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Resources

Presentations can be downloaded from:

https://folk.ntnu.no/arvidn/ENBIS 2022

The ACER User guide and ACER program can be downloaded
from:

https://folk.ntnu.no/arvidn/ACER

My new book, which is not quite ready yet, but you are welcome to
comment on it:

https://folk.ntnu.no/arvidn/BOOK_EXTREMES
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Introduction

The approach to extreme value statistics very often adopted in
engineering applications has been based on the assumption that
exceedances above high thresholds can be assumed independent.

It is not always clear to what extent that is an acceptable
approximation. A method for extreme value statistics that is
capable of accounting for statistical dependence in the data series
is therefore highly desirable.

A number of approximate methods for dealing with dependence
have been proposed over the years, but none of these methods
were satisfactory.
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Introduction

In this course I shall describe a fairly new method that provides an
exact representation, in a statistical sense, of the extreme value
distribution residing in the data.

The final step is then to find a suitable method for making
predictions based on the empirical extreme value distribution.
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Introduction

Standard methods for estimating extreme values from limited sets
of observed data are commonly based on assuming either that the
distribution of epochal extreme values converges to a Gumbel
(type-I) extreme value distribution, or by adopting a so-called
generalized extreme value (GEV) distribution, which would include
all three types of asymptotic extreme value distributions.

Another commonly used approach is adopting a
peaks-over-threshold (POT) method, assuming that the
exceedances above high thresholds follow a generalized Pareto
(GP) distribution.
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Introduction

A weakness of these approaches is that they depend on adopting
asymptotic distributions.

The main problem with this is that the assumption about asymptotic
behaviour cannot be fully verified for the measured data used in the
extreme value analysis, and in reality it has to be adopted basically
by faith or convenience.
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Introduction

A consequence of adopting asymptotic distributions is that direct
fitting of such distributions to the data often points to the
asymptotically wrong distribution.

The result is an asymptotically inconsistent distribution, which may
have a significant impact on the estimation of long return period
extreme value levels.
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Classical Extreme Value Theory

The classical extreme value theory starts by looking at a sequence
of independent and identically distributed (iid) random variables
X1,X2, . . . with common distribution function FX (x). The extreme
value of a finite number X1, . . . ,Xn is then Mn = max{X1, . . . ,Xn}.

The distribution of Mn can be easily derived as

FMn (x) = Prob(Mn ≤ x) = Prob(X1 ≤ x , . . . ,Xn ≤ x) =
(
FX (x)

)n
,

which is not useful in practice!
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Classical Extreme Value Theory

Instead of studying Mn, one introduces a renormalized version of
Mn:

M∗n =
Mn − bn

an

for suitable sequences of constants an > 0 and bn that are chosen
to stabilize the location and scale of M∗n as n→∞.

It is then proven that there are, in fact, only three types of limiting
distributions for this renormalized M∗n . This is the famous Extremal
Types Theorem.
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The Extremal Types Theorem

If there exist sequences of constants an > 0 and bn such that

Prob
(Mn − bn

an
≤ x

)
→ G(x) , n→∞,

where G(x) is a nondegenerate distribution function, then G(x)
belongs to one of the following three families:

I G(x) = exp
{
−exp

[
−
(x − b

a

)]}
, −∞ < x <∞ ; (1)
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The Extremal Types Theorem

II G(x) =

 0 , x ≤ b ,

exp
{
−
(

x−b
a

)−c
}

, x > b ;

III G(x) =

 exp
{
−
(

b−x
a

)c
}

, x < b ,

1 , x ≥ b ;

for parameters a > 0, b and c > 0.
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The Extremal Types Theorem

The ETT expressed by the Generalized Extreme Value (GEV)
distribution:

G(x ;λ, δ, κ) = exp
{
−
[
1 + κ

(x − λ
δ

)]−1/κ

+

}
where κ 6= 0 and [z]+ = max(0, z).

When κ = 0,

G(x ;λ, δ,0) = exp
{
− exp

(
− x − λ

δ

)}
for −∞ < x <∞.

