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Abstract

In this Master’s thesis we have used data from eight different locations in Norway
to estimate the distributions of extreme water levels. The locations used are Oslo,
Heimsjg, Honningsvag, Narvik, Harstad, Tregde, Andenes and Viker, and four
different methods have been used for the estimation. We use two established and
widely used methods, the Annual Maxima Method (AMM) and the Peaks-over-
Threshold (POT) method. The AMM uses the observed annual maxima from each
location, while the POT method uses the exceedances of some high threshold in
relation to the data. In addition, we also use two approaches that are less known
and less used, the Revised Joint Probability Method (RJPM) and the Average
Conditional Exceedance Rate (ACER) method. In the former, a distribution for
extreme surges is found and used together with information from numerical tide
predictions. We also take into account the interaction between tides and surges
where applicable. The ACER method uses only the series of measured sea levels,
but tries to account for dependence by a cascade of conditioning probabilities.
We find that for return periods up to 20 years the return levels are usually very
similar for all methods except RJPM, which seems to underestimate these values.
The data intensive methods of POT, RJPM and ACER seem to agree for the 200
year levels, while particularly the Gumbel method seems to overshoot the levels in
comparison to the other methods.
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6 1 DATA SETS

1 Data sets

The data sets for the methods used in this Master’s thesis are water level measure-
ments and tidal predictions for eight locations on the Norwegian coast. Water level
measurements are collected by automated equipment, while the tidal predictions
are based on numerical models.

We have three data sets from the south of Norway; Oslo, Tregde and Viker.
Tide isn’t as large an influence here as it is further north; the locations are called
surge-dominant. The total height of sea levels is also lower here than further north.
We have one data set in the middle of Norway, Heimsjg, and four from the north:
Narvik, Harstad, Andenes and Honningsvag. Sea levels are more influenced by
tides here; the locations are tide-dominant. The data sets are not freely available,
but were provided by Even Haug at the Norwegian Hydrographic Service, a division
of the Norwegian Mapping Authority.

The sea level measurements are done either hourly or every 10 minutes. For
the 10 minute data, we have extracted hourly measurements for usage in the POT,
RJPM and ACER methods. There are several reasons for this: Firstly, the RJPM
method uses tidal predictions which were provided as hourly sea levels. Secondly,
many locations have hourly data for older periods and ten minute measurements
for the recent years. In order to use both data sets, we must extract values every
hour from the more frequent observations. Thirdly, the literature used in the
theoretical studies have hourly measurements. Methodological comparisons are
therefore made simpler.

If not otherwise noted, all references to the height of the sea level are in cen-
timetres. All return periods are, if not otherwise noted, measured in years.

1.1 Oslo

For the measurement station in Oslo, we have hourly measured sea levels from
December 10 1914 to December 31 1991 and 10 minute interval data from October
1 1991 to September 16 2010. These are uncorrected for post-glacial rebound,
which is an important factor in the Oslo area. To correct for this, 4 mm/year have
been added to data points for years after 1988 and the same amount has been
subtracted per year before 1988, according to the formula currentValue + 0.4 -
(currentY ear — 1988). This was found in a previous report [3], and is based on
the fact that 1988 was the base year to calculate mean sea level (MSL) in Oslo.

For the same periods, tidal sea level predictions are available. These are based
on a numerical model, the details of which are not publicly available.
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Figure 1.1: Map with locations of all water level measuring stations analysed in this
report

1.2 Heimsjg

Heimsjg is located on the coast of Sgr-Trgndelag, and the measurement station is
found at latitude 63°26’ N and longitude 09°07" E. Data are available as hourly
measurements from November 1 1928 to December 31 1990, and as 10-minute
interval measurements from November 1 1990 to September 16 2010. Tide pre-
dictions are also available for the same periods and corresponding measurement
intervals.

1.3 Honningsvag

Honningsvag is found at the very north of Norway, in Finnmark. The location of
the measurement station is latitude 70°59" N and longitude 25°59" E. Measured
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values exist in hourly form from from June 5 1970 to December 31 1988, and as
10 minute data from June 1 1988 to September 16 2010. Corresponding tidal
predictions are also available.

1.4 Narvik

Narvik, in Nordland fylke, has its water level measurement station at latitude
68°26’ N and longitude 17°25" E. Available are hourly measurements from August
6 1931 to December 31 1989, and 10 minute measurements from October 10 1989
to April 11 2011. Tidal predictions are available for the same period.

1.5 Harstad

The measurement station in Harstad, Troms fylke, is located at latitude 68°48 N
and longitude 16°33" E. Hourly measurements are available from March 1 1952 to
December 31 1988, and 10 minute data from June 1 1988 to April 11 2011. Tidal
predictions are available for the same period.

1.6 Tregde

Tregde, in Vest-Agder, has a water level station at latitude 58°00’ N and longitude
07°34" E. There are hourly measurements from October 5 1927 to December 31
1987, and 10 minute measurements from December 10 1987 and April 11 2011.
Tidal predictions are available for the same period.

1.7 Andenes

Andenes in Nordland, at latitude 69°19” N and longitude 16°09’ E, has data of poor
quality from April 1 1940 to October 23 1986 - too poor to be used for analysis. 10
minute data ara available from October 9 1991 to April 11 2011, however. Tidal
predictions are available for the same period.

1.8 Viker

Viker in @stfold, located at latitude 59°02’ N and longitude 10°57" E, had its water
level gauge installed as late as in 1990, and 10 minute interval data are available
from October 16 that year to April 11 2011. Tidal predictions are available for the
same period.



2 Annual maxima method

2.1 Introduction

The Annual maxima method (AMM) builds on the extremal types theorem, which
says that, for some sequence of independent and identically distributed random
variables X7, ..., X,,, X ~ F, with maximum M,, = max{Xy,..., X,,}, if the proba-
bility

Prob (j\/[na_bn < z) — G(2), (2.1)
for some sequences of constants {b,} and {a, > 0}, converges to some non-
degenerate distribution function G' for n — oo, then this distribution belongs to
either the Gumbel, Fréchet or Weibull families (denoted type I, type II and type
IIT extreme value distributions). Through a rescaling of parameters, all families
may be collected in a Generalized Extreme Value (GEV)distribution,

G(2) :exp{— [1+§<Z;M>}_l/£}, (2.2)

defined on {z: 1 +&(z — p)/o > 0}. £ = 0 (taken as the limit & — 0) corresponds
to Gumbel, £ > 0 to Fréchet and £ < 0 to Weibull.

Since we use annual maxima, n is the number of observations in a year. Equa-
tion (2.2) is solved for the return level z, by setting G(z,) = 1 — p, where p is the
probability of a level z, in a given year - i.e. the reciprocal of the return period.
This means that, say, a 5 year return period is represented by p = 1/5. With
parameter estimates, this inversion provides the formula

; :{ﬂ—gu—{—logu—p)}-f] for £ # 0 23)
g f — & log|—log(1 — p)] for £ =0 '

It is worth noting that the extremal types theorem providing the GEV distribution
relies on the X; to be independent and identically distributed. There is often
considerable dependence in a real data set, however. This problem is overcome
by the fact that the dependence only affects the values of estimated parameters.
Since they are to be estimated anyway, this can mostly be ignored [1].

2.2 Parameter estimation

For the published work done on Norwegian water levels, the shape parameter is
assumed and fixed at & = 0. This means that the Gumbel distribution is used,
and the unknown parameters to be estimated are 4 and o in

G(z):exp{—exp [— (Z_“)]} (2.4)

g
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These parameters are estimated by maximum likelihood fitting, in practice by the
fgev function in the R package evd. This is also the case for £ # 0, and results
for both cases will be presented below.

2.3 Model checking

The empirical distribution function for an ordered sample z) < --- < 2, of
independent observations is given by

~ 1

G(2) =

where G is the underlying distribution for the population. Since G is an estimate of
G, it should be in good agreement with the estimated model G. This is commonly
checked by two graphical techniques, the probability plot and the quantile plot.

The probability plot is made by plotting G for the sorted observations 2q) <
-+ < z(n) against the corresponding empirical distribution function,

{(kilxﬂqﬂﬁ;i:1wwk}.

The points should be close to the unit diagonal. A problem with this plot is that
both i/(k + 1) and G(z(i)) approach 1 for values of ¢ close to n, which is exactly
where the accuracy of the model is of greatest concern. This can be rectified by
applying G‘l(-) to both x- and y-axis values. This gives the quantile plot,

Al 7 )
Nii=1, ...
{(G <I{I+1)7Z(z)>’z ) 7k}7

where linearity again is the desired quality.

For both probability and quantile plots, it is common to draw a straight line
from the origin sloping upwards at a 45° angle. For a perfect fit, the points should
be exactly on this line.

In addition, it is informative to look at a return level plot, where return period
R = 1/p is plotted against return level 2, for the estimated model,

{(1/p, %) :0<p<1},

with a logarithmic scale on the x-axis. Empirical point estimates of the return
level function and 95 % confidence intervals are also added. The point estimates
should be within the confidence intervals and ideally on the return level line.

Finally, a comparison between the GEV probability density function and a
histogram of the observed maxima are combined in the density plot. This is not as
informative as the other three plots, since the shape of the histogram often varies
considerably between different choices of group intervals.

—1=1,...,n
n+1
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2.4 Application to water level measurements
2.4.1 Oslo

Oslo has data available from all years from 1914 to 2010 - except 1939, from
which there are no available measurements. In addition, some of the years with
available data have important data missing. For instance, there are only 312 data
points in 1914, all from the month of December. This means that there is a
very real possibility that the real annual maximum is excluded. In 1915, there is
much missing data from the important autumn and winter months, where annual
maxima are often found. This year is therefore also excluded from consideration.
In 1972, there are no measurements in February, July, August, September and
October, enough missing that the probability that the year’s maximum is left out
is large. 1974 lacks data for July, August and September, and 1991 only has
data for October, November and December. Both these are excluded. Finally,
measurements for 2010 only go to September 16, so its maximum is also dropped
from consideration.

With the data as specified above, estimates together with maximum likelihood
confidence intervals are published in tables 2.1 and 2.2, for Gumbel and GEV
respectively. The published values in the second column are collected from a report
by the Norwegian Map Authority [3], since they are more accurately calculated
than those on the Vannstand.no web pages. Furthermore, values exist for return
periods up to 200 years.

For the Gumbel model, parameter estimates are i = 167.31(2.0735) and 6 =
18.630(1.4974). For the GEV model, i = 168.21(2.2325), 6 = 19.030(1.5792) and
= —0.0892(0.0700). Standard errors are shown in parentheses.

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
5) 194.1 188.4 195.2 202.1
10 207.5 200.4 209.2 218
20 220.3 211.9 222.6 233.4
100 249.3 237.7 253 268.2
200 261.7 248.7 265.9 283.2

Table 2.1: Estimates of return levels and confidence intervals in for Oslo, Gumbel
model. Values in cm.

As would be expected, the new estimates are very close to the pre-existing
values. The differences come from the years used in estimation as well as the
method of estimation; the work in [3] uses Probability Weighted Moments (PWN)
for the parameter estimates and annual maxima from 1950 to 1999, excluding
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Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
5 195 188.7 194.9 201.1
10 207.3 199.1 207 214.9
20 218.6 207.4 217.9 228.3
100 241.8 220.5 240.1 259.7
200 250.8 223.9 248.8 273.8

Table 2.2: Estimates of return levels and confidence intervals for Oslo, GEV model.
Values in cm.

1980-1982. The probability and quantile plots in figure 2.1 do not reveal any
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Figure 2.1: Probability and quantile plots for the annual maxima methods, Oslo.

fallacies with neither of the models, and points stay mostly on the line. For the
Gumbel model in figure 2.1(a), the two leftmost points and a couple of the points
most to the right are off the model line. For the GEV model in figure 2.1(b), the
two leftmost points and the rightmost point are off the line.

The return level plot in figure 2.2 shows that all points stay within the 95
% confidence intervals for both models. The two curves follow slightly different
paths; the Gumbel model in figure 2.2(a) fits generally OK to all points, while
the GEV model in figure 2.2(b) fits generally better to most points but poorly to
the rightmost point. Since the estimated shape parameter is negative, the return
levels of the GEV model are bounded at i — & /€ = 381.7 (cm), while the Gumbel
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model return levels are unbounded. Finally,
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Figure 2.2: Return level plots for the annual maxima methods, Oslo

2.3(a) and 2.3(b), where the general trend of the distribution seems to be followed
in both cases.
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2.4.2 Heimsjo

Heimsjo has data for all years from 1928 to 2010. As with Oslo, some years have
little enough data that it is likely that the true annual maximum has been left
out. One example is 1934, where data for all the first seven months are missing.
As such, we leave this year out. 1938 has missing data for January, February and
December; important months where the real annual maximum is likely to be. This
year is therefore also left out. 1943 lacks data for months January to April, and
is also left out. 1959 lacks any data from September to December, and has little
from February and August. Finally, 2010 lacks data for the last months of the
year.

The published values are collected from the Vannstand.no web pages [9]. The
web pages have values only up to 20 years, and they are based on a Gumbel model
fitted to annual maxima.

For the Gumbel model, parameter estimates are i = 311.84(1.399) and 6 =
11.685(0.97756). For the GEV model, i = 312.69(1.4798), 6 = 11.889(1.0219) and

¢ = —0.13655(0.066255).

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
5 329 324.8 329.4 333.9
10 337 332.3 338.1 343.9
20 345 339.5 346.5 353.6
100 - 355.5 365.5 375.6
200 - 362.4 373.7 385

Table 2.3: Estimates of return levels and confidence intervals for Heimsj@g, Gumbel

model. Values in cm.

