T θs)

−1
T

∑
t=1

[
1 + γs∗

z−µs∗b(Xt)−a(Xt)−Xt

(σs∗b(Xt))

]−1/γs∗
}
, (12.7)

for z > u+max{X1, ...,XT}. The estimation of a(X) and b(X) is discussed in Dixon and
Tawn (1994).

12.5.1 Estimating return levels with the RJP method

In the 1992 and 1994 reports (Tawn, 1992; Dixon and Tawn, 1994), the r-largest
method is applied to estimate the parameters of the surge distribution. This method
is a modification of the GEV annual maxima method, and uses the r largest values
per year to estimate model parameters.

The threshold applied in the estimation of θs is now adopted, and the POT method
is then used to estimate model parameters. This is a method which has the advantage
of using much more data. The fact that for a POT model γPOT = γGEV = γ for the
corresponding GEV model is used, with σPOT = σGEV + γ · (u−µGEV ) (Coles, 2001).

In practice, the shape and scale are estimated with a maximum likelihood procedure
by the function fpot in the R package evd, while the location parameter is calculated
by the fgev function. This is also the case for the confidence intervals of model
parameters. The model is fitted to the maxima of clusters, where the clusters are
identified by the same rule that governs the estimation of θ .

The extremal indices θ and θs require two choices each; a threshold above which
clusters are counted and an empirical clustering rule which says how many non-
exceedances are allowed before the current cluster is terminated. For the first choice,
the quantile that was found in the POT analysis is used. There a thorough analysis
was done on where the threshold should be placed, and it makes sense using this same
threshold to estimate θ . Applying the procedure of using the same quantiles for both
extremal indices, as was done in (Dixon and Tawn, 1994), corresponding thresholds
are obtained for the surge series and the estimation of θs as well.

For the second choice, it is necessary to decide what constitutes an independent
storm. In Dixon and Tawn (1994), they found that r = 30 was a good choice, and
that the ratio of extremal indices was not too dependent on this choice in any case.
In the present analysis the results are more sensitive to this choice, since the POT
method with clustering is used to estimate model parameters. Still this r value of 30
is adopted.
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A practical challenge with the RJP method is that Eq. (12.7) is impossible to solve
analytically for z. One may start out by defining G(zp) = 1− p and get the relation,

−T θsθ
−1 ln(1− p) =

T

∑
t=1

[
1 + γs∗

zp−µs∗b(Xt)−a(Xt)−Xt

(σs∗b(Xt))

]−1/γs∗
, (12.8)

but one cannot go further by algebraic manipulation. A numerical procedure is there-
fore developed where the right hand side of the equation is calculated for a range of
relevant z values and then matched to the left side of the equation.

The tidal cycle length is 18.61 years, meaning that T = 18.61 · 8766 = 163135.3 ≈
163135. Any span of consecutive 163135 observations should therefore approximately
contain a full tidal cycle, and in the numerical procedure the last 163135 observations
in the tidal series are taken. The numerical analysis code is written in R.

12.5.2 Application to water level measurements

Oslo

A scrutiny of the sea level data for Oslo reveals that a large percentage of the
observed sea level rises stem from surges. Locations with such characteristics are
called surge-dominant, as opposed to tide-dominant where most of an observed sea
level stems from the current tidal level. Areas where surge dominates usually do not
have as much tide-surge interaction as tide-dominant areas, but the χ2 test is still
used to quantify the amount.

By using 5 tidal bands and cutting the data at the 99.75% quantile, 389 surges
per band are expected. Instead 346, 380, 398, 431 and 386 data points per band are
found, in order from the lowest tide level to the highest. This is not a very bad result,
but there is still evidence of significant tide-surge interaction. The test statistic has a
result of χ2 = 9.778, compared to the table value of χ2

4,0.95 = 9.488.

Since the χ2 test shows a significant level of interaction, it is modelled by using
5 tidal bands. Figure 12.14(a) shows the tide against surge data to the left, and
tide against transformed surge data to the right, both showing only points above the
99.75% quantile. There seems to be very little difference between the left and the right
plots except for the scales on the x axes.