κ < 0: Reverse Weibull, κ = 0: Gumbel, κ > 0: Fréchet.
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Model Validation

The use of probability (or PP) plots and quantile (or QQ) plots may
reveal very useful information about the extent of agreement
between an assumed or estimated probability distribution and the
empirical distribution of the data.

Assume that the sample of block maxima has been ordered by
increasing value: z(1) ≤ z(2) ≤ . . . ≤ z(k).

The empirical distribution function, G̃ say, evaluated at z(i) is given
by,

G̃(z(i)) = i/(k + 1).
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Model Validation

The proposed GEV model is obtained by substituting the
parameter estimates:

Ĝ(z(i)) = exp

{
−
[
1 + γ̂

(z(i) − µ̂
σ̂

)]−1/γ̂
}
,

provided γ̂ 6= 0. If γ̂ = 0, the plot is constructed using the Gumbel
distribution.

If the GEV model is a good approximation, then the PP plot
consisting of the points(

Ĝ(z(i)), G̃(z(i))
)

i = 1, . . . , k ,

should follow approximately the unit diagonal.
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Ĝ(z(i)), G̃(z(i))
)

i = 1, . . . , k ,

should follow approximately the unit diagonal.

www.ntnu.no A. Naess, Applied Extreme Value Statistics



15

Model Validation

For the case of extreme value distributions, a quantile or QQ plot is
usually considered to be more informative than a PP plot because
it shows more clearly the agreement at high values of the observed
data, which is of primary concern when fitting extreme value
models.

For γ̂ 6= 0, the QQ plot is traced out by the point graph,(
Ĝ−1(i/(k + 1)), z(i)

)
, i = 1, . . . , k ,

where

Ĝ−1(i/(k + 1)) = µ̂− σ̂

γ̂

[
1−

{
− log

(
i/(k + 1)

)}−γ̂]
.

This graph should also approximately follow a straight line.
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Confidence Intervals by Bootstrapping

The bootstrapping method is based on resampling from a
distribution determined by the available sample of data, either
parametric or nonparametric.

Assume that z = (z1, z2, . . . , zn) is a sample or vector consisting of
n independent observations of a random variable Z .

Parametric: Z has a specified distribution function
FZ (z; θ) = Prob(Z ≤ z), where θ denotes a vector of unknown
parameters, which determine the distribution. These parameters
are then estimated from the observed data z, giving θ̂, and FZ (z; θ̂)
is adopted as the distribution of Z .
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Confidence Intervals by Bootstrapping

Nonparametric: A purely empirical distribution function is
established for Z on the basis of the observed data by allocating a
probability of 1/n to each of the observed data points.

The goal is to estimate some statistical quantity V , e.g. a high
quantile like 100(1− α)% (0 < α << 1), given by the unknown
distribution.

Let V̂ denote the estimate of V obtained from the fitted model
distribution FZ (z; θ̂), which is a GEV distribution.
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Confidence Intervals by Bootstrapping

Resampling: Let Z ∗ denote the random variable with distribution
function FZ (z; θ̂). ` bootstrap samples z∗j , j = 1, . . . , `, with n
independent observations of Z ∗ in each sample are now
generated. Each sample z∗j is used to fit a new GEV model from
which an estimate V ∗j of V is obtained.

A simple estimator for confidence intervals on V̂ is derived by
calculating the sample standard deviation s∗V :

s∗V =

√√√√ 1
`− 1

∑̀
j=1

(V ∗j − V̄ ∗)2,

where V̄ ∗ = (1/`)
∑`

j=1 V ∗j .

www.ntnu.no A. Naess, Applied Extreme Value Statistics



18

Confidence Intervals by Bootstrapping

Resampling: Let Z ∗ denote the random variable with distribution
function FZ (z; θ̂). ` bootstrap samples z∗j , j = 1, . . . , `, with n
independent observations of Z ∗ in each sample are now
generated. Each sample z∗j is used to fit a new GEV model from
which an estimate V ∗j of V is obtained.