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
5 329 325 328.8 332.7
10 337 331 335.7 340.4
20 345 335.8 341.7 347.6
100 - 343.2 353.3 363.3
200 - 345.2 357.5 369.9

Table 2.4: Estimates of return levels and confidence intervals for Heimsjg, GEV model.

Values in cm.
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Figure 2.4: Probability and quantile plots for the annual maxima methods, Heimsjg.

The probability plots in figure 2.4 shows points mostly on the line, but the fit is
seemingly not as good as for the Oslo data. This notion is also reflected in the
quantile plots, with the Gumbel quantile plot having a poor fit for the three first
and 7-9 of the last points. The GEV quantile plot in figure 2.4(b) has a relatively
poor fit for the the first and two last points.

The return level plot in figure 2.5 shows the curves of the Gumbel and GEV
models, together with confidence intervals and observed points. The Gumbel
model in figure 2.5(a) seems to somewhat overestimate the points at high lev-
els, while the GEV model underestimates them. All points are within confidence
intervals, however. The GEV model return levels are bounded at 399.7 cm. Finally,
we look at the density plots in figures 2.6(a) and 2.6(b), where the general trend
of the distribution seems to be followed in both cases.
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Figure 2.5: Return level plots for the annual maxima methods, Heimsjg.
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2.4.3 Honningsvag

Honningsvag has data for all years from 1970 to 2010, except 1985. Most of the
years have acceptable amounts of data, but four years have quite little: 1970 has no
data from January to May, 1988 nothing in February and very little in March, 1989
nothing in August and September and 2010 nothing from October to December.
All these are excluded from the model fitting.

The published values are collected from the Vannstand.no web pages [9]. The
web pages have values only up to 20 years, and they are based on a Gumbel model
fitted to annual maxima.

For the Gumbel model, parameter estimates are i = 331.08(2.087) and & =

1.812(1.4575). For the GEV model, i = 332.85(2.2848), 6 = 12.344(1.6255) and

1
£ = —0.27711(0.11502).

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
5 348 342 348.8 355.6
10 357 349 357.7 366.3
20 366 355.6 366.2 376.7
100 - 370.4 385.4 400.4
200 - 376.7 393.6 410.6

Table 2.5: Estimates of return levels and confidence intervals for Honningsvag, Gumbel

model. Values in cm.

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
5 348 343.2 348 352.8
10 357 348.3 353.5 358.7
20 366 351.7 357.8 363.9
100 - 355.3 365 374.7
200 - 355.6 367.2 378.7

Table 2.6: Estimates of return levels and confidence intervals for Honningsvag, GEV
model. Values in cm.

The probability and quantile plots in figure 2.7 show that there are fewer points
available for the model estimation than for Oslo and Heimsjg. The fit is also quite
as good as for these two locations - even though a few points are on the line, the
points seem to follow a sort of oscillating S shape.
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Figure 2.7: Probability and quantile plots for the annual maxima methods, Hon-
ningsvag.

The return level plots in figure 2.8 show the trend of the Gumbel and GEV
models. Again we see that the fit isn’t very impressive, although points stay within
confidence bounds. As for Oslo and Heimsjg, the estimated shape parameter is
negative, é = —0.2771, meaning that the Gumbel model gives higher estimates
for the return levels for long periods. Thus the higher return levels seem to be
overestimated by the Gumbel model in figure 2.8(a) and somewhat underestimated
in figure 2.8(b). The GEV return levels are bounded at 377.4 cm, quite far below
even the 200 year return level of the Gumbel model. Finally, we look at the density
plots in figures 2.9(a) and 2.9(b), where the general trend of the distribution seems
to be followed in both cases. As usual, it is hard to glean any new and revealing
information from this type of diagnostic plot.
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Return level

Figure 2.8: Return level plots for the annual maxima methods, Honningsvag.
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2.4.4 Narvik

69 annual maxima are used for the calculation of the Gumbel and GEV return level
estimates in Narvik. The years 1932 to 2010 are used, excluding 1936, 1940-1947
and 1989.

For the Gumbel model, parameter estimates are i = 401.32(2.1016) and 6 =
16.499(1.4916). For the GEV model, i = 402.91(2.2978), 6 = 17.087(1.6149) and
£ = —0.17672(0.084322). GEV return levels are therefore bounded at 499.6 cm.
With these estimated parameters, results are found in tables 2.7 and 2.8 for the
Gumbel and GEV models, respectively.

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
5 427 419.1 426.1 433
10 439 429.6 438.5 447.3
20 451 439.6 450.3 461.1
100 - 461.9 477.2 492.5
200 - 471.4 488.7 506

Table 2.7: Estimates of return levels and confidence intervals for Narvik, Gumbel

model. Values in cm.

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
5 427 419.8 425.4 431
10 439 428 434.6 441.3
20 451 434 442.4 450.8
100 - 442 456.7 471.5
200 - 443.6 461.8 480

Table 2.8: Estimates of return levels and confidence intervals for Narvik, GEV model.
Values in cm.

The probability and quantile plots in figure 2.10 show that most points stay on
the line, but there is a slight indication of an S shape centred in the middle of
the plots. The probability plot for the Gumbel model reveals some problems with
the fit of the points to the left of this centre. The Gumbel quantile plot reveals
some further problems with the points at the very highest levels, where they are
overestimated. For the GEV model, the probability and quantile plots in figure
2.10(b) shows some poor fit to the right of the centre of the S, as well as some
underestimation of points at the highest levels.
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Figure 2.10: Probability and quantile plots for the annual maxima methods, Narvik.

The return level plot in figure 2.11 shows better the overestimation of the
Gumbel model at high levels, as well as the underestimation of high-level points
for the GEV model. All points are safely within the confidence intervals, with the
exception of the rightmost point in figure 2.11(a) which sits on the lower confidence
bound. Finally, we look at the density plots in figures 2.12(a) and 2.12(b). The
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Figure 2.11: Return level plots for the annual maxima methods, Narvik.
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general trend is followed, but we see a massive spike a little before the 420 mark,
indicating a high density of points at this level. This area coincides with the centre
of the S mentioned when discussing the probability and quantile plots.
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Figure 2.12: Density plots for the annual maxima methods, Narvik.
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2.4.5 Harstad

Harstad has annual maxima from 1952 to 2010, excluding 1966, 1976, 1980, 1988
and 1990. This gives a total of 54 data points for the estimation of parameters.
For the Gumbel model, parameter estimates are i = 281.68(1.8033) and 6 =
12.471(1.1983). For the GEV model, i = 284.68(1.9095), 6 = 12.746(1.4552) and
£ = —0.46541(0.099296).

For the GEV model, é is quite close to —0.5, which corresponds to a distribution
with a very short bounded upper tail. This is rarely encountered in practical
applications of extreme value modeling [1], and could indicate a poor model. The
short bound of the upper tail is illustrated by the upper limit of i — 6/5 =
284.68 — 12.746/(—0.465) = 312.091, which is below the 20 year published value

of 316.

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
5 299 294.6 300.4 306.1
10 308 302.5 309.7 317
20 316 309.9 318.7 327.5
100 - 326.6 339 351.4
200 - 333.7 347.7 361.7

Table 2.9: Estimates of return levels and confidence intervals for Harstad, Gumbel

model. Values in cm.

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
) 299 295.3 298.4 301.6
10 308 299.6 302.5 305.3
20 316 302.4 305.2 308
100 - 305.1 308.9 312.6
200 - 305.5 309.7 314

Table 2.10: Estimates of return levels and confidence intervals for Harstad, GEV model.
Values in cm.

The probability and quantile plots of figure 2.13 show that the GEV model is
better fitted to the annual maxima than the Gumbel model, with both probability
and quantile plots in figure 2.13(a) showing a substantial amount of points off the
diagonal. The return level plot in figure 2.14 shows the behaviour of both models
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Figure 2.13: Probability and quantile plots for the annual maxima methods, Harstad.

compared to the data, and the GEV model in figure 2.14(b) has most points on or
close to the model line and all points within confidence intervals. For the Gumbel
model, figure 2.14(a) shows that the model significantly overestimates the highest
maxima, with four points outside confidence intervals.
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Figure 2.14: Return level plots for the annual maxima methods, Harstad.

The density plots in figures 2.15(a) and 2.15(b) illustrate the large difference
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between the Gumbel and GEV models created by the large negative é’ in the latter
model. The GEV model seems to better fit the histogram of real data.
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Figure 2.15: Density plots for the annual maxima methods, Harstad.
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2.4.6 Tregde

For Tregde, we have annual maxima available for 1928 to 2010, excluding 1941,
1944 and 1956. This means that 80 maxima are available for the model fitting.
For the Gumbel model, parameter estimates are ji = 114.96(1.1428) and 6 =
9.716(0.85818). For the GEV model, i = 114.83(1.2216), 6 = 9.6311(0.89878)
and & = 0.025046(0.088029). The estimated shape parameter for the GEV model
is slightly positive, meaning that the model has no upper bound.

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
5) 129 125.7 129.5 133.4
10 136 131.9 136.8 141.8
20 143 137.8 143.8 149.9
100 - 151 159.7 168.4
200 - 156.6 166.4 176.3

Table 2.11: Estimates of return levels and confidence intervals for Tregde, Gumbel

model. Values in cm.

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
5 129 125.6 129.6 133.5
10 136 131.5 137.1 142.8
20 143 136.3 144.5 152.8
100 - 143.6 161.7 179.9
200 - 145.3 169.1 193

Table 2.12: Estimates of return levels and confidence intervals for Tregde, GEV model.
Values in cm.

Figures 2.16 and 2.17 show that both models are quite similar, not at all
surprising of course, given the similarity of scale and shape parameters and the
GEV shape parameter quite close to zero. The actual difference on return levels
is also small, with a 2.7 ¢m difference between 200 year return levels as shown in
tables 2.11 and 2.12.

As for the fit, the diagnostic plots in figures 2.16 and 2.17 show that some of
the topmost are above the model line, with two points slightly above the upper
Gumbel confidence bound. The highest maximum is reasonably well fitted in both
models.
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Figure 2.16: Probability and quantile plots for the annual maxima methods, Tregde

Density plots in figure 2.18 seem to indicate a general good fit, but perhaps

some slight underestimation at the top.
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Figure 2.17: Return level plots for the annual maxima methods, Tregde
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Figure 2.18: Density plots for the annual maxima methods, Tregde



2.4  APPLICATION TO WATER LEVEL MEASUREMENTS 29

2.4.7 Andenes

For Andenes, we only have annual maxima from 1992 to 2010, i.e. 19 data points.
We are therefore not very likely to get a very good estimate of the true distribution
of annual maxima here. Due to the small amount of available data, there are no
available published values either.

For the Gumbel model, parameter estimates are i = 279.3(3.1463) and 6 =
12.871(2.0883). For the GEV model, ji = 284.54(3.2207), 6 = 12.902 (3.0972) and
£ = —0.82098(0.21323).

We see that the estimated shape parameter for the GEV model has a very large
negative value. Since it is below -0.5, the maximum likelihood estimators are no
longer regular [1], and lack the usual asymptotic properites. And both table 2.14
and figure 2.20(b) show that confidence intervals inexplicably narrow in as we near
the longer return periods. This is certainly unrealistic. Furthermore, the model is
bound at 300.3 cm, 0.2 cm above the 200 year return level for the GEV model.

The probability and quantile plots in figure 2.19 and the return level plots in
figure 2.20 show that the GEV model is better fitted to the maxima than the
Gumbel model, but since the data set we should be careful in trusting either.

In the density plots in figure 2.21, the GEV model also seems to better fitted.

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
5) - 288.5 298.6 308.7
10 - 295.5 308.2 321
20 - 302.1 317.5 332.9
100 - 316.7 338.4 360.1
200 - 322.9 347.3 371.7

Table 2.13: Estimates of return levels and confidence intervals for Andenes, Gumbel
model. Values in cm.
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Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
) - 292.2 295.7 299.1
10 - 295.5 297.8 300
20 - 2974 298.9 300.3
100 - 298.8 299.9 301
200 - 298.8 300.1 301.3

Table 2.14: Estimates of return levels and confidence intervals for Andenes, GEV

model. Values in cm.
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Figure 2.19: Probability and quantile plots for the annual maxima methods, Andenes.
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Figure 2.20: Return level plots for the annual maxima methods, Andenes.

0.06 0.08
I |
0.06 0.08
I |

Density
0.04
1
Density
0.04
1

]

0.02
I

0.02
I

0.00
L
0.00

r T T T 1 r T T T 1
260 270 280 290 300 260 270 280 290 300

Maxima Maxima

(a) Gumbel model (b) GEV model

Figure 2.21: Density plots for the annual maxima methods, Andenes.
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2.4.8 Viker

Viker has, like Andenes, few years of observations available for the estimation of
the Gumbel and GEV parameters. We have maxima for the years 1991 to 2010,
i.e. 20 years and thus one year more than Andenes. For the Gumbel model,
parameter estimates are i = 147.03(3.1069) and 6 = 13.198(2.3857). For the
GEV model, i = 146.61(3.5362), 6 = 12.857(2.7606) and £ = 0.058715(0.26323).
Tables 2.15 and 2.16 show that return levels for both models are very similar, as we
expect from the similarity in location and scale parameters and small GEV shape
parameter. The 5, 10 and 20 year return levels disagree with their corresponding
published values, indicating that some other method than the Gumbel annual
maxima method has been used to estimate them.

Figure 2.22 shows that the model is quite well fitted to the annual maxima data
for Viker, but we stress again that the amount of data is likely too little to trust
the models. We see in 2.23(b) that problems arise for the longer return periods,
where the lower bound of the confidence interval behaves erratically. We see this
in table 2.16, where the lower bound of the 200 year confidence interval is actually
lower than the 5 year lower confidence bound.