Figure 12.14(b) shows how the ratio between the χ2 test statistic and the corre-
sponding χ2

nb−1,0.95 value develops after 2-30 bands have been used to transform the

surge data. χ2/χ2
nb−1,0.95 = 1 is indicated by the horizontal line, and ratios above this

correspond to χ2 tests showing significant interaction. It is seen that for nb = 2 and
nb = 15 the interaction is insignificant, but for nb = 2 the interaction is insignificant for
the untransformed data as well, with a test statistic of 1.85 versus the corresponding
table value of 3.84. Transforming the data with nb = 15 seems needlessly complex for a
model where there was hardly significant interaction in the original test. Furthermore,
there is little actual difference in return levels. The same is true if they are compared
to the return levels achieved using no tide-surge correction. For parsimony the model
without correction is selected, based on Eq. (12.6) instead of Eq. (12.7). Estimated
parameters are µ̂s = 95.655(2.313), σ̂s = 17.576(1.053), γ̂s =−0.049(0.039), θ̂ = 0.079
and θ̂s = 0.068.
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Resulting return levels and confidence intervals for Oslo can be found in Table 12.5.

●●

●
●

●●●
●●●●●

●●●●
●●

● ●● ●
● ● ●● ● ● ●●●

●●●● ●● ●●● ●●●●●●
● ● ●●●● ● ● ●●●● ●

●●●●● ●● ● ●●●●●● ● ●
● ●●●● ●●●● ● ●●●● ●● ●● ●

● ●●● ●●●●● ● ●● ●● ●●●●●●● ●●● ●
●●● ● ●● ● ●●●●●● ● ●● ● ●●● ●●● ●● ●● ●●

● ●● ●● ●● ● ●● ●●●● ●● ● ●●● ● ●● ●●●
●●●●●●●●● ●●●● ●● ●●●●●●● ●● ●●●●

● ●● ●●●●●● ●● ●● ●●● ●●●● ●● ● ●●● ●●●●●●●
● ●●●● ●● ●●● ● ●● ●●● ●● ●●● ●● ●● ●●

● ●● ●●● ●●●●●●●● ●●●●●● ●● ● ●●● ●●● ●●●●● ● ●● ●●●● ●●●● ● ● ●
●●● ●● ●●● ●● ●●● ●●● ●● ●● ●●● ●● ●●●● ●● ●●●●

80 100 120 140 160

40
60

80
10

0

Surge data

Surge level (cm)

T
id

e 
le

ve
l (

cm
)

●●
●● ●● ●●●● ●● ●● ●●●●● ● ●●●● ●●●●● ●● ●● ●● ●● ●●●●●●● ●●●● ●●●

●● ●● ●●●● ●●● ●●●● ●●●● ●●●● ●● ●●●●● ● ●●●●●●
●● ● ●● ●●●● ●●●●●● ●●● ●● ●● ●● ●● ● ●● ● ● ● ●●●●● ●●● ●●●● ●● ●● ●● ● ●● ●
● ● ●●● ● ●●● ● ●●●●● ●●●● ●● ●●● ●● ● ●● ● ●● ●●●● ● ●● ●

● ●● ●●●● ●●●● ●● ●●● ●●●●●● ●● ● ●●●●● ●●●●●● ●●●●● ●
● ●● ● ●● ●● ●●●●●●●●● ●●●● ●●●●● ● ● ●● ●●●● ●●●●●● ●● ●●●● ●●●● ● ●●●● ●

●●● ●● ●● ●● ●●●● ●●● ●●●● ●●●● ●●●● ●●●●● ● ●● ●●●● ●●●●● ● ●●● ●● ● ●●●●●●●
●● ●● ●●●●● ●●●●● ●● ●● ●● ●●● ● ●●● ●●

●● ● ● ●● ● ●●●● ●● ●●●●● ●● ● ●●● ●●●● ●●●● ●●● ●●●● ●
●●● ●● ●●●● ●● ●●●●●● ●● ● ● ●●● ●●●● ●●●● ● ●●● ●● ●● ● ●● ●●● ●● ● ●●● ●● ●● ●●●

●● ●● ● ●●● ●●●●●●●●●●● ●● ● ●● ● ●● ●●● ●●● ●● ● ●● ●● ●●● ●● ●● ●●●●● ●● ●● ●● ●● ●●●● ● ●●●
●●● ●●●●● ●●●● ●● ●●● ● ●● ●●● ●● ●● ● ●●● ●● ●● ● ●● ●● ●●● ●● ●●● ●●● ●● ● ●●● ● ●●●●