A simple estimator for confidence intervals on V̂ is derived by
calculating the sample standard deviation s∗V :

s∗V =

√√√√ 1
`− 1

∑̀
j=1

(V ∗j − V̄ ∗)2,

where V̄ ∗ = (1/`)
∑`

j=1 V ∗j .

www.ntnu.no A. Naess, Applied Extreme Value Statistics



19

Confidence Intervals by Bootstrapping

An approximate confidence interval at level 1− q is then obtained
as,

( V̂ − wq/2 s∗V , V̂ + wq/2 s∗V ), (2)

where wq/2 denotes the 100(1− q/2)% standard normal fractile.

To avoid making the assumption that the bootstrap estimates are
normally distributed, the true distribution may be approximated by
generating a large number of bootstrap samples, usually several
thousand are needed, especially for small values of q.
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Confidence Intervals by Bootstrapping

If ` samples are generated, the V ∗j are rearranged in increasing
order. A 100(1− q)% confidence interval is then,

( V ∗L , V ∗M ),

where L = [q`/2] and M = [(1− q/2)`] ([a] means the integer part
of a).
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The Peaks-Over-Threshold Method
If the distribution of maxima of some sequence of independent and
identically distributed random variables X1,X2, ... converges
asymptotically to a generalized extreme value distribution with
parameters λ, δ and κ, as expressed in the GEV, then the
exceedances given by Y = X − u of some high threshold u,
conditional on X > u, are approximately distributed as the
Generalized Pareto (GP) distribution:

H(y ;λ, δ, κ) = H(y) = 1−
(

1 + κ
y
δ̃

)−1/κ

where κ 6= 0, {y : y > 0, (1 + κy/δ̃) > 0}, and δ̃ = δ + κ(u − λ) with
κ equal to that of the corresponding GEV.
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The Peaks-Over-Threshold Method

When κ = 0, the GP distribution becomes an exponential
distribution:

H(y ;λ, δ,0) = 1− exp
(
− y
δ̃

)
for y > 0.
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Cascade of Approximations
Let 0 ≤ t1 < . . . < tN ≤ T denote the points in time for the observed
data values of X (t), and let Xk = X (tk ), k = 1, ...,N.

P(η) = Prob{X1 ≤ η, . . . ,XN ≤ η}
= Prob{XN ≤ η|X1 ≤ η, . . . ,XN−1 ≤ η}Prob{X1 ≤ η, . . . ,XN−1 ≤ η}

=
N∏

j=2

Prob{Xj ≤ η|X1 ≤ η, . . . ,Xj−1} · P(X1 ≤ η)

For independent values with α1j(η) = Prob{Xj > η},

P(η) ≈
N∏

j=1

P(Xj ≤ η) =
N∏

j=1

(
1− α1j(η)

)
≈ P1(η) = exp

(
−

N∑
j=1

α1j(η)
)
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Cascade of Approximations

Conditioning on one previous value:

Prob{Xj ≤ η|X1 ≤ η, ...,Xj−1 ≤ η} ≈ Prob{Xj ≤ η|Xj−1 ≤ η} .

This leads to the approximation:

P(η) ≈ P2(η) = exp
(
−

N∑
j=2

α2j(η)− α11(η)
)
,

where α2j(η) = Prob{Xj > η |Xj−1 ≤ η}.
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Cascade of Approximations
Two more approximations:

P(η) ≈ P3(η) = exp
(
−

N∑
j=3

α3j(η)− α22(η)− α11(η)
)
,

where α3j(η) = Prob{Xj > η |Xj−1 ≤ η,Xj−2 ≤ η}.

P(η) ≈ P4(η) = exp
(
−

N∑
j=4

α4j(η)− α33(η)− α22(η)− α11(η)
)
,

where α4j(η) = Prob{Xj > η |Xj−1 ≤ η,Xj−2 ≤ η,Xj−3 ≤ η}.

For most practical applications N >> k , so that

Pk (η) ≈ exp
(
−

N∑
j=k

αkj(η)
)
, k = 1,2, . . . .
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Empirical Estimation of ACER
We introduce the concept of average conditional exceedance rates
(ACER) as follows,

εk (η) =
1

N − k + 1

N∑
j=k

αkj(η) , k = 1,2, . . .