Density plots in figure 2.24 seems to indicate a quite poor fit, with several bars
either much higher or much lower than the model line.

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
5 173 156.2 166.8 177.5
10 185 163 176.7 190.4
20 196 169.4 186.2 203.1
100 - 183.7 207.9 232.1
200 - 189.7 217.1 2444

Table 2.15: Estimates of return levels and confidence intervals for Viker, Gumbel
model. Values in cm.
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Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
5 173 155.5 166.8 178.1
10 185 160.4 177.5 194.7
20 196 160.5 188.2 215.9
100 - 147.6 212 276.4
200 - 139.7 220.7 301.6

Table 2.16: Estimates of return levels and confidence intervals for Viker, GEV model.
Values in cm.
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Figure 2.22: Probability and quantile plots for the annual maxima methods, Viker.
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3 The peaks-over-threshold (POT) method

3.1 Introduction

A problem with the annual maxima method is the amount of discarded data,
which is very wasteful when more frequent observations are available. A more data
efficient method is by defining a threshold u, above which all exceeding observations
are deemed extreme.

If the distribution of maxima of some sequence of independent and identically
distributed random variables X7, Xo, ... converges asymptotically to a generalized
extreme value distribution with parameters p, 0 and &, in the manner shown in
(2.1) and (2.2), then the exceedances given by Y = X — u of some high threshold
u, conditional on X > wu, are approximately independently distributed as

—1/¢

Hy)=1- (1—1—?) (3.1)
defined on {y : y > 0,(1 + &y/o) > 0} and called the Generalized Pareto (GP)
distribution. The parameters of the GP distribution are determined by the corre-
sponding distribution of block maxima, with 6 = 0 4+ £(u — p) and & equal to that
of the corresponding GEV distribution [1]. From here on, ¢ will be referred to as
o for the sake of notational convenience.

3.2 Introducing stationarity

For many physical processes, the assumption of temporal independence is unre-
alistic. Stationarity is usually a more plausible assumption, and says that even
though variables may be dependent upon one another, their stochastic properties
are temporally homogeneous. GEV remains an appropriate model for block max-
ima of stationary series, and the GP distribution can also be shown to remain
appropriate for threshold excesses [1].

The amount of stationarity is in some sense quantified in the extremal index 0,
defined on 0 < 6 < 1. This can be seen as the tendency for the process to cluster
at the extreme levels, and we can informally say the inverse of the extremal index
is the limiting mean cluster size. This means that if § = 0.5, then extreme values
should approximately arrive in groups of two.

For the block maxima case, stationarity is mostly absorbed in the parameters,
which have to be estimated anyway. Some change in practice is necessary for
threshold excess modelling, however, A common method to overcome this issue
is declustering, where the generalized Pareto distribution is instead fitted to the
maxima of clusters. These clusters are identified by some empirical rule.
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3.3 Identification of clusters

The easiest method of cluster identification is taking a threshold and saying that
subsequent observations must be above this threshold to be part of the current
cluster. A modification can be made by allowing one or more subsequent observa-
tions to be below the threshold before the current cluster is left.

Selecting the amount of subsequent observations allowed before a cluster is left
is done by selecting a number for r, the allowed distance between observations
above the threshold. For instance, this means that if observation number 50 and
observation number 55 are both above the threshold u, they would be in the same
cluster for » > 5 since the distance between the observations is 5. For r < 5 they
would be considered to be from different clusters.

3.4 Threshold selection

To be able to use a POT model in practice, the threshold u must somehow be
located. To do this, we use that if Y has a GP distribution with scale parameter
o and shape parameter £, then

o

EY)=—— 3.2

=17 (32)

for ¢ < 1 and infinite mean otherwise. Equation (3.2) tells us that if the GP

distribution is a valid model for the excesses of a threshold uy by elements in the
series X1, ..., X,, then

Oug

, 3.3
— (33)
given that ¢ < 1. The parameter o,, is the scale parameter corresponding to
excesses of ug. A GP distribution valid for excesses of uq should also be valid for
excesses of u > g, given suitable changes to the scale parameter [1]. So for u > g,

E(X — U,Q|X > Uo) =

oy

1-¢

Ouyg + f(u - UO)

= . 34
- (3.4)

This means that E(X —u|X > u) is a linear function of u where u > uy. Equation

(3.4) therefore says that the expectation should change linearly with u where the

generalized Pareto distribution is appropriate. This can be investigated for a data

set by taking the sample mean for different u:

{(u, S nzu(x(i) — u)) fu < xmax} , (3.5)

U =1

E(X —ulX >u)=
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with z(1), ..., 2(n,) the observations exceeding u and xp., the largest of the X;.
Plotting this gives the mean residual life plot, and should be investigated for linear
trends.

Another method is available, based on fitting the model to a wide range of
thresholds. In equation (3.4) we used that there is a linear relation between scale
parameters o, above a valid threshold uy. Furthermore, shape parameters &,
should be constant. By reparametrizing the scale parameter to o, = o, — §,u, we
get a parameter which should also be constant above ug. The plot of (u,&,) and
(u, 0%) is hereby called the stability plot.

3.5 Return level estimation

If the GP distribution is suitable for the exceedances of u by X, then for z > w,

P(X > 2|X > u) = [1+g(x_“)}l/£.

g

If we denote ¢, = P(X > u), we get the level x,, exceeded on average once every
m observations by solving

G [Hé(wm_“)}_l/g _ L (3.6)
o m
Rearranging equation (3.6) gives
T = u+0o[(m,)* —1]/¢, (3.7)
as long as £ # 0. It can also be shown that for £ = 0,
Ty = u~+ oln(mg,). (3.8)

A slight change must be made to (3.7) and (3.8) to accomodate stationarity. Since
we fit the model to the n. maxima of clusters instead of all exceeding observations
ny, we have reduced the number of observations used in the model fitting. We
now have n,0 effective observations instead of n,. The m-observation return level
is therefore
T = u+ o(mO)E — 1)/€, (3.9)
for the case of £ # 0, and
Ty = u~+ o ln(md,0), (3.10)

for &€ = 0. Finally, we also make a small notational adjustment. It is much
more convenient to talk about return periods in terms of years N than number
of observations, so we say that m = N - n,. n, is then the (average) number of
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observations of year. For the sake of hourly observations n, = 24 - 365.25 = 8766,
leap years then being taken into account. This gives

rn =u+ o[(Nn,(.0)¢ — 1]/€, (3.11)
for the case of € # 0, and
rn = u+ oln(NnyG,0), (3.12)

for £ = 0.

3.6 Parameter estimation

The probability of an observation x to be larger than the threshold u, ¢, = P(X >
u), is estimated by the ratio of number of points exceeding u divided by the number
of observations,
N nu
Cu =
n

while the extremal index is estimated by the numbers of clusters above u divided
by the number of points above wu,

An estimate of (,0 is therefore n./n.
The parameters of the generalized Pareto distribution are estimated by maxi-
mum likelihood. From (3.1) we derive the log-likelihood

l(0,8) = —klna—(l—i—z)iln(l—i—{%), (3.13)
i=1

defined where (1 + o~'¢y;) > 0 and with ¥, ..., y,, the maxima of the n. clusters
of exceedances of u. For £ = 0 we get the log-likelihood

(o) =—klno —o™ "> y,. (3.14)

i=1

In practice, the parameters are estimated with the maximum likelihood procedure
in the fpot function in the evd library in R. Standard errors for the GP parameters
come from this R function as well, and are extracted from a numerical approxi-
mation of the observed information. Confidence intervals for the parameters are
then calculated by using the approximate normality of the maximum likelihood
estimator. The uncertainty in ¢, is ignored since it is usually small compared to
the errors of the other parameters [1].
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3.7 Model checking

There are several available plots to check the quality of the fit of the data to a
generalized Pareto model. First, we can look at the probability plot, which consists
of the points

{(i/(k+1), H(yw))si =1,....k},

A\ U8
H(y)=1- (1+£}/>

with

for the case of é # 0 and
H(y) =1—exp (—y)
o

for f = 0.
The quantile plot consists of points

{7/ (k4 1), y@);0 =1, ..., kY,

where

foré;«é(), and X
H™'(y) =u+61n(1/y),

for é = 0. Both probability and quantile plot should be approximately linear.
The return level plot consists of points {(N,Zy)}, where Zy is (3.11) with
estimated parameters when é # 0 and (3.12) with parameter estimates when
£=0.
We can also look at the density function of the fitted model for the range of
the threshold exceedances, and compare with a histogram of the exceedances.
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3.8 Application to water level measurements
3.8.1 Oslo

Figure 3.1(a) shows the mean residual life plot for Oslo. To select an appropriate
threshold, we search for approximate linearity within confidence bounds. The
vertical line shows where we mean to have found this, at 134 cm. The figure
doesn’t paint a completely clear picture, as is the case with most real data sets,
but from around the indicated spot and up to around 200 cm there is a certain
level of linearity.

Figure 3.1(b) shows the effect of threshold selection on the model parameters.
Ideally, the shape and modified scale parameters should be invariant to threshold
change as long as we are above the minimum threshold. We can see that this is
basically the case from the beginning of the plot and up to about 170-175 cm. A
threshold of 134 cm is within this range, and cannot be rejected based on figure

3.1(b).
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Figure 3.1: Threshold selection plots for the POT model, Oslo.

Having selected a threshold, we go on to select the allowed distance between
points in a cluster, our r. Figure 3.2(a) shows the behaviour of the extremal
index as we increase the allowed distance between observations in a cluster. The
extremal index declines quite sharply until about » = 12, then almost flattens out
before declining faster again. A similar tapering in the steepness of the curve is
seen at about r = 24, and possibly at about r = 36.

Since each observation is spaced an hour between, these changes in steepness
coincide with the 12 hour cycle of the lunar tidal component. It is therefore safe
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to assume that extreme storms above u = 134 may last from one high tide to
another. This suggests selecting a value of r larger than 12 to encapsulate the full
length of such storms. But it doesn’t seem plausible to have » much larger, since
if we the tide was the dampening factor, then the subsequent rising tide should
bring the storm with it up to extreme levels again.

More insight into the choice of r is granted by looking at figure 3.2(b), which
shows the development of the 200 year return level as we increase r from 1 to
40. The return level stays approximately constant from r = 1 to r = 5, but
increases relatively sharply from there and up to r = 8. It then decreases just as
sharply, before staying relatively constant from r = 12 up to about r = 22. It
then drops sharply, before staying constant up to r = 36 again. For r € (1,5)
and r € (12,22), the return level is approximately the same. Having argued that
r shouldn’t be much larger than 12, we therefore choose r = 1 since this gives
approximately the same result while using more data.
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Figure 3.2: Change in extremal index and 200 return level as calculated by a POT
model, for Oslo.

With the threshold at 134 cm, the model parameters were estimated to be
¢ = 0.01923(0.02547) and 6 = 13.993(0.4939) by the fpot function in the evd
package in R. From the 778199 points in the data series, 7364 points are above
the chosen threshold, giving an estimate of ¢ of { = 0.00946. From the 7364
points above the threshold, 1675 clusters were identified, giving an extremal index
of § = 0.22746. All this gives the return level estimates shown in table 3.1.

The listed published values are not those featured on the Vannstand.no [9], but
rather those collected from a previous GEV analysis performed by the authorities
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[3]. We see that values are quite similar, but the difference increases with longer

return periods.

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
1 179 170.6 176.3 182.7
D 195 189.3 200.5 213.9
10 207.3 197 211.1 228.5
20 218.6 204.7 221.9 243.8
100 241.8 221.7 247.6 282.2
200 250.8 228.8 258.9 300

Table 3.1: Return level estimates and confidence intervals for the POT model, Oslo.
Values in cm.

Figure 3.3(a) shows probability and quantile plots for the model compared
with actual data. The points represent the maxima of the identified clusters. The
probability plot doesn’t reveal any problems with the model, since the points and
the line seem to coincide perfectly. The quantile plot also show points that are
mostly on the line, but a couple of points are not fully located on it. In summary,
figure 3.3(a) shows that the model with estimated parameters fits very well to the
maxima of the identified clusters.

The next plot is the return level plot in figure 3.3(b). All points are contained
within confidence bounds, and most of them stay on or very close to the line.
Points above 185 cm behave somewhat more erratically than those below, but not
to a dramatic extent. This level corresponds approximately to the level in which
the stability of parameters, as displayed in figure 3.1(b), begins to wear off.

Finally, the density plot in figure 3.3(c) shows a good fit for the model to the
excesses of the threshold v = 134.
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Figure 3.3: Model diagnostics for the POT model, Oslo.
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3.8.2 Heimsjg

Figure 3.4(a) shows the mean residual life plot for the Heimsjp data. Approximate
linearity is found around the vertical line, which is placed at u = 287. The stability
plot in figure 3.4(b) shows the effect on the model parameters of threshold change
around the 287 cm mark. Around and above 280 cm up to around 325-330 cm,
parameters are approximately constant.
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Figure 3.4: Threshold selection plots for the POT model, Heimsjg.

We continue by finding an appropriate value of r for the identification of in-
dependent clusters and the estimation of the extremal index. Figure 3.5(a) shows
how the extremal index estimate behaves. It is close to piecewise constant, with
significant drops at around r = 10 to 12 and at r = 24. Figure 3.5(b) shows that
there is quite little difference between the estimate for r = 1 and larger r. The
difference is somewhat larger than we found in Oslo, however, and we choose an r
to include storms crossing from one tide to another. We therefore set r = 13.

With the 287 cm threshold, model parameters are estimated as 6 = 13.709(0.65293)
and € = —0.11634(0.030375). From the 686867 points in the Heimsjo data set,
2363 points are above 287 cm, giving an estimate of f = 0.0034403. From the
points above the threshold, 733 clusters were identified, giving an extremal index
of § = 0.3102.