● ●● ● ●● ●●●●●●●●●●●● ●● ● ●● ●●●● ●●● ●●● ●●
● ●● ●●●●●●●●●● ●● ●●● ●●●●● ●● ● ●● ● ● ●●● ●● ● ●● ● ● ●

●●● ●● ● ●●● ●●●● ●●● ●●●●● ●● ●● ●●●● ●●● ●●●●● ●●●●●● ●●● ● ● ●●●●
●●●● ●● ● ●● ●●●●● ●●●●● ●● ●●●● ●●●●● ●●●● ●● ●●●

● ●●●● ●●● ●●● ●●● ●●●● ● ● ● ●●● ● ●● ●● ●● ●●● ●● ●●●●● ●●●●● ●
●●●● ●●●● ●●●●● ●● ●●● ●●● ●●●● ●● ●●●● ●●●● ●●●●●● ●● ●● ●●● ●
●●● ●●● ●●● ● ●●● ●● ● ●●● ●●● ●●● ●●● ● ●●●●● ● ●●●●●● ●●●● ●●● ●●●● ●
● ●● ●●●● ●●● ●●●● ●●● ●●● ●● ●●● ●●● ●●● ●● ●●●●●● ●● ●●● ●●● ●●●●

● ● ●● ●●●● ●●● ●●● ●●● ●●● ●●●●● ●●●● ●● ● ●●● ● ●●●● ●●●● ●●●●●●●
●● ●● ●● ●●●● ●●●●●●●● ● ●●●●● ●●●● ●●●●● ● ●● ●●● ●● ●● ●●● ●●● ● ●● ●●

● ●●●● ●●●●●● ● ●●●● ●● ●●●● ● ●●●● ●● ●●●● ●●● ● ●●● ●●●●
● ● ●● ●●●●●● ●●● ●● ●●● ● ●●● ●●● ●●●● ●●● ● ●● ● ●● ●● ●● ●●●

● ●●●●●●●● ●●●● ●● ●●● ●● ●●●●● ● ●●●●● ●●●●● ●●● ●● ●●● ●●●●
●● ●●●● ●● ●●●●●●●●● ●●●●●● ● ●●●●● ● ●● ● ●●●● ●●● ●●●● ● ●●● ●

●●●● ●●●●● ●●●● ●●● ●● ●●● ● ●● ●● ●●●● ●●●●●● ●● ●●●● ●●● ●●
●●●●●● ●●●● ●●● ● ●● ●● ● ●●●●●● ●● ●●●● ● ●●●● ●

●●● ●●●●● ●● ●● ●● ●● ●● ●● ● ●● ●●● ● ●●● ●●●●
●●●●●●● ● ●●●● ●●● ●● ●●●●● ●● ●●

● ●●● ●●● ●●●● ● ●●●● ● ●●● ●●●●● ●●
● ● ●●●● ●●●●●● ●●●●●● ● ●●● ●●● ●●● ● ●●

●● ●●●● ●●● ●●●●● ●● ●● ●●● ●● ●●●
●● ●● ●●● ●●●●●●● ● ●●● ●

●●●● ●● ● ●●● ●●● ●●● ●● ●●
● ●●●● ●● ●

●●● ●●●●● ●●●● ● ●●●● ●● ●●
●●●●●●● ●●● ●●

● ●●●● ●●●●
●● ●●

●●●● ● ●●
●●●

●
●●●

●

●●

●
●

●●●
●●●●●

●●●●
●●

●● ●
● ●● ● ● ●●●

●●●● ●● ●●● ●●●●●●
● ● ●●● ● ● ●●●

●●●●● ●● ●●●●● ● ●
● ●●●● ●●●● ● ●●● ●● ●● ●

● ●●● ●●●●● ● ●● ●● ●●●●●●● ●●● ●
●●● ● ●● ● ●●●●● ● ●● ● ●●● ●●● ●● ●● ●●

● ●● ●● ●● ● ●● ●●●● ●● ● ●●● ● ●● ●●●
●●●●●●●●● ●●●● ●● ●●●●●●● ●● ●●●●

● ●● ●●●●●● ●● ●● ●●● ●●● ●● ● ●●● ●●●●●●●
● ●●●● ●● ●●● ● ●● ●● ●● ●●● ●● ●● ●●

● ●● ●●● ●●●●●●●● ●●●●●● ●● ● ●●● ●●● ●●●●● ● ●● ●●●● ●●●● ● ● ●
●●● ●● ●●● ●● ●●● ●●● ●● ●● ●●● ●● ●●●● ●● ●●●●