The following random functions are defined,

Akj(η) = 1{Xj > η,Xj−1 ≤ η, . . . ,Xj−k+1 ≤ η} , j = k , . . . ,N, k = 2,3, . . .

and

Bkj(η) = 1{Xj−1 ≤ η, . . . ,Xj−k+1 ≤ η} , j = k , . . . ,N, k = 2, . . . ,

where 1{A} denotes the indicator function of some event A.
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Empirical Estimation of ACER
Then

αkj(η) =
E[Akj(η)]

E[Bkj(η)]
, j = k , . . . ,N, k = 2, . . . ,

where E[·] denotes the expectation operator.

Assuming an ergodic process, then obviously
εk (η) = αkk (η) = . . . = αkN(η), and it may be assumed that,

εk (η) = lim
N→∞

∑N
j=k akj(η)∑N
j=k bkj(η)

,

where akj(η) and bkj(η) are the realized values of Akj(η) and Bkj(η),
respectively, for the observed time series.
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Empirical Estimation of ACER

Clearly, limη→∞
∑N

j=k E[Bkj(η)] = N − k + 1 ≈ N. Hence,
limη→∞ ε̃k (η)/εk (η) = 1, where the modified ACER function ε̃k (η) is

ε̃k (η) =

∑N
j=k E[Akj(η)]

N − k + 1
.

This is very convenient for nonstationary time series.
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Empirical Estimation of ACER
It is of interest to note what events are actually counted for the
calculation of ε̃2(η).

ε̃2(η) (N − 1) can be interpreted as the expected number of
exceedances above the level η satisfying the condition that an
exceedance is counted only if it is immediately preceded by a
non-exceedance.
A reinterpretation of this is that ε̂2(η) (N − 1) equals the average
number of clumps of exceedances above η, where a clump of
exceedances is defined as a maximum number of consecutive
exceedances above η.
In general, ε̂k (η) (N − 1) then equals the average number of
clumps of exceedances above η separated by at least k − 1
non-exceedances.
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Empirical Estimation of ACER
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Parametric form of the ACER

The relevant asymptotic extreme value distribution is assumed to
be of Gumbel type. Using the asymptotic form as a guide, it is
assumed that

ε̃k (η) ≈ qk (η) exp{−ak (η − bk )ck} , η ≥ η1 ,

where the function qk (η) is slowly varying compared with the
exponential function exp{−ak (η − bk )ck} and ak ,bk , and ck are
suitable constants.

Note that the values ck = qk = 1 correspond to the asymptotic
case.
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Optimized Fit of Parameters
Can q(η) be replaced by a constant q?

YES, in the tail.

The choice of parameters a,b, c,q can be made by optimizing the
fit on the log level.

We use Levenberg-Marquardt least squares optimization. The
mean square error function to be minimized is written as

F (q,a,b, c) =
N∑

j=1

wj
(

log ε̂k (ηj)− log q + a(ηj − b)c)2
,

where wj =
(

log CI+(ηj)− log CI−(ηj)
)−2, and

CI±(η) = ε̂k (η)± 1.96 ŝk (η)/
√

R (95% conf. int.)
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Optimized Fit of Parameters
Let yj = log ε̂k (ηj), xj = xj(b, c) = (ηj − b)c . Then

F (q,a,b, c) =
N∑

j=1

wj
(
yj − log q + axj

)2
,

Hence, for fixed b and c, we have a weighted linear regression
problem with solutions:

a∗(b, c) = −
∑N

j=1 wj(xj − x)(yj − y)∑N
j=1 wj(xj − x)2

,

and
log q∗(b, c) = y + a∗(b, c)x ,

where x =
∑N

j=1 wjxj/
∑N

j=1 wj , with a similar definition of y .
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Optimized Fit of Parameters

We may now use the Levenberg-Marquardt method on the function
F̃ (b, c) = F (q∗(b, c),a∗(b, c),b, c) to find the optimal values b∗ and
c∗, and then use the expressions for a∗(b, c) and log q∗(b, c) to
calculate the corresponding global optimal values a∗ and q∗.