Return level estimates are presented in table 3.2. They go from slightly over-
shooting to slightly undershooting the published return levels, but all are certainly
within confidence bounds.
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Figure 3.5: Change in extremal index and 200 return level as calculated by a POT

model, for Heimsjg.

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
1 312 310 314 318.5
5 329 321.7 329.5 338.8
10 337 325.9 335.3 347
20 345 329.5 340.7 354.8
100 - 336.5 351.7 372
200 - 338.9 355.8 378.9

Table 3.2: Return level estimates and confidence intervals for the POT model, Heimsjg.

Values in cm.

To see how well the model fits to the maxima of the identified clusters, we

first look at figure 3.6(a).

For the highest sea levels, there are some issues with

the model fit. This is better seen by looking at the return level plot in figure
3.6(b), which shows irregularities after about 330 c¢cm - corresponding to the level
after which parameters in figure 4(b) are no longer near-constant. The five highest
points are above the model line, and it seems possible that return levels for long

return periods can be underestimated.

The density plot in figure 3.6(c) doesn’t reveal any new bits of information,

but shows an overall good fit as far as density is concerned.
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3.8.3 Honningsvag

The mean residual plot in figure 3.7(a) shows tendencies of linearity within confi-
dence bounds slightly before the 280 cm mark. We select a threshold of 278 cm,
indicated by the vertical black line. The stability plot in figure 3.7(b) is far from
constant up to around 275-280 cm, but from there it is reasonable to call the pa-
rameters near-constant up to perhaps 310 cm. The threshold v = 278 is therefore
barely within the acceptable area as far as the stability plot is reckoned.
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Figure 3.7: Threshold selection plots for the POT model, Honningsvag.

To find an appropriate level of r, we first turn to figure 3.8(a). Honningsvag
is tide-dominant like Heimsjg, and the same pattern is shown here as there; the
extremal index plot is approximately piecewise constant. Figure 3.8(b) shows a
similar pattern as that for Heimsjg as well, but the differences in return levels are
much larger. The values for » < 10 and r > 24 are about the same, however.
The difference is large enough to not be within confidence intervals, and we choose
r = 13 since we earlier argued for a r > 12.

A threshold of 278 cm gives estimated model parameters of & = 14.692(0.52962)
and £ = —0.024785(0.025902). There are 330883 sea level measurements in the
Honningsvag data, 9264 of which above 278 cm. This makes for an estimate of
f = 0.027998. From the points above the threshold, 1590 clusters were identified,
giving an extremal index of 6 = 0.17163.

Return levels are featured in table 3.3, where there is little difference between
the POT estimates and published values.
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Figure 3.8: Change in extremal index and 200 return level as calculated by a POT
model, for Honningsvag.

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
1 330 322.5 330.5 339.8
5 348 338.1 351.6 368.3
10 357 344.2 360.5 380.9
20 366 350.1 369.2 393.8
100 - 362.5 388.8 424.6
200 - 367.4 397 438.3

Table 3.3: Return level estimates and confidence intervals for the POT model, Hon-
ningsvag. Values in cm.

The quantile plot to the right in figure 3.9(a) shows that a few points at the
top are off the line, with figure 3.9(b) giving a clearer impression. It looks likely
that higher return levels may be overestimated, although all points are within
confidence intervals.

The density plot in figure 3.9(c) shows a relatively good fit.
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Figure 3.9: Model diagnostics for the POT model, Honningsvag.
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3.8.4 Narvik

In the mean residual life plot in figure 3.10(a), we locate the start of approximate
linearity within confidence bounds to about u = 360. The stability plot in figure
3.10(b) shows that the shape and modified scale parameters are approximately
constant around the threshold and up to around 400, and it supports a threshold
of 360 cm as reasonable.
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Figure 3.10: Threshold selection plots for the POT model, Narvik.

Narvik is tide-dominant, and the plots in figure 3.11 show the same tendencies
as those for Heimsjg and Honningsvag. The difference in return levels isn’t as large
as in Honningsvag, and is within confidence intervals. We choose r = 13 like in
the previous tide-dominant locations.

Estimates of the model parameters are 6 = 17.725(0.76052) and £ = —0.063107
(0.029946) with u = 390. There are 614738 data points available for Narvik,
with only 481 above the threshold of 390. This makes for an estimate of ( of
f = 0.0057878. From the points above the threshold, 1055 clusters were identified,
giving an extremal index of 6 = 0.29651.

The resulting return level estimates are provided in table 3.4. All published
values are within their corresponding estimated confidence intervals, with the 5
and 10 year estimates particularly close to official values.

Probability and quantile plots in figure 3.12(a) show that the fit is relatively
good, but with some issues at the highest levels as usual. The return level plot in
figure 3.12(b) fortifies this notion with a clearer view of the behaviour of points for
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Figure 3.11: Change in extremal index and 200 return level as calculated by a POT

model, for Narvik.

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
1 402 397.5 404.2 411.8
5 427 414.5 427 442.2
10 439 420.9 436.2 455.3
20 451 426.8 444.9 468.3
100 - 438.6 463.9 498.3
200 - 443 471.4 511.2

Table 3.4: Return level estimates and confidence intervals for the POT model, Narvik.

Values in cm.

long return periods. Quite a few of the points highest up are off the model line,
but they stay well within confidence bounds.

The density plot in figure 3.12(c) completes the picture of a relatively good fit
to the maxima of the identified clusters.
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Figure 3.12: Model diagnostics for the POT model, Narvik.
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3.8.5 Harstad

Figure 3.13(a) shows the mean residual life plot for the Harstad data. Linearity is
a reasonable assumption from the vertical line, located at v = 255. The stability
plot in figure 3.13(b) agrees with this assumption.
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Figure 3.13: Threshold selection plots for the POT model, Harstad.

The plots in figure 3.14 show the same pattern as other tide-dominant lo-
cations, and we choose r = 13. With the threshold at 255 cm, the parameter
estimates are through maximum likelihood calculated to be 6 = 12.342(0.69501)
and £ = —0.084862(0.041516). There are 485855 sea level measurements in the
Harstad data set used here, with 2581 points above the threshold v = 255. This
corresponds to ¢ = 0.0053123. From the points above the threshold, 686 clusters
were identified, giving an extremal index of 0 = 0.26579.

Return level estimates are found in table 3.5. The 1 and 5 year return levels
are very similar to the published values, and the confidence bounds of the 10 and
20 year estimates comfortably contain the corresponding published values.

Figure 3.15(a) shows a couple of poorly fitted points at the top of the range.
The return level plot in figure 3.15(b) shows better the behaviour of the model
curve at high levels, and we see that it somewhat underestimates the points highest
up. The density plot in figure 3.15(c) seems to indicate a good model fit.
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Figure 3.14: Change in extremal index and 200 return level as calculated by a POT
model, for Harstad.

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
1 281 277.6 283 289.3
5 299 287.8 298 311.1
10 308 2914 303.8 320.5
20 316 294.6 309.3 329.8
100 - 300.8 321 351.4
200 - 303 325.5 360.6

Table 3.5: Return level estimates and confidence intervals for the POT model, Harstad.
Values in cm.
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Figure 3.15: Model diagnostics for the POT model, Harstad.
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3.8.6 Tregde

For Tregde, the mean residual life plot in figure 3.16(a) is more or less linear within
confidence intervals from about v = 70 up to u = 125. After this there are few
points available and the plot behaves erratically.

The stability plot in figure 3.16(b) shows that the parameters are near-constant
from right after u = 60 and up to around w = 100. A threshold of u = 70 is
acceptable.
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Figure 3.16: Threshold selection plots for the POT model, Tregde.

Surge-dominant Tregde has plots in figure 3.17 looking similar to those for Oslo,
with more smooth transitions in value of the extremal index than the corresponding
plots for tide-dominant locations. Like for Oslo, we see that the 200 year return
level for r = 1 is quite similar to those after the spike between r = 3 and r = 12.
We therefore choose r = 1 like we did in Oslo.

A threshold at 70 cm is quite low when looking at the percentage of points
still above u: 51136 points from a total of 700491 points, meaning 7.3 % above
and ¢ = 0.07300. Estimated parameters are £ = —0.04554(0.01027) and 6 =
11.206(0.1721), while the number of clusters is 7655 and therefore § = 0.14970.

With the parameters as presented above, return level estimates are provided
in table 3.6. Low levels are very close to their published counterparts.

The quantile plot in figure 3.18(a) shows that the six highest cluster maxima
are poorly fitted by this model. This can be a result of fitting with a slightly low
threshold, so that there are too many points at relatively low levels. This means
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Figure 3.17: Change in extremal index and 200 return level as calculated by a POT

model, for Tregde.

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
1 114 112.8 116.2 119.7
5 129 125.2 130.3 135.9
10 136 130.1 136.1 142.7
20 143 134.8 141.7 149.4
100 - 144.9 154 164.4
200 - 148.9 159 170.7

Table 3.6: Return level estimates and confidence intervals for the POT model, Tregde.

Values in cm.

that long period return levels are likely to be somewhat underestimated, at least

if the trend of the six topmost points is to be believed.

This notion is further supported by the return level plot, shown in figure
3.18(b), where the six aforementioned points touch the upper boundary of the
confidence interval. Although no points are definitely outside, they are too close
for comfort. The density plot in figure 3.18(c) doesn’t offer any new information.



58

3 THE PEAKS-OVER-THRESHOLD (POT) METHOD

H(yy)

Probability plot Quantile plot
;
3 e
€
s
ER g T
? & E
> c
o El
< | S - 7
o = o
o 8
T T T T T T T T T T T
00 02 04 06 08 10 80 100 140 T T T T T T
|/(m " 1) H,l(l/(m +l)) 0.1 05 1.0 50 100 50.0
Return period (years)
(a) Probability and quantile plot. (b) Return levels (cm) for increasing re-
turn periods (years).
S
\\
g |
Q \
o \
\
8 ] \
g
g
T T T T 1
0 20 40 60 80

Excesses of u

(c) Histogram of excesses versus model
density.

Figure 3.18: Model diagnostics for the POT model, Tregde.
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3.8.7 Andenes

In the mean residual life plot for Andenes, shown in figure 3.19(a), a certain level
of linearity is found from about w = 240. The stability of the threshold choice
is shown in figure 3.19(b), which shows a that parameters are near-constant from
about just before 250 to slightly after 260. From 240 to 250 there is a sharp
change in parameters, the same is true slightly after 260 cm. A threshold of
u = 250 seems likely, and we select this. This threshold is marked by a vertical
line in figure 3.19(a).
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Figure 3.19: Threshold selection plots for the POT model, Andenes.

We now wish to select the appropriate . Andenes is tide-dominant, and the
usual pattern for such locations is seen in the plots in figure 3.20. We select r = 13
as usual for such locations.

With the threshold at 250 cm, the parameters are estimated to be & = 15.205(1.6561)
and £ = —0.18948(0.07891). There are 169556 sea level measurements in the An-
denes data set used here, with 676 points above the threshold. This corresponds to
f = 0.0039869. From the points above the threshold, 171 clusters were identified,
giving an extremal index of § = 0.25296.

Return levels estimated by the above-mentioned parameters are shown in table
3.7. Because of the limited data available at the time that return level analyses
were made, no published values are available for comparison. Since there is still
not much data available, caution should be applied in trusting the estimates.

The probability and quantile plots in figure 3.21(a) show a generally good fit,
though with some points off the line at the top. The return level plot in figure
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Figure 3.20: Change in extremal index and 200 return level as calculated by a POT
model, for Andenes.

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
1 - 268.3 277.1 288.7
5 - 275.3 291.1 315.5
10 - 277.3 295.9 326.6
20 - 278.9 300.1 337.4
100 - 281.4 308.1 361.5
200 - 282.1 310.8 371.5

Table 3.7: Return level estimates and confidence intervals for the POT model, Andenes.
Values in cm.

3.21(b) shows the same thing, but points are well within confidence interval and
most points are on the model line. The density plot in figure 3.21(c) shows an
overall good fit.
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Figure 3.21: Model diagnostics for the POT model, Andenes.
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3.8.8 Viker

The mean residual life plot for Viker is approximately linear, at least within confi-
dence bounds, from about u = 105 up to u = 175. This is shown in figure 3.22(a),
where v = 105 is marked by the black line. We review this choice by looking
at figure 3.22(b), which shows that there is some fluctuation in the parameters
around the 105 cm mark. Still, the parameters are approximately the same when
compared to the large fluctations starting at around 140 cm.
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Figure 3.22: Threshold selection plots for the POT model, Viker.

As Oslo and Tregde, and as opposed to Heimsjg, Honningsvag, Narvik, Harstad
and Andenes, Viker is surge-dominant. This is reflected in figure 3.23, which shows
that 200 year return estimates are similar for » = 1 and r > 12. As we did in
Oslo and Tregde, we select r = 1. With the 105 cm threshold, model parameters
are estimated as & = 0.00594(0.04230) and & = 13.171(0.7614). From the 175873
points in the Viker data, 3453 points are above 105 cm, giving a ( estimate of
f = 0.01963. From the points above the threshold, 644 clusters are identified,
meaning an extremal index of 6 = 0.1865.

Table 3.8 shows the resulting return level estimates, presented alongside pub-
lished, official values. The values agree very closely, but it is worth mentioning
that the official estimates are based on data for only 1990-2000 and need not be
the most dependable estimates.

To see how well the model is fitted to the cluster maxima, we first look at
the probability and quantile plots in figure 3.24(a). The fit is very good, with no
points far off the line. Secondly we look at figure 3.24(b), which shows that there
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Figure 3.23: Change in extremal index and 200 return level as calculated by a POT
model, for Viker.