4 6 8 10 12

40
60

80
10

0

Corrected surge data

Surge level (cm)

T
id

e 
le

ve
l (

cm
)

●●
●● ●● ●●●● ●● ●● ●●●●● ● ●●●● ●●●●● ●● ●● ●● ●● ●●●●●●● ●●●● ●●●

●● ●● ●●●● ●●● ●●●● ●●●● ●●●● ●● ●●●●● ● ●●●●●●
●● ● ●● ●●●● ●●●●●● ●●● ●● ●● ●● ●● ● ●● ● ● ● ●●●●● ●●● ●●●● ●● ●● ●● ● ●● ●
● ● ●●● ● ●●● ● ●●●●● ●●●● ●● ●●● ●● ● ●● ● ●● ●●●● ● ●● ●

● ●● ●●●● ●●●● ●●● ●●● ●●●●●● ●● ● ●●●●● ●●●●●● ●●●●● ●
● ●● ● ●● ●● ●●●●●●●●● ●●●● ●●●●● ● ● ●● ●●●● ●●●●●● ●● ●●●● ●●●● ● ●●●● ●

●●● ●● ●● ●● ●●●●● ●●● ●●●● ●●●● ●●●● ●●●●● ● ●● ●●●● ●●●●● ● ●●● ●● ● ●●●●●●●
●● ●●● ●●●●● ●●●●● ●● ●● ●● ●●● ● ●●● ●●

●● ● ● ●● ● ●●●● ●● ●●●●●● ●● ● ●●● ●● ●●● ●●●● ●●● ●●●● ●
●●● ●● ●●●● ●● ●●●●●● ●● ● ● ●●● ●●●● ●●●● ● ●●● ●●● ●● ● ●● ●●● ●● ● ●●● ●● ●● ●●●

●● ●● ● ●●● ●●●●●●●●●●● ●● ● ●● ● ●● ●●● ●●● ●● ● ●● ●● ●●● ●● ●● ●●●●● ●● ●● ●● ●● ●●●● ● ●●●
●●● ●●●●● ●●●●● ●● ●●● ● ●● ●●● ●●● ●● ●● ●●● ●● ●●● ● ●● ●● ●●●● ●● ●●● ●●● ●● ● ●●● ● ●●●●

●●● ●● ● ●● ●●●●●●●●●●●● ●● ● ●● ●●●● ●●● ●●● ●●
● ●● ●●●●●●●●●● ●● ●●● ●●●●● ●● ● ●● ● ● ●●● ●● ● ●● ● ● ●

●●● ●● ● ●●● ● ●●●● ●●● ●●●●● ●●● ●● ●●●● ●●● ●●●●● ●●●●●● ●●● ● ● ●●●●
●●●● ●● ● ●● ●●●●● ●●●●● ●● ●●●● ●●●●● ●●●● ●● ●●●●

● ●●●● ●●● ●●● ●●● ● ●● ●●● ● ● ● ●●● ● ●● ●● ●● ●●● ●● ●●●●● ●●●●● ●
●●●● ●●●● ●●●●● ●● ●●● ●●●● ●●●● ●● ●●●● ●●●● ●●●●●● ●● ●● ●●● ●
●●● ●●● ●●● ● ●●● ●● ● ●●● ●●● ●●● ●●● ● ●● ●●●● ● ●●●●●● ●●●● ●●● ●●●● ●
● ●● ●●●● ●●● ●●●● ●●● ●●● ●● ●●● ●●● ●●● ●● ●●●●●● ●● ●●● ●●● ●●●●

● ● ●● ●●●● ●●● ●●● ●●● ●●● ●●●●● ●●●● ●● ● ●●● ● ●●●● ●●●● ●●●●●●●
●● ●● ●● ●●●● ●●●●●●●● ● ●●●●● ●●●● ●●●●● ● ●● ●●● ●● ●● ●●● ●●● ● ●● ●●