For estimation of a confidence interval for the predicted extreme
value provided by the optimal curve, the empirical confidence band
is reanchored to the optimal curve. The optimally fitted curves to
the boundaries of the reanchored confidence band will determine
an optimized confidence interval on the predicted extreme value.
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Nonstationary Time Series
To deal with nonstationary time series, it is recognized that
E[Bkj(η)]→ 1 when η →∞.

Hence,

P(η) ≈ exp
(
−

N∑
j=k

αkj(η)
)

= exp
(
−

N∑
j=k

E[Akj(η)]

E[Bkj(η)]

)

'
η→∞

exp
(
−

N∑
j=k

E[Akj(η)]
)

= exp
(
− (N + k − 1)ε̃k (η)

)
where the modified ACER function ε̃k (η) is given as

ε̃k (η) =

∑N
j=k E[Akj(η)]

N − k + 1
.
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Nonstationary Time Series

Assume that the time series can be segmented into K blocks such
that E[Akj(η)] remains approximately constant within each block.

Assume that
∑

j∈Ci
E[Akj(η)] ≈

∑
j∈Ci

akj(η) for a sufficient range of
η-values, where Ci denotes the set of indices for block no. i ,
i = 1, . . . ,K ,

Then
∑N

j=k E[Akj(η)] ≈
∑N

j=k akj(η).

Thus, seasonal effects are automatically accounted for by the
modified ACER method.
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Long Term Extremes

If the whole time series over a long term scenario is available, we
have already shown that the long term statistics using ACER
functions may be estimated directly from the time series.

However, in many cases it would be more practical to analyze each
short term condition separately and combine the obtained ACER
functions after that.

This would, e.g. be the typical approach in a simulation based long
term statistical analysis where the short term response time series
would be simulated and the resulting time series subjected to an
ACER analysis.
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Long Term Extremes
A long term formulation is obtained by considering that there are
m, say, short term conditions. Assume that the number of data in
condition no.j is Nj , j = 1, . . . ,m, and N =

∑m
j=1 Nj . Then we may

write,

ε̂k (η) =
m∑

j=1

ε̂
(j)
k (η)

Nj − k + 1
N − k + 1

,

where the ACER function ε̂(j)k (η) is estimated for condition no. j .

So, we obtain the long term extreme value distribution as,

P(η) ≈ exp
(
− (N − k + 1)ε̂k (η)

)
.
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Scatter Diagram North Sea, 1973 – 2001
hs (m) tp(s)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 > 20
0.5 18 15 123 113 110 390 260 91 38 42 32 3 19 13 9 1 3 2 7
1.0 16 49 675 433 589 1442 1802 959 273 344 125 33 64 29 13 1 7 1 6
1.5 5 32 417 893 1107 1486 2757 1786 636 731 299 121 92 43 18 10 5 2 13
2.0 1 0 102 741 1290 1496 2575 1968 780 868 492 200 116 51 31 8 4 4 8
2.5 0 0 9 256 969 1303 2045 1892 803 941 484 181 157 58 23 19 5 1 8
3.0 0 0 1 45 438 1029 1702 1898 705 957 560 218 196 92 40 11 4 2 5
3.5 0 0 1 4 124 650 1169 1701 647 865 456 237 162 100 36 12 6 1 5
4.0 0 0 2 0 33 270 780 1369 573 868 427 193 157 91 51 13 3 0 1
4.5 0 0 0 0 3 90 459 1017 466 761 380 127 137 86 31 23 6 5 0
5.0 0 0 0 0 0 15 228 647 408 737 354 119 96 50 32 18 2 4 1
5.5 0 0 0 0 0 2 68 337 363 580 283 94 92 31 24 10 6 2 0
6.0 0 0 0 0 0 1 20 166 221 418 307 63 76 24 13 9 4 0 0
6.5 0 0 0 0 0 0 5 50 140 260 257 59 49 20 12 4 2 2 2
7.0 0 0 0 0 0 0 0 23 90 180 193 41 53 20 5 3 3 0 0
7.5 0 0 0 0 0 0 0 6 25 93 121 45 46 17 5 5 0 1 0
8.0 0 0 0 0 0 0 0 3 14 50 84 26 47 11 6 0 1 0 0
8.5 0 0 0 0 0 0 0 0 7 25 45 23 25 20 8 0 0 0 0
9.0 0 0 0 0 0 0 0 1 2 12 30 22 20 19 0 0 0 0 0
9.5 0 0 0 0 0 0 0 0 1 2 20 21 14 7 1 1 0 1 0
10.0 0 0 0 0 0 0 0 0 0 2 5 4 21 6 2 0 0 0 0
10.5 0 0 0 0 0 0 0 0 0 3 4 8 9 12 2 0 0 0 0
11.0 0 0 0 0 0 0 0 0 0 0 2 0 4 3 1 0 1 0 0
11.5 0 0 0 0 0 0 0 0 0 0 2 1 2 3 0 0 0 0 0
12.0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 0
12.5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
13.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
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Long Term Extremes
With reference to a scatter diagram, an alternative equivalent
formulation is obtained. Assume that the number of sea states in
condition (i , j) is Nij , i = 1, . . . ,m and j = 1, . . . ,n, and
N =