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
1 149 140.6 151.2 164.6
5 173 154.1 172.9 199.1
10 185 159.4 182.3 215.6
20 196 164.5 191.8 233.1
100 - 175.2 213.9 278.1
200 - 179.5 223.5 299.6

Table 3.8: Return level estimates and confidence intervals for the POT model, Viker.
Values in cm.

are a few points at the high levels that are off the line, but they are all well within
confidence bounds. The density plot in figure 3.24(c) agrees that the fit is good.

In summary, the fit of the model to the cluster maxima is good, even though
there are some stability issues around the chosen threshold. Furthermore, the data
set is quite limited.
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Figure 3.24: Model diagnostics for the POT model, Viker.
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4 Revised Joint Probabilities Method

4.1 Introduction

The revised joint probabilities method (RJPM) is an attempt by Tawn [7] to
improve the joint probabilities method (JPM) employed by Pugh and Vassie.
Whereas the latter assume that hourly surge levels are independent, Tawn ar-
gues that this is a clearly false assumption. Instead he uses that, provided a weak
mixing condition holds, then for a stationary sequence Xi, ..., X,,,

P(max{X, ..., X,} < z) ~ [P(X; < z)]" (4.1)

for large x, and 0 < 6 < 1. 0 is the extremal index, and §~ ! is defined as the limit
of 71(x) as x tends towards the upper end point of the distribution of X. 671(x)
is defined as the mean of the distribution of cluster sizes. The extremal index can
be equal to 1 for both dependent and independent sequences, when the sequence
behaves like an independent sequence at high levels.

The RJPM method relies on componentwise analysis of the sea level Z. It is
divided into three components,

Zy =M+ Xy + Y3,
where M, is the mean sea level, X; the tidal level and Y; the surge level. For the

purposes of this introduction, M; = 0 for all t. The tidal level X; is estimated by
a numerical model.

4.2 A distribution for surges

If N is the number of hours in a year, surge levels Yi,...Yy are taken to be a
realization of a stationary sequence. Extreme value theory [1] then dictates that

max{Y], ..., YN} ~*GEV (us, 05, &), (4.2)

where GEV denotes the Generalized Extreme Value distribution in equation (2.2).
Applying the approximation in equation (4.1) to surges, we get

P(max{Yi,..., Yy} <y) = Fy(y)"%. (4.3)

for large values of y, say y > u. Fy is the marginal distribution for surges, while

05,0 < 0, < 1 is the extremal index for surges. Combining equations (4.2) and
(4.3) then gives that

Fy(y) = exp {—(N@S)l [1 + fsy — ,us] _1/65} for y > u, (4.4)

S

on {y : 1+ &(y — ps)/os > 0}, with o, > 0 and arbitrary & and j,. Below the
level u, the empirical distribution function F'(s) is taken as a sufficiently accurate
estimate.
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4.3 Finding the distribution for annual sea-level maxima

If T is the tidal cycle length in hours, we have|[7] that
P(max{Z,... 27} <z2)=PY,<z— X fort=1,..,T}, (4.5)

which would equal [T, F(z — X;) if hourly surges were independent. But since
they are dependent, the product is modified by an hourly sea level extremal index

0:
0

P(max{Zi, ..., Zr} < z) = {f[l Fi(z — Xt)} , (4.6)

where 05 < 6 < 1. Combining equations (4.6) and (4.4) gives the RJPM distribu-
tion for annual maximum sea levels,

z— s — X, —1/¢s
1_’_58”11 }

G(z) = exp {—G(TQS)_I >

t=1

(4.7)

Os

where z > u + max{ Xy, .. Xr}.

4.4 Including interaction between tide and surge

Equation (4.7) shows the case where the surge distribution Fi(-), and therefore its
parameters g, 0, and &, is independent of the concomitant tidal level. Unfortu-
nately, the assumption that tide and surge are independent processes is poor in
shallow water areas, where turbulent frictional processes on the sea bed cause the
tide and surge components to interact. This causes effects such as surge values at
high tides being damped and surges on the rising tide being amplified [2]. These
effects vary from site to site however, so we will attempt to model the interaction
on the residuals from the observed surges.

4.4.1 Testing for interaction

The tidal range from lowest observed tide (LAT) to highest observed tide (HAT) is
split into n; equi-probable bands, i.e. each band has an equal amount of observed
measurements. For each of the tidal observations, there is a concurrent surge
observation. This means that if there are n; tidal bands and n,,s observations in
total, there are mn,s/ny, observations of both the tide and surge in each band.

If the tide and surge were independent, an equal amount of points should also
be expected to exceed a given level u. But if there is interaction, then the least
number of points should be in the top band where surges are damped. Similarly,
the largest number should be in the middle bands where surges are magnified. The
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amount of discrepancy between bands will therefore be a quantifiable measure of
the tide-surge interaction.

We choose u to be a high empirical quantile of the surge distribution, z, for
g = 0.9975. For the independent case, there should then be (1 — q) - nyps/np = €
observations in each band. We choose n, = 5 as in [2], meaning ng - 0.0025/5 = e
observations per tidal band. In actuality, since independence is a flawed assump-
tion, we observe N; surges per band, for i =1, ...,

To put the interaction into a quantifiable setting, we use a standard y? test
statistic,

X’=>

=1

5 (N o 6)2

~r 4.8

- (1)

If N; =~ e, then x? will be small. Tide and surge are deemed to interact with 95 %

confidence if the test statistic is above the associated 4 degrees of freedom table
value of x7 45 = 9.488.

4.4.2 Modelling the tide-surge interaction

We adopt the method used in [2], where the surge series is location-scale normalised
by
Y: — a(Xy)

b(X)
where a(X;) and b(X;) are some tide-dependant functions. {S;} is then supposed
stationary, and we can use established methods to estimate the associated model

parameters g, 0g and Eg. The parameter estimates for the original surge series
are then given by

Sy = : (4.9)

ILLS(X) = /~Ls*b<X) + CL(X)v 05<X) = Us*b(X)a and és(X> = s (410>

Equation (4.7) is then modified to

2 s t) —alAy) — Ay e
G(2) :exp{—G(Tﬁs)_lz [Hgﬁ Hs bEiBb(Xt)(;( ) =X ] } (4.11)

=1
for 2 > w + max{Xj,..Xr}. Below this threshold the empirical distribution
Fo(ly — a(X)]/b(X)) is a sufficient approximation.

4.4.3 Estimating the normalisation functions a(X) and b(X)

As in the interaction test in section 4.4.1, the tidal range is divided into n
bands, with equal numbers of tidal and concomitant surge observations in each.
These bands are separated by points z, z1, ..., Z,,, such that each band is given
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by [%o,x1), [T1,%2), .oy [Tny—1, Tn,]- A point X, is then in the ith tidal band if
xi—1 < X; < x;. LAT corresponds to xy and HAT to z,, .

We then define a;; and ag; for i = 1,...,n as the 98% and 99% empirical
quantiles of the empirical surge distribution in band ¢. Finally, we denote the
midpoints of each band as m; = (z;_1 + x;)/2 for i = 1, ..., n.

With the above definitions, we define estimates of a(X) and b(X) as a(X) =
a1(x) and b(X) = ay(x) — ay(z), where

aj1 for LAT < X < mq
&](X) = aj; sziﬂTZZill —+ ajﬂi_lmiizil;ni for mi_q < X < m; (412)
@jn, for m,, <X < HAT

with ¢ = 2, ..., ny. In this sort of interaction modelling, we need to select a suitable
number of bands n,. As baseline number of bands we take n, = 5, as adopted in
[2]. We will review this choice for each data set, however. The selection of number
of bands is a classic case of bias versus variance, as we need ny, to be large to reduce
bias where as variance then increases.

4.5 Estimating return levels with RJPM

4.5.1 Estimation of surge distribution parameters

In the 1992 and 1994 reports|7][2] the r-largest method is applied to estimate the
parameters of the surge distribution. This method is a modification of the GEV
annual maxima method, and uses the r largest values per year to estimate model
parameters.

We choose instead to use the threshold used in the estimation of 65 and apply
the POT method to estimate model parameters, a method which has the advantage
of using much more data. We use the fact that for a POT model, épor = Egpy = €
for the corresponding GEV model, with opor = ogpv + & - (u — parv) [1)-

In practice, the shape and scale are estimated with a maximum likelihood
procedure by the function fpot in the R package evd, while the location parameter
is calculated by the fgev function. This is also the case for the confidence intervals
of model parameters. We fit the model to the maxima of clusters, where the clusters
are identified by the same rule that governs the estimation of 6.

4.5.2 Estimation of extremal indices

The extremal indices 6 and 6, require two choices each; a threshold above which
clusters are counted and an empirical clustering rule which says how many non-
exceedances are allowed before we have left the current cluster. For the first choice,
we use the quantile that was found in the POT analysis in section 3. There a
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thorough analysis was done on where the threshold should be placed, and it makes
sense using this same threshold to estimate . Applying the procedure of using the
same quantiles for both extremal indices, as was done in [2], we get corresponding
thresholds for the surge series and the estimation of 6, as well.

For the second choice, we need to decide what constitutes an independent
storm. In [2], they found that r = 30 was a good choice, and that the ratio of
extremal indices wasn’t too dependent on this choice in any case. In this analysis
the results are more sensitive to this choice, since we opt to use the POT method
with clustering to estimate model parameters. We still choose to use this r value
of 30.

4.5.3 Estimation of return levels

A practical challenge with the RJPM method is that (4.11) is impossible to solve
analytically for z. We start out by defining G(z,) = 1 — p and get the relation in
(4.13)

T — (X)) — a(X,) — X, |V
700 In(1 —p) = S |14 g, 2 P ! ,
( p) Z f (O'S*b(Xt>>

t=1

(4.13)

but we cannot go further by algebraic manipulation. We therefore develop a nu-
merical procedure where the right side of the equation is calculated for a range of
relevant z and then matched to the left side of the equation.

The tidal cycle length is 18.61 years, meaning that 7" = 18.61-8766 = 163135.3 ~
163135. Any span of consecutive 163135 observations should therefore approxi-
mately contain a full tidal cycle, and in our numerical procedure we take the last
163135 observations in the tidal series.

The numerical procedure is written in R, and the relevant algorithms and
functions are found in the appendix of this thesis.
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4.6 Application to water level measurements

Location Ratio of tidal and observed maxima Ratio of mean annual maxima
Oslo 0.424 0.562
Heimsjg 0.822 0.904
Honningsvag 0.871 0.925
Narvik 0.832 0.906
Harstad 0.861 0.903
Tregde 0.434 0.567
Andenes 0.849 0.873
Viker 0.430 0.514

Table 4.1: Ratio of tidal versus observed total maxima and ratio of means of tidal and
observed annual maxima.

4.6.1 Oslo

We begin by observing some characteristics of the data sets, seen in table 4.1.
We see that the maximum of the tidal values is only about 42% as large as the
maximum of the measured values. We also see that the mean of annual maxima for
tidal values divided by the mean of annual maxima for measured values is 0.562.
These values show that a large percentage of the observed sea levels arise from
surges.

Locations with such characteristics are called surge-dominant, as opposed to
tide-dominant where most of an observed sea level stems from the current tidal
level. Areas where surge dominates usually do not have as much tide-surge inter-
action as tide-dominant areas, but we still use the x? test in (4.8) to quantify the
amount.

By using 5 tidal bands and cutting the data at the 99.75% quantile, we expect
389 surges per band. Instead we get 346, 380, 398, 431 and 386 points per band,
in order from lowest tide level to the highest. This is not a very bad result, but
there is still evidence of significant tide-surge interaction. The test statistic has a
result of x* = 9.778, compared to the table value of xj g5 = 9.488.

Since the y? test shows a significant level of interaction, we try to model it
using 5 tidal bands. Figure 4.1(a) shows the tide against surge data to the left,
and tide against transformed surge data to the right, both showing only points
above the 99.75% quantile. There seems to be very little difference between the
left and the right plots except for the scales on the z axes. The left hand side
of figure 4.1(b) shows the reason for this, where the correction vectors a;(X) and
a2(X) are almost vertical. The former varies between 51 and 52.38, while the
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latter varies between 61 and 61.59. And in fact, the corrected surge performs even
poorer on the x? test, with a score of y? = 14.270.

Figure 4.1(c) shows hows the ratio between the x? test statistic and the cor-
responding x;. _; o.95 value develops after 2-30 bands have been used to transform
the surge data. x*/x; 1095 = 1 is indicated by the horizontal line, and ratios
above this correspond to 2 tests showing significant interactione. We see that for
n, = 2 and n, = 15 the interaction is insignificant, but for n, = 2 the interaction is
insignificant for the untransformed data as well, with a test statistic of 1.85 versus
the corresponding table value of 3.84. Transforming the data with n, = 15 seems
needlessly complex for a model where there hardly was significant interaction in
the original test. Furthermore, there is little actual difference in return levels.
The same is true if we compare them to the return levels achieved using no tide-
surge correction. For parsimony we therefore select the model without correction,
based on (4.7) instead of (4.11). Estimated parameters are iy = 95.655(2.3134),
6, = 17.576(1.0531), £, = —0.0488(0.0389), A = 0.0788 and 6, = 0.0679.

Resulting return levels and confidence intervals are shown in table 4.2. They
are very similar to the published values.

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
5 195 184.1 194.5 207.6
10 207.3 192.5 206.7 225.2
20 218.6 200 217.9 242.5
100 241.8 215 242 282.9
200 250.8 220.7 251.8 300.7

Table 4.2: Return levels and 95% confidence intervals for the RJPM model, Oslo.