● ●●●● ●●●●●● ● ●●●● ●● ●●●● ● ●●●● ●● ●●●● ●●● ● ●●● ●●●●
● ● ●● ●●●●●● ●●● ●● ●●● ● ●●● ●●● ●●●● ●●● ● ●● ● ●● ●● ●● ●●●

● ●●●●●●●● ●●●● ●● ●●● ●● ●●●●● ● ●●●●● ●●●●● ●●● ●● ●●● ●●●●
●● ●●●● ●● ●●●●●●●●● ●●●●●● ● ●●●●● ● ●● ● ●●●● ●●● ●●●● ● ●●● ●

●●●● ●●●●● ●●●● ●●● ●● ●●● ● ●● ●● ●●●● ●●●●●● ●● ●●●● ●●● ●●
●●●●●● ●●●● ●●● ● ●● ●● ● ●●●●●● ●● ●●●● ● ●●●● ●

●●● ●●●●● ●● ●● ●● ●● ●● ●● ● ●● ●●● ● ●●● ●●●●
●●●●●●● ● ●●●● ●●● ●● ●●●●● ●● ●●

● ●●● ●●● ●●●● ● ●●●● ● ●●● ●●●●● ●●
● ● ●●●● ●●●●●● ●●●●●● ● ●●● ●●● ●●● ● ●●

●● ●●●● ●●● ●●●●● ●● ●● ●●● ●● ●●●
●● ●● ●●● ●●●●●●● ● ●●● ●

●●●● ●● ● ●●● ●●● ●●● ●● ●●
●● ●●●● ●● ●

●●● ●●●●● ●●●● ● ●●●● ●● ●●
●●●●●●● ●●● ●●

● ●●●● ●●●●
●● ●●

●●●● ● ●●
●●●

●
●●●

●

(a) Tide levels and concurrent surges above the
99.75% quantile.
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(b) Ratio between χ2 test statistic and table
value χ2

nb−1,0.95.

Figure 12.14 Tide-surge interaction plots for Oslo.

Heimsjø

Heimsjø is tide-dominant, and it is observed from the data that there is quite a
small distance between the maximum of its tidal series and the maximum of observed
sea levels. This also holds for the mean of annual maxima from tide calculations and
observations. Tide-dominance usually implies larger tide-surge interaction than surge-
dominance, and the χ2 test for Heimsjø certainly lives up to this expectation. With
5 tidal bands and cutting at the 99.75% quantile, about 343 surge observations are
expected per band. Instead, 790, 479, 288, 112 and 75 points are found. As expected
for a tide-dominant location, the least number of points are in the highest tidal band,
where the high tide dampens surges. By far the most points are in the bottom band.

The huge discrepancy between expected and observed number of surges in each
band leads to a massively large value for the χ2 test statistic, with χ2 = 1007.3 com-
pared to the table value of χ2

4,0.95 = 9.488. The results of transforming the data with
2 to 30 bands are shown in Figure 12.15(b). The ratio never drops below 1 as one
would wish, but instead nb = 12 is chosen, which gives a relatively low ratio compared
to other choices. It gives χ2 = 89.865 versus the quantile value of χ11,0.95 = 19.675.
Figure 12.15(a) shows that the number of points in each band is much more similar
in the transformed case to the right of the figure compared to the left, uncorrected
side.

Estimated parameters are µ̂s∗ = 3.494(0.283), σ̂s∗ = 1.671(0.160), γ̂s∗ = 0.074(0.079),
θ̂ = 0.106 and θ̂s∗ = 0.063.

Return level and confidence intervals for Heimsjø are presented in Table 12.5. The
low return period levels are quite different from their published counterparts, but the
upper confidence bound of the 20 year return level estimate contains the correspond-
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ing published value (Hansen and Roald, 2000). This could perhaps be explained by
the tide-surge interaction still present, but estimation of return levels without any
tidal bands also show this apparent underestimation of low return period levels. The
standard error of the estimated γs is larger than the estimate itself, and the estimate
being positive means very large upper bounds for long return periods.
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(a) Tide levels and concurrent surges above the
99.75% quantile.
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(b) Ratio between χ2 test statistic and table
value χ2

nb−1,0.95.

Figure 12.15 Tide-surge interaction plots for Heimsjø.