∑m
i=1
∑n

j=1 Nij . Then,

ε̂k (η) =
m∑

i=1

n∑
j=1

ε̂
(ij)
k (η)

Nij

N
,

where the ACER function ε̂(ij)k (η) is estimated for condition (i , j).

So, again we obtain the long term extreme value distribution as,

P(η) ≈ exp
(
− (N − k + 1)ε̂k (η)

)
.
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Wind speed statistics
Locations of wind speed measurements
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Wind speeds at Torsvåg Lighthouse
Time series over 13 years of hourly maxima of gust wind.

www.ntnu.no A. Naess, Applied Extreme Value Statistics



44

Wind speeds at Sula Lighthouse
Time series over 12 years of hourly maxima of gust wind.
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Wind speeds at Obrestad Lighthouse
Time series over 16 years of hourly maxima of gust wind.
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Torsvåg Lighthouse wind speed
statistics

The ACER estimates for different degrees of conditioning.
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Sula wind speed statistics

The ACER estimates for different degrees of conditioning.
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Obrestad Lighthouse wind speed
statistics

The ACER estimates for different degrees of conditioning.
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Torsvåg Lighthouse wind speed
statistics

13 years hourly maximum data. ε̂1(η) (*); Optimized curve fit (—);
Empirical 95% confidence band (- -); Optimized confidence band
(· · ·); Predicted 100 year return level estimate = 47.46 m/s and
95% CI = (42.11, 50.71) m/s.
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Sula wind speed statistics
12 years hourly maximum data. ε̂1(η) (*); Optimized curve fit (—);
Empirical 95% confidence band (- -); Optimized confidence band
(· · ·); Predicted 100 year return level estimate = 46.33 m/s and
95% CI = (43.41, 47.77) m/s.
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Obrestad Lighthouse wind speed
statistics

16 years hourly maximum data. ε̂1(η) (*); Optimized curve fit (—);
Empirical 95% confidence band (- -); Optimized confidence band
(· · ·); Predicted 100 year return level estimate = 48.38 m/s and
95% CI = (43.18, 50.74) m/s.
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Narrow Band Process
In engineering mechanics, a classical extreme response prediction
problem is the case of a lightly damped mechanical oscillator
subjected to random forces.

A dynamic model can be expressed as

Ẍ (t) + 2ζωeẊ (t) + ω2
eX (t) = W (t) ,

where ζ = relative damping, ωe = undamped eigenfrequency, and
W (t) = a stationary Gaussian white noise (of suitable intensity).
For small values of ζ, the response time series will exhibit narrow
band characteristics. This manifests itself by producing a strong
beating of the response time series, which means that the size of
the response peaks will change slowly in time,
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Narrow Band Process
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Part of the narrow-band response time series of the linear oscillator
with fully sampled and peak values indicated.
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Narrow Band Process
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Comparison between ACER estimates for different degrees of
conditioning for the narrow-band time series.
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Narrow Band Process
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The Kvitebjorn Jacket Platform
The Kvitebjørn jacket platform
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The Kvitebjorn Jacket Platform
The Kvitebjørn jacket platform with the superstructure removed.
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The Kvitebjorn Jacket Platform
— The equation of motion for the horizontal excursions of the

jacket at main deck level is

MẌ + CẊ + KX = Q.