Values in cm.
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4.6.2 Heimsjg

Heimsjg is tide-dominant, and we see in table 4.1 that its characteristics show that
there is a quite small distance between the maximum of its tidal series and the
maximum of observed sea levels. This also holds for the mean of annual maxima
from tide calculations and observations. Tide-dominance usually implies larger
tide-surge interaction than surge-dominance, and the x? test for Heimsjg certainly
lives up to this expectation. With 5 tidal bands and cutting at the 99.75% quantile,
we expect about 343 surge observations per band. Instead we get 790, 479, 288,
112 and 75 points per band. As expected for a tide-dominant location, the least
number of points are in the highest tidal band, where the high tide dampens surges.
By far the most points are in the bottom band.

The huge discrepancy between expected and observed number of surges in each
band leads to a massively large value for the x? test statistic, with x? = 1007.3
compared to the table value of x7 (o5 = 9.488. We try transforming the data with
2 to 30 bands, the results of which are shown in figure 4.2(c). The ratio never
drops below 1 as we would wish, but instead we choose n, = 12, which gives a
relatively low ratio compared to other choices. It gives x? = 89.865 versus the
quantile value of x11,.95 = 19.675. Figure 4.2(a) shows that the number of points
in each band is much more similar in the transformed case to the right of the figure
compared to the left, uncorrected side.

Estimated parameters are fig = 3.4942(0.2826), 64+ 1.6708(0.1604), és* = 0.0736
(0.0793), § = 0.1060 and f,- = 0.0627. Details of the correction vectors a(X),
d2(X) are omitted, but visually shown in figure 4.2(b).

Return level and confidence intervals are shown in table 4.3. The short period
return levels are quite different from their published counterparts, but the upper
confidence bound of the 20 year return level estimate contains the corresponding
published value. This could perhaps be explained by the tide-surge interaction
still present, but estimation of return levels without any tidal bands also show this
apparent underestimation of short period return levels. The standard error of the
estimated & larger than the estimate itself, and the estimate being positive means
very large upper bounds for long return periods.
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Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
5 329 314.6 318.2 323.5
10 337 321.1 325.4 336.1
20 345 327 333 354
100 - 339.3 352.5 422.4
200 - 344.1 362.1 466.5

Table 4.3: Return levels and 95% confidence intervals for the RJPM model, Heimsjg.

Values in cm.
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4.6.3 Honningsvag

Honningsvag is tide-dominant like Heimsjg, but the x? test shows much less in-
teraction than in Heimsjg. It is still significant on a 95% confidence level, with
x? = 23.652. Figure 4.3(c) shows how the x? ratio develops. After n, = 2 it
doesn’t go below 1 until n, = 25, but for n, = 16 it is quite close and we choose
this. Here we have that x* = 26.106 against x35 995 = 24.996. Figure 4.3(a) shows
the surge data before and after transformation with 16 tidal bands.

Estimated parameters are fiy- = 2.9430(0.2738), 6,» = 1.6169(0.1238), &, =
—0.0408(0.0495), § = 0.0848 and - = 0.0428. Details of the correction vectors
a1(X), az(X) are omitted, but visually shown in figure 4.3(b).

Return levels and confidence intervals are shown in table 4.4. As was the
case for Heimsjg, the return level estimates for Honningsvag are lower than the
published values.

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
5 348 331.3 332.4 335.6
10 357 339.1 341.9 347.9
20 366 346.1 350.9 360.4
100 - 360.2 370.6 390.7
200 - 365.6 378.7 404.4

Table 4.4: Return levels and 95% confidence intervals for the RJPM model, Hon-
ningsvag. Values in cm.
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4.6.4 Narvik

Narvik is tide-dominant, and the x? test shows a large amount of tide-surge in-
teraction. With 5 tidal bands as usual, we get x* = 71.100. Figure 4.4(c) shows
the ratio between test and corresponding table value after transforming with 2-
30 tidal bands. The ratio drops below 1 at n, = 10, and we choose this for the
transformation of the surge series. Figure 4.4(a) shows the series before and after
correction with 10 bands.

Estimated parameters are fi,- = 4.2648(0.3184), &, = 1.5218(0.2326), &, =
0.13344 (0.1102), § = 0.3742 and f,- = 0.2100. Details of the correction vectors
a1(X), az(X) are omitted, but visually shown in figure 4.4(b).

Table 4.5 shows return levels for 5, 10, 20, 100 and 200 year return periods.
Again the return levels seem to be underestimated for low return levels, but the 20
year published value is contained in the confidence intervals of the corresponding
estimate. The estimated shape parameter fs* is positive, and the standard error
is about the same size, making the upper confidence bound very large.

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
5 427 408.2 416.3 424.1
10 439 417.3 424.8 437.4
20 451 425.6 434.2 461
100 - 443 460.8 568.9
200 - 449.9 474.7 645.9

Table 4.5: Return levels and 95% confidence intervals for the RJPM model, Narvik.

Values in cm.
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4.6.5 Harstad

Harstad is another tide-dominant location, with tide-interaction at approximately
the level of Honningsvdg. The y? test statistic has a result of 21.658, and is
thoroughly significant. We use figure 4.5(c) for guidance in selection of number of
bands, and end up with n, = 7. We see that we stay below 1 for all choices of
band number after this, but select the smallest n;, for simplicity of model as well
as because it has the lowest ratio. Figure 4.5(a) shows the surge series before and
after transformation with 7 tidal bands.

Estimated parameters are fiye = 2.9972(0.2613), 6,» = 1.6034(0.1837), &, =
—0.0394 (0.0825), § = 0.1767 and f,- = 0.0690. Details of the correction vectors
a1(X), G2(X) are omitted, but visually shown in figure 4.5(b).

Table 4.6 shows the return level estimates, which as usual for tide-dominant
locations are below those published by the authorities for applicable return periods.
The standard error for the shape parameter is very large here, being about the
twice the size of the absolute value of the estimate itself.

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
5 299 283.6 286 290.4
10 308 289.5 292.8 300.1
20 316 294.7 299.1 311
100 - 304.9 312.8 341.1
200 - 308.7 318.8 356.5

Table 4.6: Return levels and 95% confidence intervals for the RJPM model, Harstad.
Values in cm.
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4.6.6 Tregde

Tregde is surge-dominant, and we expect less tide-surge interaction than for the
tide-dominant locations. This is certainly not what we find, as with the 5 tidal
bands the test statistic is xy* = 160.09. We expect about 350 points per band
under independence, but get 150, 361, 356, 436 and 440. This is not what we
would have expected if Tregde was tide-dominant, since the least amount of points
then should be at the top. Since Tregde isn’t as dominated by tide, we see that
large surges coincide more with large tides.

In any case, we see that the lowest band has almost less than half as many
points as ideally expected, and need to transform the surge series to get a more
even distribution of points. Figure 4.6(c) shows how the transformed surge series
performs on the y? test for different n;, and we see a sharp drop to well below 1 at
ny, = 6. We therefore select this, where we get x* = 5.896 versus x2 g5 = 11.071.
Figure 4.6(a) clearly show that a number of points are moved to the bottom band
after transformation.

Estimated parameters are fi,- = 4.3257(0.2053), 64 = 1.6746(0.0568), & =
—0.05134 (0.0204), 6 = 0.0499 and - = 0.0485. Tregde cuts the data at the
lowest quantile of the data sets, and standard errors are small in comparison to
the other locations. Details of the correction vectors a;(X), a2(X) are omitted,
but visually shown in figure 4.6(b).

Return levels and confidence intervals are shown in table 4.7. As for the other
surge-dominant location, Oslo, the return levels are very similar to their published
counterparts.

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
5 129 123.9 129 134.9
10 136 130.1 137 145
20 143 135.7 144.5 154.7
100 - 147.2 160 176.3
200 - 151.6 166.4 185.4

Table 4.7: Return levels and 95% confidence intervals for the RJPM model, Tregde.

Values in cm.
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4.6.7 Andenes

Andenes is tide-dominant, and the test statistic shows significant interaction of
x? = 14.860. Along with Viker, Andenes doesn’t have very many years of data,
however, so a small value here might be a little misleading. At any rate, we wish to
take the interaction into account, and figure 4.7(c) shows the usual ratio between
test statistic and table value for transformed surge series with different numbers
of tidal bands. It shows that as long as we take a measure of interaction into
account, we get an insignificant x? test statistic for all n, betweeen 2 and 30. We
select m, = 4, which gives x? = 2.547 measured against X§,0,95 = 7.815. Figure
4.7(a) shows the effect of the transformation of the series in terms of surges versus
concomitant tides.

Estimated parameters are fi,- = 3.9036(0.5017), 64 = 1.7209(0.4415), & =
—0.2164 (0.1582), 0 = 0.1849 and 0,. = 0.0740. Andenes has the most extreme
shape parameter, that is farthest away from 0, of all the surge series in the RJPM
analyses. Details of the correction vectors a;(X), a2(X) are omitted, but visually
shown in figure 4.7(b).

Return levels and confidence intervals are shown in table 4.8. Due to the
scarcity of data at the location, there are no published values with which to com-
pare the estimates.

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
5 - 278.3 282.5 296.3
10 - 284.7 290.7 313.2
20 - 290 297.8 330.7
100 - 299.4 311.5 375.4
200 - 302.5 316.5 396.9

Table 4.8: Return levels and 95% confidence intervals for the RJPM model, Andenes.
Values in cm.
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4.6.8 Viker

Viker is, like Oslo and Tregde, surge-dominant. We expect little tide-surge in-
teraction, and a test statistic for 5 tidal bands of x?> = 6.830 against the usual
Xio'% = 9.488. Although this isn’t significant, we still opt to model the inter-
action to some extent to get even less interaction. By using n, = 3, we get
x* = 0.1886. Figure 4.8(c) shows that transformation for all n;, between 2 and 30
produces insignificantly interactive surge series, further sementing the notion that
tides and surges are more or less independent in Viker. With 3 tidal bands we get
148, 151 and 144 points per band, compared to the expected 146.56 points. Figure
4.8(a) shows both the original series and the transformed one.

Estimated parameters are fiy- = 4.8551(0.5198), &,- = 1.9037(0.2083), &, =
—0.0356 (0.0740), = 0.0759 and f,» = 0.0631. Details of the correction vectors
a1(X), az(X) are omitted, but visually shown in figure 4.8(b).

Return levels and confidence intervals are shown in table 4.9. As for the other
surge-dominant locations, the results are very similar.

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
5 173 153.1 172 201.3
10 185 158.4 183.5 226.3
20 196 162.9 194.2 252.1
100 - 171.8 217.6 269.8
200 - 175 227.2 269.8

Table 4.9: Return levels and 95% confidence intervals for the RJPM model, Viker.
Values in cm.
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5 The ACER method

A major problem in using both the generalized extreme value distribution and the
generalized Pareto distribution is the difficulty in establishing the extent to which
the model in question is applicable for the observed data. Using such asymptotic
extreme value distributions therefore requires a ’leap of faith’ in selecting the
appropriate distribution.

The approach described in this section is an attempt to address this issue by
a more flexible approach than the ones based on asymptotic theory. It is able to
capture subasymptotic behaviour, but does have a shortcoming in the fact that
it is restricted to cases where the Gumbel distribution is the appropriate extreme
value distribution (i.e. for & — 0 in the generalized extreme value distribution)

[5].

5.1 Cascade of conditioning approximations

Let M(T) = max{X(¢t) : 0 < t < T} be the extreme value of the historical
recorded time series X () on the time interval (0,7"). If the process has an average
number of peaks N per unit of time, it can be assumed that it has N = NT peaks
if the time span (0,7) is sufficiently long. The points in time corresponding to
these maxima are denoted 0 < t; < ... <ty < T, and Ay = A(ty),k =1,..,N
is defined as the heights of the peaks in question. The goal is to estimate the
distribution of M (T') accurately, specifically P(n) = Prob(M(T) < n) for some
high (in relation to the data) threshold 7. Obviously it follows that

P(n) = Prob(Ay <1n,..., A1 <1n)
= Prob(Ay <n|Ay_1 <1n,...., A1 <n)-Prob(Ay_1 <n,..., A4 <n) (5.1)

N
= H Prob(A4; <nlA;_1 <n,...,A; <n)-Prob(4; <n)

=2

An approximation is made to simplify the expression in (5.1), by saying that for
each k =2 3,...(K N),

PI‘Ob(Aj < T]|Aj,1 < n, ---;Al < 7]) ~ PI‘Ob(Aj < T]|Aj,1 < n, ...,Aj,kJrl < T]), k < j < N
(5.2)
In addition to this cascade of conditioning approximations, the function €(n) is

defined by

|- Bl g9 N (5:3)

Pr—1(n)
where pp = Prob(A; < n,..,Ax < n). The e(n), k = 1,2,... functions are
the average conditional exceedance rate (ACER) functions, and e;(n)N can be

Gk(n):{ 1—]91(77) k=1
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interpreted as the expected number of peaks above some high threshold n during
the time (0,7T) - given that k — 1 preceding peaks are below this threshold.
For the case of k = 2, combining (5.1) and (5.2) gives the following approximate

relation:
)N—l

Py~ ZEZW

Assuming statistical independence between peaks would mean a possible rewriting
of P(n) on the form P(n) = [1 — €,(n)]", approximated by

P(n) = exp{—e1(n)N} (5.5)

In this Poisson approximation, the mean upcrossing rate at time ¢, v (n;t), is the
key parameter. P(n) could then be written P(n) = exp{— f] v*(n;t)dt}. This
can be rewritten as

(5.4)

P(n) = exp{=v"(n)T}, (5.6)

where v (n) = 1/T f{ v*(n;t)dt.
Such an independence assumption is not always very accurate, however, since
narrow-band characteristics of the time series X () are likely to lead to noticeable
dependence between neighbouring peaks [6]. But having introduced the condition-

ing cascade in (5.3), the relation in (5.4) can instead be used for the k = 2 case.
This leads to:

P(n) = [1—e(n)]V 'pi(n)
~ exp{—ea(n)(N — 1)}p1(n) (5.7)
= exp{—e(n)(N — 1) —e1(n)},

since p1(n) ~ exp{—ei(n)}. This can be extended to a general k (for k < N),
yielding

Pln) = ep{=an)(N —k+1) = 3 e/}
~ exp{—ex(n)N} (5.8)

Equation (5.2) represents a refinement of the Poisson assumption. It yields quite
similiar results for k£ = 2 and k£ = 3 for a purely narrow-band process, but there is
little increase in numerical effort when three or more preceding peaks are included
[6]. Which k to use is therefore a balance between a large number of conditioning
events - which decreases the accuracy of the estimates, and a small number - which
may not always sufficiently account for dependence effects in the time series.