Honningsv̊ag

Honningsv̊ag is tide-dominant like Heimsjø, but the χ2 test shows much less interac-
tion than for Heimsjø. It is still significant on a 95% confidence level, with χ2 = 23.652.
Figure 12.16(b) shows how the χ2 ratio develops. After nb = 2, it does not go below
1 until nb = 25, but for nb = 16 it is quite close and this is chosen. Here, χ2 = 26.106
against χ2

15,0.95 = 24.996. Figure 12.16(a) shows the surge data before and after trans-
formation with 16 tidal bands.

Estimated parameters are µ̂s∗ = 2.943(0.274), σ̂s∗ = 1.617(0.124), γ̂s∗ =−0.041(0.049),
θ̂ = 0.085 and θ̂s∗ = 0.043.

Return levels and confidence intervals for Honningsv̊ag are shown in Table 12.5.

Table 12.5 Return level estimates and 95% confidence intervals for the RJP model.

Oslo Heimsjø Honningsv̊ag
R = 1/p ẑp CI ẑp CI ẑp CI

5 194.5 (184.1, 207.6) 318.2 (314.6, 323.5) 332.4 (331.3, 335.6)
10 206.7 (192.5, 225.2) 325.4 (321.1, 336.1) 341.9 (339.1, 347.9)
20 217.9 (200.0, 242.5) 333.0 (327.0, 354.0) 350.9 (346.1, 360.4))
100 242.0 (215.0, 282.9) 352.5 (339.3, 422.4) 370.6 (360.2, 390.7)
200 251.8 (220.7, 300.7) 362.1 (344.1, 466.5) 378.7 (365.6, 404.4)
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(a) Tide levels and concurrent surges above the
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(b) Ratio between χ2 test statistic and table
value χ2

nb−1,0.95.

Figure 12.16 Tide-surge interaction plots for Honningsv̊ag.

12.6 The ACER Method

All calculations in this section were performed with the ACER package for Matlab
(Karpa, 2012).

12.6.1 Application to water level measurements

Note that for estimation of the 5, 10 and 20 year return period levels, which for all
stations are in sample estimates, the ACER method will provide unbiased estimates of
the exact values. For estimation of the long return period levels, the first goal is to find
a tail marker η0 that represents a sufficiently high threshold. For the ACER method,
this is found where the curves of the estimated ACER functions ε̂k(η) start behaving
regularly in the sense of Eq. (5.31). After having chosen such a point initially, one
would typically go even further into the tail to verify robustness with respect to the
estimated return levels. For the hourly sea level measurements studied in this chapter,
it was found that a level for which the remaining data amounted to roughly 5-10% of
the total data set gave stable numerical estimates.

Oslo

The curves in the ACER plot of Figure 12.17(a) detail the effect dependence has
on the ACER function estimates for Oslo. It can be seen that the independent case of
k = 1 has a curve which stays significantly above the rest, clearly demonstrating that
hourly measurements are strongly dependent. The ACER plot also shows that there
is a significant diurnal dependence effect, which is to be expected. But this effect is
seen to vanish at the higher levels, showing that the ACER functions coalesce in the
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tail for k ≥ 2. Thus, for estimation of long return period sea levels it is advantageous
to choose k = 2, since this case allows for the use of more data than for k > 2, with
the potential benefit of higher accuracy as a result.

With the selected estimated ACER function, i.e. ε̂2(η), the optimized parameter
estimates are d = −4.048, b = 96.901, a = 0.037, c = 1.117, which is based on a tail
marker η0 = 100. The return level estimates for Oslo are presented in Table 12.6.
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Figure 12.17 ACER plots for Oslo.

Heimsjø

Figure 12.18(a) displays well-behaved ACER functions for Heimsjø, but the plot is
qualitatively quite different from the previous one for Oslo. Now, the dependence of
hourly data has a smaller influence on the ACER function values. This may be due
to the fact that the tidal effects are much stronger for Heimsjø than for the other
two locations. Also for this location, all ACER functions for k ≥ 2 coalesce in the
tail. Therefore, k = 2 is selected for the return level estimation. The tail marker is
chosen to be η0 = 230, which gives the following optimal values of the parameters:
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d =−2.524, b = 154.689, a = 5.27 ·10−6, c = 2.755. The return level estimates are found
in Table 12.6.
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Figure 12.18 ACER plots for Heimsjø.