— X = (X1, . . . ,XN)T where Xk = Xk (t), k = 1, . . . ,N, denote
displacement of the k -th node xk = (xk , yk , zk ) in the wave
direction, which is the positive x-direction.

— Q = (Q(t ,x1), . . . ,Q(t ,xN))T , where
Q(t ,xk ) = Fin(t ,xk ) + Fd (t ,xk ), k = 1, . . . ,N and
−d = z1 ≤ zk ≤ zN = L− d , where d = 190 m is the water
depth and L = 216 m is the jacket support height.
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The Kvitebjorn Jacket Platform

— The inertia force components are given as

Fin(t ,xk ) = km U̇(t ,xk )

— The drag force components

Fd (t ,xk ) = kd
(
U(t ,xk ) + Uc

)
|U(t ,xk ) + Uc |

—
km = CmρπD2/4, kd = CdρD/2
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The Kvitebjorn Jacket Platform
Gumbel plot of 20 simulated 3 hour extremes with fitted Gumbel
distribution. Sea state with Hs = 12 m, Tp = 12 s.
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The Kvitebjorn Jacket Platform
Gumbel plot of 20 simulated 3 hour extremes with fitted Gumbel
distribution. Sea state with Hs = 14.7 m, Tp = 15 s.
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The Kvitebjorn Jacket Platform
Empirical density of the predicted 90% fractile value based on
sample of size 20 for the sea state with Hs = 12 m, Tp = 12 s. The
∗ indicates the limits of CI0.95.
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The Kvitebjorn Jacket Platform
Empirical density of the predicted 90% fractile value based on
sample of size 20 for the sea state with Hs = 14.7 m, Tp = 16.5 s.
The ∗ indicates the limits of CI0.95.
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The Kvitebjorn Jacket Platform
The ACER function ε2 (mean upcrossing rate) along with 95%
confidence bands (−−) for the sea state with Hs = 12 m,
Tp = 12 s, σ = 0.047 m. ∗ : Monte Carlo; − − − : linear fit.

−15 −10 −5 0 5 10 15
−6

−5

−4

−3

−2

−1

0

Sea state H
s
=12m, T=12s

ξ/σ

lo
g

1
0
ν

+
(ξ

)

www.ntnu.no A. Naess, Applied Extreme Value Statistics



65

The Kvitebjorn Jacket Platform
The ACER function ε2 (mean upcrossing rate) with 95% confidence
bands (−−) for the sea state with Hs = 14.7 m, Tp = 15 s,
σ = 0.066 m. ∗ : Monte Carlo; − − − : linear fit.
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The Heidrun TLP
Heidrun TLP as seen from the side.
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Waves
Time series of wave elevation.
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Tether tension
Time series of tether tension T10, with a ringing event caused by a
steep wave.
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Power spectrum
Power spectrum of tension in tether T10.
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ACER
Log plot of ACER εk (η), sea state 1 (Hs = 15.7 m, Tp = 17.8 s).
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ACER
Log plot of ACER ε3(η) with extrapolation by optimally fitted curve,
sea state 1. c = 0.43
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ACER
Log plot of ACER εk (η), sea state 2 (Hs = 15.0 m, Tp = 16.7 s).
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ACER
Log plot of ACER ε3(η) with extrapolation by optimally fitted curve,
sea state 2. c = 0.28
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Conclusions

— It has been shown that the ACER method can provide an
estimate of the exact extreme value distribution provided by
the data.

— From the examples studied, it is tentatively concluded that the
proposed extrapolation procedure combined with the ACER
method appears to be accurate and robust, while it is simple
and practical to use.

— Optimized fit and extrapolation can give accurate predictions of
the ACER functions and thus extreme value statistics.
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