The ACER functions €x(n),k = 1,2, ... behave quite similarly to the Poisson
assumption mean upcrossing rate v*(n;t) for high thresholds 1 and long intervals
(0,T). For example, large 1 gives ¢ (n) ~ v*(n)/N. This means that equations
(5.6) and (5.5) are equivalent, given a reasonable approximation of v* ().
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5.2 Numerically estimating the ACER functions

To examine how to empirically estimate the ACER functions €(n), k = 2,3, ...,
two random indicator functions are defined:

Qk](n) = 1{A] > 777‘4]'71 S 777"'aAjfk+1 S 77}7 j = k?"'an k = 2737"' (59)

Rk](n) = 1{14]'_1 S n, ‘“7Aj—k:+1 S 77}7 j = k?, ceey N, k= 2,3, (510)

where 1(A) is the indicator function corresponding to some random event A.
Stationarity and the fact that E[1(A)] = Prob(.A) gives

EO...
ek(n)zm, j=k,..N, k=2 ... (5.11)
It may be assumed that
N .
culn) = Jim =ik Qi) (5.12)

N—o0 Z;’V:k Ryj(n)

Clearly, lim, .o >4 Ryj(n) = N—k+1 =~ N, which means that lim, .., &(n)/ex(n) =
1, where the following modified ACER function is used:

1 N

&(n) = N_hr1l ]}Eﬂmg Qrj(n) (5.13)

which applies to stationary as well as non-stationary processes. Empirically, this
function is used for £ > 2 whenever convenient. Since the focus is on values of an
ACER function at the extreme levels, any function providing a correct estimate
at these levels may be used. This is true for é(n), which is also easier to apply
for non-stationary or long-term statistics than its counterpart of €x(n). Some care
should be exercised when choosing the tail marker however, since this modified
version of the ACER function shows a strong decrease for lower response levels [6].
The sample estimate of & (n) is

m

&’ (), (5.14)

r=1

. 1
Ek(m = m

where m is the number of time series samples and

e S Qp
& ) = =7 k’“i(y) (5.15)

The additional index (r) refers to the realization number.
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For a wide range of dynamical systems, it is a reasonable approximation [4][5][6]
that the tail of the ACER function can be modelled as

€x(n) =~ qr(n) exp{—ax(n — br)*}, (5.16)

for constants ay, by and ¢, with a function gx(n) slowly varying compared with
the exponential function it is multiplied with. It is generally slow enough in its
variation in the tail region that it might be replaced with a constant value, call
this gy.

Because this assumption fails on the lower levels, we need to specify a tail
marker 7. This is found by visual inspection of the ACER plot, and corresponds to
where the function starts behaving on the form in equation (5.16) with a constant
qx(n) = qx. Since this form should hold above the chosen 7, choosing a higher tail
marker should not affect estimates to a large extent, but variance increases since
the number of points decreases. Choosing the tail marker low, on the other hand,
can put too much emphasis on low levels.

For further details on the optimization process with regard to these parameters,

see [6].

5.3 Polynomial smoothing of confidence intervals

The 95 % confidence interval of é(n) is approximated well for m > 20 by

(éx(n) — 1.968,(n)/v/m, &(n) + 1.968(n) /v/m), (5.17)
where

st0n) = g S (A 0) — ()’ (518)

It is assumed that confidence intervals in the tail behave similarly to the mean
ACER function as in equation (5.16), i.e.

CI*(n) = qer+ exp{—acy+(n — bey+)ert }, (5.19)

for the curve of the upper bound and equivalently for C'T~ [§].

5.4 Estimating return levels with the ACER method

To estimate return levels, it is first necessary to find an expression for the level 7,
for the desired probability p. This probability is defined by P(n,) = 1 — p, since
P(n) is the probability that all preceding peaks are below the threshold 7. This
yields the approximate relation

1 —p=exp{—N - qr exp{—ax(n, — br)*}}, (5.20)
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where the function gx(n) from (5.16) is assumed constant. To simplify notation,
the subscripts will be dropped on the parameters. Additionally, the approximation
symbol is replaced by an equality sign. We also define d = In¢. This gives

1 —p=exp{—N -exp{d — a(n, — )}}, (5.21)

which can be rearranged for n,:

d—1In(—1/N-In(1 —p))]"°

m=b+ (5.22)

The parameters a, b, ¢, d are estimated using data with one year block sizes, mean-
ing that every year of observations is viewed as a realization of the same process.
N therefore corresponds to the number of peaks from one year. This is taken to be
the total number of peaks in the period divided by the number of years used in es-
timation. The return probability p is the reciprocal of the return period, meaning
that for instance a desired return period of 5 years corresponds to a probability p
of 1/5.

Something to be wary of is that even if the empirical ACER functions merge
in the tail of the data, we extrapolate to values beyond those which we have data
for. This means that the estimated ACER functions may diverge at higher levels.
This will be illustrated with real data.

All calculations are performed with the ACER package for Matlab.
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5.5 Application to water level measurements
5.5.1 Oslo

As for the POT method, we firstly wish to find a tail marker 7, that represents a
sufficiently high threshold. For the ACER method, this is found after where the
curves of the estimated ACER functions é(n) start behaving well-behaved in the
sense of (5.16). After locating an approximate such point, we have to go further
into the tail to where an appropriate amount of data is left - enough to get a good
basis for the curve estimation but not so much that too little weight is put on the
points far out in the tail. Finding such a tail marker is not a formulaic procedure,
but some leeway is given. As a general rule for these hourly measurements, we have
found that a place where remaining data amounts to about 0.5 % to 1 % of the
total data gives stable and similar numerical estimates of the ACER functions for
high levels and different values of k. This is desirable, since the ACER functions
should be identical for very high levels.

The curves in figure 5.1(a) detail the effect dependence has on the ACER
function estimates, and we can see that the independent case of kK = 1 has a curve
which stays significantly above the rest until around n = 140 to n = 150. This
tells us that peaks above this level rarely come in sequence - they are mostly from
independent storms.

As for well-behavedness in the curves, evidence of such behaviour is seen at
around the 120 cm mark. At this level there are still noticeable dependence effects,
and this affects the parameter estimates. To see the effect this has on return level
estimates at high levels, we turn to figure 5.1(b). It shows that estimates are very
similar, indicating that the dependence still existing at 120 cm is not crucial. The
dependence probably does have a little impact, since the curves are somewhat
different even at the highest levels. Equality of estimates is ideally what we would
expect; for such high levels, peaks should definitely be independent. This means
that conditioning on one or more peaks shouldn’t introduce differences in estimates
- not unless the number of previous peaks included is very large.

Since the curves in theory should follow identical paths, we don’t worry too
much about which k is the best choice. We extrapolate to levels beyond which we
have data, and simply select the ACER function which seems to predict the most
reasonable curve. In this case there is very little difference between the estimates,
and no choices of k are easily discarded. We therefore select one of the curves in
the middle at the far right of figure 5.1(a), and come up with k = 2.

With the selected estimated ACER function, i.e. é(n), the optimized param-
eter estimates are d = 5.5774, b = —172.836, a = 0.000398439, ¢ = 1.76718. The
return level estimates are presented in table 5.1.
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Figure 5.1: ACER decision plots, with £ = 1 to 6, for Oslo.

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
5 195 190.383 198.133 204.453
10 207.3 199.834 209.392 217.488
20 218.6 208.712 219.958 229.721
100 241.8 228.197 243.115 256.538
200 250.8 236.273 252.702 267.642

Table 5.1: Return level estimates and confidence intervals for the ACER method, Oslo.
Values in cm.
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5.5.2 Heimsjg

We start by looking at figure 5.2, which shows well-behaved functions somewhere
around 240 to 300 cm. As much as 6% of the data are above 240 cm, so this is
probably not a good tail marker. Less than 0.1% are above 300 cm, however, so
this is probably too far out in the tail. We therefore tentatively select 280 cm, with
around half a percent of data above, as our 7. Figure 5.3 illustrates the differences
between models created with thresholds at 240 cm and 280 cm, respectively. The
latter model estimates the high values much more consistently, and is preferable
to the former model.

With the threshold 7y = 280, we select k£ = 2 for the estimation of return levels.
These are found in table 5.2. Published values are much in agreement with the
corresponding ACER estimates.

Optimal values of parameters are: d = —3.35941, b = 261.256, a = 0.00369969,
c = 1.69398.
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Figure 5.2: Log plot of estimated ACER functions for Heimsjg, with k£ = 1,2,3,4,5
and 6
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Value of the ACER function (logarithmic scale)
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Figure 5.3: ACER functions for high levels in Heimsjg, with £ =1,2,3,4,5 and 6

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
5 329 324.938 328.958 332.897
10 337 329.622 335.185 341.015
20 345 333.811 340.834 348.527
100 - 342.461 352.702 364.703
200 - 345.874 357.451 371.308

Table 5.2: Return level estimates and confidence intervals for the ACER method,
Heimsjg. Values in cm.



5.5 APPLICATION TO WATER LEVEL MEASUREMENTS 97

5.5.3 Honningsvag

Figure 5.4(a) shows the ACER functions for £ = 1 to k = 6. Consistent, smooth
behaviour in the curves is seen from around 270 c¢m, where there is about 4.3 %
left of the data. This percentage is too high, and we set the tail marker a little
higher; 79 = 300 is more appropriate, with about 0.6% of the data above.

Figure 5.4(b) shows the behaviour of the estimated ACER functions for differ-
ent k with the tail marker at 300 cm. We choose a curve in the middle, and go for
k = 3. With this ACER function, the results are found in table 5.3.

Optimal values of parameters are: d = —2.03381, b = 113.477, a = 1.1368e —
009, ¢ = 4.09641.
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(a) Log plot of estimated ACER functions. (b) Estimated ACER functions for
levels.
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Figure 5.4: ACER decision plots, with k = 1 to 6, for Honningsvag.

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
5 348 344.491 349.746 355.744
10 357 348.675 356.642 364.804
20 366 352.222 362.732 372.967
100 - 359.06 375.035 389.872
200 - 361.603 379.781 396.527

Table 5.3: Return level estimates and confidence intervals for the ACER method,
Honningsvag. Values in cm.
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5.5.4 Narvik

Well-behavedness in the curves is seen in figure 5.5(a) from around 320 cm, where
4.2 % of the data remain. Dependence wears off around 400 cm. Here there are
about 0.03 % left of the data. Using the general rule of 0.5-0.6 % data left at the
tail marker, we select the threshold to be 19 = 360. 0.57 % of the data remain
above this level. With the tail marker at 360 cm, estimated ACER functions are
shown in figure 5.5(b). Values for high levels are very similar for all values of k,
particularly above £k = 1. We choose &k = 2, and the results are shown in table
5.4. Optimal parameter values are d = —3.71051, b = 357.429, a = 0.0224224,
¢ = 1.24027. Estimates for the 5-20 year periods are very similar to published
values.

W
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(a) Log plot of estimated ACER functions. (b) Estimated ACER functions for high
levels.

Figure 5.5: ACER decision plots, with £ = 1 to 6, for Narvik.

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
5 427 419.973 427.147 433.3
10 439 426.726 436.726 445.645
20 451 432.865 445.66 457.36
100 - 445.813 465.145 483.492
200 - 451.015 473.2 494.498

Table 5.4: Return level estimates and confidence intervals for the ACER method,

Narvik. Values in cm.
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5.5.5 Harstad

Harstad has well-behaved curves at somewhat above 200 cm, say approximately
225 cm. About 4.5 % of the data are left here. Dependence wears of at around
280 cm, where 0.04 % are left. We set the tail marker at 255 cm, where 0.53 %
remain. The estimated ACER functions are shown in figure 5.6(b), and we choose
k = 3 for the estimation of return levels. Again, the 5-20 year return level values

are very similar to those that are published, as can be seen in table 5.5.

Optimal values of parameters are: d = —4.03566, b = 242.56, a = 0.00753561,

c = 1.56615.

i[,bl

Log of mean epsilon functions

T T T T T T T
0 50 100 150 200 250 300

Threshold (cm)

Value of the ACER function (logarithmic scale)

le-07

290 300 310

320 330

Threshold (cm)

340

(a) Log plot of estimated ACER functions. (b) Estimated ACER functions for high

Figure 5.6: ACER decision plots, with k = 1 to 6, for Harstad.

levels.

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
5) 299 293.528 297.518 302.671
10 308 298.121 303.892 311.818
20 316 302.213 309.672 320.362
100 - 310.642 321.828 338.992
200 - 313.966 326.701 346.681

Table 5.5: Return level estimates and confidence intervals for the ACER method,

Harstad. Values in cm.
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5.5.6 Tregde

Figure 5.7(a) shows empirical ACER functions. Curves for k > 1 behave erratically
at first, but start acting well-behaved a little after 50 cm. Dependence wears off
completely at approximately the 120 cm mark, where 0.03 % of the data remain.
Figure 5.7(a) shows that curves are already quite close to eachother at around 100
cm. We choose the threshold to be 9 = 95, where 0.58 % of the data are left.
Figure 5.7(b) shows estimated ACER functions for high levels with this threshold.
We select £ = 3 for the return level predictions. These are found in table 5.6.
Estimates agree with published levels where the latter are available. Optimal
values of parameters are: d = —4.58839, b = 95.5187, a = 0.0768807, ¢ = 1.0749.
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(a) Log plot of estimated ACER functions. (b) Estimated ACER functions for high
levels.