Honningsv̊ag

Figure 12.19(a) reveals that the ACER plot for Honningsv̊ag is very similar to the
one for Heimsjø. This may be explained by the fact that both stations have a strong
tidal component. Since all ACER functions for k≥ 2 coalesce in the tail, k = 2 is again
selected for the return level estimation. The tail marker is chosen to be η0 = 260,
which gives the following optimal values of the parameters: d =−3.012, b = 231.209,
a = 8.15 ·10−4, c = 1.907. The return level estimates are given in Table 12.6.
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Figure 12.19 ACER plots for Honningsv̊ag.

Table 12.6 Return level estimates and 95% confidence intervals for the ACER model.

Oslo Heimsjø Honningsv̊ag
R = 1/p ẑp CI ẑp CI ẑp CI

5 199.6 (191.0, 205.5) 330.5 (327.0, 333.6) 351.6 (346.4, 357.1)
10 210.1 (199.7, 216.9) 336.3 (332.4, 339.7) 357.7 (352.3, 363.8)
20 220.1 (207.7, 227.6) 341.6 (337.4, 345.3) 363.3 (357.8, 370.1))
100 242.3 (224.9, 251.8) 352.6 (347.7, 357.0) 375.3 (369.6, 383.8)
200 251.6 (232.0, 262.0) 357.0 (351.8, 361.7) 380.2 (374.4, 389.2)

12.7 Discussion of Results

12.7.1 Oslo

Oslo is surge-dominant and has the largest amount of data of the locations pre-
sented in this chapter. Both these factors mean that all the methods applied should
perform quite well here. Surge-dominance means that the non-stochastic tidal com-
ponent of the measured sea levels does not interfere to a large degree, and a large
amount of data is naturally desirable. As for possible sources of error, the removal of
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the post-glacial rebound trend is certainly worth mentioning, and the same procedure
as in the report by Hansen and Roald (2000) was followed.

Figure 12.20(a) shows that return levels are very similar for all methods for 5, 10
and 20 year periods, while larger differences arise for the 100 and 200 year periods.
Note that the lines between the indicated points are only drawn for visual purposes.

Figure 12.20(b) shows the 200 year return level estimates, together with 95% con-
fidence intervals. As seen, the Gumbel model is producing the largest estimate, at
266 cm, while the GEV model gives the smallest, at 249 cm. This difference is not
large, and all methods contain the results from the other methods within their confi-
dence interval. Also note that the ACER method has the shortest confidence interval,
indicating perhaps a higher estimation accuracy.

0 50 100 150 200

180

200

220

240

260

280

Return Period

R
et
u
rn

L
ev
el

 

 

Gumbel

GEV

POT

RJPM

ACER

(a) Return levels for 5, 10, 20, 100 and 200 year
periods.

220

240

260

280

300

320

Gumbel GEV POT RJPM ACER

R
et
u
rn

L
ev
el

(b) 200 year return levels and confidence bounds.

Figure 12.20 Comparison between return levels in Oslo.
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12.7.2 Heimsjø

For Heimsjø, the non-stochastic tidal component dominates, and estimating the
extreme value distribution becomes more difficult. This is seen in the larger differences
between methods. The RJP method, in particular, disagrees markedly for the three
first periods of 5, 10 and 20 years. This is shown in Figure 12.21(a). Since the ACER
method provides unbiased estimates of the exact in sample values, it can be concluded
that the RJP method estimates are inaccurate at these return periods. However, the
RJP method performs much better for the 100 and 200 year levels, where it basically
is in line with all models but the Gumbel one.

Figure 12.21(b) shows better the difference between the 200 year estimates, and
highlights the extreme upper bound of the estimate obtained by the RJP method.
The other confidence bounds look minuscule in comparison, but this is because of the
scale of the bounds of the RJP method. The Gumbel model produces a significantly
higher return level compared to the other methods. However, the difference between
the highest estimate (Gumbel) and the lowest (POT) for the longest return period is
only 18 cm. It is seen that the ACER method again provides the smallest confidence
interval.

12.7.3 Honningsv̊ag

Mostly the same pattern as in Heimsjø is shown for Honningsv̊ag, but with a greater
scatter of the results. All methods except the RJP method agree at the 5 year return
level, but diverge at the higher levels. The RJP method starts out estimating lower
return levels, but ends up in the same region as the ACER estimate for the 200 year
period. The Gumbel and POT methods give by far the largest estimates, while the
GEV method produces by far the lowest.

