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Bivariate Extreme Value Distributions
Consider a bivariate stochastic process Z (t) =

(
X (t),Y (t)

)
with

dependent component processes, which has been observed over a
time interval, (0,T ) say.

Assume that the sampled values (X1,Y1), . . . , (XN ,YN) are
allocated to the (usually equidistant) discrete times t1, . . . , tN in
(0,T ).
Our goal is to accurately determine empirically the joint distribution
function of the extreme value vector

(
Mx ,N ,My ,N

)
, where

Mx ,N = max
{

Xj ; j = 1, . . . ,N
}

, and with a similar definition of My ,N .
Specifically, we want to estimate
P(ξ, η) = Prob

(
Mx ,N ≤ ξ,My ,N ≤ η

)
accurately for large values of ξ

and η.
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Bivariate Extreme Value Distributions
By transformation of variables, any other marginal distribution can
be obtained from the standard Fréchet distribution
F (z) = exp(−1/z), z > 0. This is a special case of the GEV
distribution with parameters µ = 0, σ = 1 and γ = 1.

Now, it follows that Prob(Mx ,N ≤ z) = exp(−N/z), or, equivalently,
Prob(Mx ,N/N ≤ z) = exp(−1/z), z > 0. The same result applies to
My ,N .
Hence, to obtain standard univariate results for each margin, we
should consider the re-scaled vector,

M∗
N = (M∗

x ,N ,M
∗
y ,N) = (Mx ,N/N,My ,N/N).
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Bivariate Extreme Value Distributions
Then if,

Prob(M∗
x ,N ≤ x ,M∗

y ,N ≤ y)→ G(x , y), as N →∞,

where G is a non-degenerate distribution function, G has the form,

G(x , y) = exp{−V (x , y)}, x > 0, y > 0,

Here

V (x , y) =
∫ 1

0
2 max

(
w
x
,
1− w

y

)
dH(w),

where H is a distribution function on [0,1] satisfying the mean
value constraint ∫ 1

0
w dH(w) = 1/2.
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Bivariate Extreme Value Distributions

For any GEV marginal, it is only necessary to transform the
marginals from standard Fréchet to the required members of the
GEV family. Specifically, by defining,

x̃ =

{
1 + γx

(x − µx

σx

)}1/γx

and ỹ =

{
1 + γy

(y − µy

σy

)}1/γy

,

it follows that the complete set of bivariate asymptotic extreme
value distributions is determined by distribution functions of the
form,

G(x , y) = exp{−V (x̃ , ỹ)},
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Cascade of Approximations

We introduce the non-exceedance event
Ckj(ξ, η) =

{
Xj−1 ≤ ξ,Yj−1 ≤ η, . . . ,Xj−k+1 ≤ ξ,Yj−k+1 ≤ η

}
for

1 ≤ k ≤ j ≤ N + 1. Then, from the definition of P(ξ, η) it follows
that,

P(ξ, η) = Prob
(
CN+1,N+1(ξ, η)

)
= Prob

(
XN ≤ ξ,YN ≤ η | CNN(ξ, η)

)
· Prob

(
CNN(ξ, η)

)
=

N∏
j=2

Prob
(
Xj ≤ ξ,Yj ≤ η | Cjj(ξ, η) · Prob

(
C22(ξ, η)

)
.
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Cascade of Approximations

The following representation applies for a suitably chosen k ,

P(ξ, η) ≈ exp
{
−

N∑
j=k

(
αkj(ξ; η) + βkj(η; ξ)− γkj(ξ, η)

)}
; ξ, η →∞ ,

where we have used the notation
αkj(ξ; η) = Prob

(
Xj > ξ | Ckj(ξ, η)

)
,

βkj(η; ξ) = Prob
(
Yj > η | Ckj(ξ, η)

)
and

γkj(ξ, η) = Prob
(
Xj > ξ,Yj > η | Ckj(ξ, η)

)
.
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Cascade of Approximations

The k ’th order bivariate ACER function is given by,

Ek (ξ, η) =
1

N − k + 1

N∑
j=k

(
αkj(ξ; η) + βkj(η; ξ)− γkj(ξ, η)

)
; k = 1, 2, . . .

Hence, when N � k , we may write

P(ξ, η) ≈ exp {− (N − k + 1) Ek (ξ, η)} ; ξ, η →∞ .
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Bivariate Extreme Value Copulas

The Gumbel logistic:

Gk (ξ, η) =
[(
εx

k (ξ)
)m

+
(
εy

k (η)
)m
] 1

m
.

The Asymmetric logistic:

Ak (ξ, η) =
[(
φεx

k (ξ)
)m

+
(
θεy

k (η)
)m
] 1

m

+ (1− φ)εx
k (ξ) + (1− θ)εy

k (η).
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