Figure 5.7: ACER decision plots, with £ =1 to 6, for Tregde.

Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
5 129 127.364 130.221 133.678
10 136 131.839 137.135 143.014
20 143 135.833 143.686 152.15
100 - 144.079 158.288 173.38
200 - 147.337 164.44 182.636

Table 5.6: Return level estimates and confidence intervals for the ACER method,

Tregde. Values in cm.
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5.5.7 Andenes

Andenes has relatively little data available for analysis, with only 19 usable years
of observations. To estimate 200 year return levels we therefore have to extrapolate
more than 10 times as long into the future as we have data. With the Andenes
station having little data available, this also means that no previous return revel
analyses have been performed. We therefore do not have any previous values to
compare with, other than those calculated previously in this report.

Figure 5.8(a) shows the behaviour of the empirical estimates of the ACER
functions. The curves act well-behavedly from and above around 220 c¢m, where
3.5 % data remain. The figure shows that the £ = 1 curve (black circles), stays
above the rest very far out into the tail. Dependence doesn’t wear off until after 280
cm, where about 0.02 % data remain. With the small amount of data available at
Andenes, this only constitutes slightly more than 30 data points before extraction
of peaks. To select the tail marker, we experimented to find a level that produced
relatively similar results for the different £ at high levels. We finally select ny = 240,
with resulting curves in figure 5.8(b). About 0.9 % of the data remain above
this tail marker, which is the largest percentage so far. We select k = 3 for the
return level estimates, with resulting return levels shown in table 5.7. Optimalized
parameter values are d = —0.0676168, b = 24.8026, a = 2.63863¢ — 007 and
c = 3.07189.
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(a) Log plot of estimated ACER functions. (b) Estimated ACER functions for high
levels.

Figure 5.8: ACER decision plots, with £ = 1 to 6, for Andenes.
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Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
5 - 289.764 297.273 304.838
10 - 296.435 305.355 314.536
20 - 302.472 312.679 323.337
100 - 315.051 327.972 341.753
200 - 320.03 334.038 349.071

Table 5.7: Return level estimates and confidence intervals for the ACER method,

Andenes. Values in cm.
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5.5.8 Viker

Figure 5.9(a) shows the empirical estimated ACER functions for k = 1,2,3,4,5,6
in Viker. The figure shows well-behavedness in the curves from around the 75
cm mark, where 14.6 % of the data still are left above. Dependence wears off at
around 140 cm, with 0.1 % data left. We set the tail marker at 79 =120, where
0.55 % of the data amount is left.

We select a k by looking at figure 5.9(b), which firstly shows that values are
quite similar for the high levels as we would wish. Secondly, we see that the curves
for K =5 and k£ = 6 are in the middle of the range of curves for the entirety of the
plot. We select k = 5 for the estimation of the return levels.

Table 5.8 shows the results of the return level estimation, with optimal values
of parameters as d = —4.78553, b = 117.669, a = 0.0376866, ¢ = 1.11914. The
maximum of the approximately 20 years of data used in estimation is 188 cm,
which corresponds well with the 20 year return level in table 5.8. The return levels
also agree with the published values in the second column of table 5.8. Caution
needs to be taken in interpreting the longer period return levels however, because
of the short span of available data.

Estimated ACER functions for high levels in Viker
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Figure 5.9: ACER decision plots, with k = 1 to 6, for Viker.
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Return period (years) | Published value | CI lower bound | Estimate | CI upper bound
5 173 156.564 172.699 197.55
10 185 161.426 183.614 220.298
20 196 165.746 193.884 242.873
100 - 174.625 216.573 296.239
200 - 178.121 226.061 319.826

Table 5.8: Return level estimates and confidence intervals for the ACER method, Viker.

Values in cm.
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6 Discussion of results

6.1 Oslo

Oslo is surge-dominant and has the largest amount of data of the locations featured
in this thesis, both these factors mean that all the used methods should perform
well here. Surge-dominance means that the non-stochastic tidal component of the
measured sea levels doesn’t interfere to a large degree, and a large amount of data
is naturally desirable. As for possible sources of error, the removal of the post-
glacial rebound trend is certainly worth mentioning, although the same procedure
as in the report by Hansen [3] was followed.

Figure 6.1(a) shows that return levels are very similar for all methods for 5, 10
and 20 year periods, while larger differences arise for the 100 and 200 year periods.
Note that only the five aforementioned return level estimates have been calculated,
meaning that the lines between the indicated points are not the true model curves.

Figure 6.1(b) shows the difference between the 200 year estimates, with the
Gumbel model producing the largest estimate, at 266 cm, and the GEV model the
smallest, at 249 cm. The 200 year Gumbel estimate is 6.8% larger than the GEV
estimate. This difference is not huge, and all methods contain the results from the
other methods in their confidence intervals.
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6.2 Heimsjg

For Heimsjg, the non-stochastic tidal component dominates, and estimating the
extreme value distribution becomes more difficult. We see this in the larger dif-
ferences between methods. RJPM, in particular, disagrees markedly for the three
first periods of 5, 10 and 20 years. This is shown in figure 6.2(a). Interestingly
enough, the RJPM method is not as controversial for the 100 and 200 year levels,
where it basically is in line with all models but the Gumbel one.

Figure 6.2(b)shows better the difference between the 200 year estimates, and
highlights the extreme upper bound of the RJPM estimate, which was discussed
in section 4. The other confidence bounds look minuscule in comparison, but this
is because of the scale of RJPM band. The Gumbel model produces a significantly
higher return level compared to the other methods, with no other estimates than
the RJPM one within its lower 95% confidence bound. The difference between
highest estimate (Gumbel) and lowest (POT) for the longest return period is only
5.1%, however.
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6.3 Honningsvag

Mostly the same pattern as in Heimsjg is shown for Honningsvag. All methods
except RJPM agree at first, but diverge from there. RJPM starts out estimating
lower return levels, but ends up in the same region as the ACER estimate for the
200 year period. The Gumbel and POT methods give the by far largest estimates,
while the GEV method produces by far the lowest.

Figure 6.3(a) compares the 5, 10, 20, 100 and 200 year estimates for all meth-
ods, while figure 6.3(b) shows the comparatively large difference between 200 year
estimates. The POT estimate for that period is 8.2% larger than the corresponding
GEV estimate.
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6.4 Narvik

Figure 6.4(a) shows the return levels for all methods, again showing the trend of
underestimation in the RJPM method for low levels. Figure 6.4(b) shows that
the difference between highest estimate (Gumbel) and lowest (GEV) is smaller
here than in Honningsvag - at 6.1%, and all methods excepting the Gumbel model
include the estimates of one another in their confidence bounds. The Gumbel
model intervals contain the RJPM and ACER estimates, and is itself is included
in the bounds of the POT, RJPM and ACER methods.
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6.5 Harstad

The plot showing return level estimates for Harstad, in figure 6.5(a), shows a sim-
ilar development as Narvik, Honningsvag and to some extent Heimsjp. RJPM
underestimates the short period return levels when compared to the other esti-
mates, but ends up in the middle of the range for 200 year return levels. The
difference between highest and lowest 200 year estimate is higher here, however,
and comes to 12.3%. This is because of the large difference between the Gumbel
and GEV models, with the three other models giving quite similar values. The
GEV model gave a shape parameter estimate of é = —0.465, meaning a very short
bounded upper tail. This is an uncommonly large negative value, and could be
indicative of a poor model. The POT model, using much more data, estimated &
to be —0.085, which is more reasonable.
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6.6 Tregde

Tregde is dominated by surges, and this makes for a plot in figure 6.6(a) dissimilar
from those in tide-dominant locations but similar to figure 6.1(a) for Oslo. Figure
6.6(b) shows the difference between the 200 year return level estimates, with the
GEV estimate being the highest. This is unusual compared to the previously
discussed locations, but is explained by the fact that the shape parameter is slightly
positive - é = 0.0251. The standard error for the GEV model is very large however,
at 0.0880, or at 3.5 times the size of the esimate itself. The 200 year return level
estimate from the GEV model is approximately 6.3% larger than that from the
POT model.
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6.7 Andenes

Andenes is a difficult location to estimate return levels for. Little data is available,
and the location itself is tide-dominant. The GEV model produced an estimated
shape parameter of é = —0.821, corresponding to an extremely short tail and a is
large enough negative é that normal likelihood properties no longer apply. This
produces extremely narrow (and unrealistic) confidence intervals, and are too short
to even be plotted in figure 6.7(b).

Figure 6.7(a) shows that all methods except RJPM agree on the 5 year return
level, while larger differences start to arise already for the 10 year period. For the
200 year return levels, as shown in figure 6.7(b), estimates are quite different. The
problem of estimating the return levels here is reflected in the difference between
highest and lowest 200 year estimate, at 15.7%.
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6.8 Viker

Viker, like Andenes, has little available data. It is, however, dominated by surge
and not tide, causing the RJPM results to more or less agree with the rest for
the shortest return periods. We see this both in figures 6.8(a) and 6.8(b). The
difference isn’t very large between smallest and largest estimated return level, at
about 4.6%.
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6.9 Conclusion

The Annual Maxima Method and the Peaks-over-Threshold method are both
widely known and much applied methods. They both have some possible de-
fects, however. As mentioned, the AMM throws away much data, and may fit
a poor model since all locations have less than 100 years of observed maxima to
draw from. The POT method uses a great deal more data, but is subject to two
individual choices: the extreme threshold and the empirical clustering rule. The
former of the choices has available supportive literature [1], but the selection of
clustering rule has little general theory. Here it requires some knowledge of tides,
and we are not very accustomed with that field other than through research for
this thesis. The choices that are made are therefore subject to possibly flawed
logic. Furthermore, neither of the two methods have been investigated for trends
in the data. Such considerations could possibly have improved the analysis.

The Revised Joint Probability Method is less widely applied than the first
two methods, but has seen application to a host of British locations [7][2] by the
creators and proponents of the method. But because the literature is more sparse,
and from fewer sources, it is more difficult to assess the level with which we can
rely on this method. Furthermores, it makes it more difficult to check if we have
fully grasped its ins and out and fitted models in the way that was intended by
Tawn and Dixon.

As for the models estimated by RJPM, a notable feature is the seemingly un-
derestimated short period return levels in the tide-dominant locations of Heimsjg,
Honningsvag, Narvik, Harstad and Andenes. This is not an artefact from the
tide-surge interaction modelling, since corresponding return levels were equally
low when the estimation was performed without such modelling. We use the POT
method to estimate surge parameters, something not done by Dixon and Tawn in
earlier work. This could affect results.

We do, however, adopt their methods in declustering the data using r = 30,
which is quite different from the choice done in the POT analysis. It was done
to emulate the method as used by Dixon and Tawn [2], but may have benefited
from more careful consideration. Other choices that need to be made are the
functions with which tide-surge interaction is corrected for and the quantiles that
are deemed extreme. The correction functions were made to the specifications in
[2], while the quantiles used were taken from the preceding POT chapter which
provides a generally thorough explanation of the threshold selection.

In total, it is difficult to recommend a method that has the likely defect of
underestimating short period return levels. Although it agrees more with the other
methods for higher return levels, this is an area where there is a large margin of
error anyway. The method is also somewhat difficult to implement, since we need
to solve (4.11) numerically. We also need to have tide measurements available.
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Using such data is, however, a strength of the model, if used right. We then use
more data in the estimation. This attempt to incorporate sea level specific data
and methodology into the return level estimation is arguably the most desirable
quality of the method.

The Average Conditional Exceedance Rate method is the most recently devel-
oped method, and no published articles exist where it is applied to water levels.
It is therefore interesting to see that it produces results similar to those by more
conventional methods. In the return level plots in this chapter it is seen that
the ACER method produces 200 year estimates in the middle of the range of the
methods used here.

Two choices need to be made when estimating return levels with the ACER
method; the tail marker 7y, and the ACER function ¢; used for the parameter
estimation. We found that as long as we went quite far out into the tail, at around
or above the 99% quantile, we got quite consistent results and similar results for
the different ACER functions.

The ACER method seems to be a viable alternative for water level return
estimation, and with the developed methodology for parameter estimation and
creation of confidence interval it is quite easy to implement. More study need
perhaps to be done to the choice of ACER function as it relates physically to the
actual dynamic system. Since we extract peaks, it is more difficult to see from the
time series what k£ needs to be to sufficiently take dependence into account. We
have used a pragmatic approach where we plot the behaviour of the estimated &
functions for high levels and decide on a k in the middle range. This is a similar
argument to the one used by Dixon and Tawn [2] to choose their r, but may not
be the most physically sound choice.

In summary, the ACER method seems to be an attractive method, with its
quite easily implemented methodology and attractive statistical properties. When
looking at 200 year return levels, it usually agrees with the other data-intensive
methods, that is RJPM and POT. We mentioned in section 5 that the ACER is
restricted to cases where the Gumbel distribution is the appropriate extreme value
distribution, i.e. when & — 0. This seems to mostly be the case for water levels,
since all POT models had estimated shape parameters quite close to 0, as shown
in table 6.1.
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Table 6.1: Estimated shape parameters for the POT models.

Location éPOT

Oslo 0.0192
Heimsjo -0.1153
Honningsvag -0.0248
Narvik -0.0631
Harstad -0.0849
Tregde -0.0455
Andenes -0.1895
Viker 0.00595
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