Figure 12.22(a) compares the 5, 10, 20, 100 and 200 year estimates for all methods,
while Figure 12.22(b) shows the comparatively large difference between the 200 year
estimates. The POT estimate for that period is 30 cm larger than the corresponding
GEV estimate. Again the ACER method provides the smallest confidence interval.

12.7.4 Comments

The Annual Maxima method and the Peaks-over-Threshold method are both
widely known and much applied methods. However, they both have some possible
defects. As mentioned, the AM method throws away much of the data, and may end
up fitting a poor model since all locations have less than 100 years of observed maxima
to draw from. The POT method allows for the use of a great deal more data, but is
subjected to two individual choices: the extreme threshold and the empirical cluster-
ing rule. The former of the choices has available supportive literature (Coles, 2001),
but the selection of the clustering rule has little general theory, and some experience
is a valuable asset in dealing with this problem.

The Revised Joint Probabilities (RJP) method is less widely applied than the first
two methods, but has seen application to a number of British locations by the creators
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Figure 12.21 Comparison between return levels in Heimsjø.

and proponents of the method, cf. Tawn (1992); Dixon and Tawn (1994); Haigh et al.
(2010). But because the literature is more sparse, and from fewer sources, it is more
difficult to fully assess the reliability of this method.

As for the estimated return period levels by the RJP method, a notable feature is
what appears to be underestimated short period return levels in the tide-dominant
locations of Heimsjø and Honningsv̊ag. This is not an artifact from the tide-surge
interaction modeling, since corresponding return levels were equally low when the es-
timation was performed without such modeling. The POT method is used to estimate
surge parameters, which was not done by Dixon and Tawn (1994) in earlier work. This
could perhaps affect results.

However, their methods are adopted in declustering the data using r = 30, which
is quite different from the choice made in the POT analysis. It was done to emulate
the method as used by Dixon and Tawn (1994), but may have benefited from more
careful consideration. Other choices that need to be made are the functions with which
tide-surge interaction is corrected for and the quantiles that are deemed extreme.
The correction functions were made to the specifications in Dixon and Tawn (1994),
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Figure 12.22 Comparison between return levels in Honningsv̊ag.

while the quantiles used were taken from the preceding POT section which provides
a generally thorough explanation of the threshold selection.

In total, it is difficult to recommend a method that has the likely defect of underes-
timating short period return levels. Although it agrees more with the other methods
for higher return levels, this is an area where there is a large margin of error anyway.
The method is also somewhat difficult to implement, since Eq. (12.7) needs to be
solved numerically. Tide measurements also need to be available. Using such data is,
however, a strong point of the model, if applied correctly. More data are then used in
the estimation. This attempt to incorporate sea level specific data and methodology
into the return level estimation is arguably the most desirable quality of the method.

The ACER method is the most recently developed method, and it is therefore
interesting to see that it produces results very similar to those by more conventional
methods. In the return level plots in this section it is seen that the ACER method
produces 200 year estimates in the middle of the range of the methods used here.

Two choices need to be made when estimating return levels with the ACER method;
the tail marker η0 and the ACER function εk used for the parameter estimation. It
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was found that as long as data around or above the 90-95% quantile were used, quite
consistent results were obtained.

The ACER method seems to be a viable alternative for extreme sea level estimation,
and with the developed methodology for parameter estimation and construction of
confidence intervals it is quite easy to implement. One of the attractive features of the
ACER method is its diagnostic power. By plotting the ACER functions of relevant
order, it can be decided which order is necessary to capture the effect of dependence
in the data on the extreme value statistics.

In summary, the ACER method seems to be an attractive method, with its quite
easily implemented methodology and attractive statistical properties. When looking
at 200 year return levels, it usually agrees with the other data-intensive methods,
that is the RJP method and the POT method. While the empirical ACER functions
provide a completely general nonparametric representation of the extreme value dis-
tribution given by the data, for the purpose of extrapolation to long return period
levels a specific class of parametric distributions were introduced. This class of distri-
butions specifically targets the cases where the Gumbel distribution is the appropriate
asymptotic extreme value distribution. In the context of this chapter, this assumption
is justified based on the underlying water level statistics, which invariably belongs to
the domain of attraction of an asymptotic Gumbel distribution for the extremes.
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