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Abstract Barrier options are financial derivative contracts that are activated
or deactivated according to the crossing of specified barriers by an underly-
ing asset price. Exact models for pricing barrier options assume continuous
monitoring of the underlying dynamics, usually a stock price. Barrier options
in traded markets, however, nearly always assume less frequent observation,
e.g. daily or weekly. These situations require approximate solutions to the pric-
ing problem. We present a new approach to pricing such discretely monitored
barrier options that may be applied in many realistic situations. In particular,
we study daily monitored up-and-out call options of the European type with
a single underlying stock. The approach is based on numerical approximation
of the transition probability density associated with the stochastic differential
equation describing the stock price dynamics, and provides accurate results in
less than one second whenever a contract expires in a year or less. The flexibility
of the method permits more complex underlying dynamics than the Black and
Scholes paradigm, and its relative simplicity renders it quite easy to implement.
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1 Introduction

An option or a financial derivative security is an agreement between two
contractual partners that gives the holder of the option the right but not the
obligation to buy (call) or sell (put) another asset some time in the future at
an agreed-upon price. Often the underlying asset is a stock, but options may
depend on the value of almost any other traded asset, like real estate or metals.

We are concerned with barrier options, i.e. options where the holder gains
or loses his right to buy or sell when the price of the underlying stock crosses
a barrier specified by the contract. Many different contracts can be imagined.
If a barrier is set below the initial stock price, the contract may render the
option worthless if the stock price falls below the barrier (down-and-out option).
Another possibility is that the holder can not exercise his right unless the stock
price exceeds a certain barrier (up-and-in option). Combinations of barriers
and time-dependence are also possible.

Option pricing is based on a mathematical model of the underlying stock
price dynamics. The most popular is the Black and Scholes (1973) model,
which assumes that the stock price develops according to a geometric Brownian
motion. An advantage of this assumption is the possibility of deriving closed-
form solutions to the pricing problem. This model has its limitations, but con-
tinues to be useful also as a building block for more complicated models.

Exact pricing of barrier options in a Black–Scholes market is possible as long
as the holder can exercise his right at any time (see e.g. Hull (2003)). But in
traded markets this right is usually limited to discrete monitoring times, e.g. once
a day or once a week. It is therefore necessary to seek approximate solutions
to the pricing problem. A number of strategies have been suggested, including
binomial trees, trinomial trees, finite difference methods, finite element methods
and Monte Carlo simulation, apart from analytical methods. However, none of
these appear to combine high accuracy, computational efficiency and general
applicability.

We will present a conceptually simple, general and easily implementable
method that is based on numerically integrating the transition probability den-
sities of the stochastic differential equation. Although we will test the method
on an example that assumes geometric Brownian motion as the underlying
dynamics, this is by no means required by the method.

2 Model

Assume a market where the risk-adjusted stock price develops according to the
stochastic differential equation

dSt = µ(St) dt + σ(St) dWt, (1)

where Wt is a standard Brownian motion. Initially, no restrictions are placed on
the drift function µ(s) or the diffusion function σ(s), apart from the regularity
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conditions required for Eq. 1 to be well-defined (see e.g. Øksendal, 2003), and
such that the process St is characterized by an absolutely continuous probability
distribution.

We shall be concerned with an up-and-out call option of the European type
written on a single stock having a constant barrier B and a strike price X in a mar-
ket with a risk-free interest rate r. The initial stock price is equal to S0 = s0. The
option becomes worthless as soon as the stock price St is greater than B at one
of the discrete monitoring times. Of course, s0 < B and X < B. If a price greater
than B is not observed, the option’s value at maturity T is max(0, ST − X). The
underlying stock is monitored at m different times τj, j = 1, . . . , m until maturity
such that 0 < τ1 < τ2 < . . . < τm−1 < τm = T. We thus observe a time series
of stock prices S0, Sτ1 , . . . , Sτm . To calculate the option’s value we consider the
barrier process

S̃t = StI
[
Sτi ≤ B for everyτi, 0 < τi ≤ t

]
, (2)

which is then defined as the price process at time t multiplied with the indica-
tor function of the event that the observed price process has not exceeded the
barrier up to time t, where I[A] = 1 if the event A has occurred, and I[A] = 0
otherwise. Now define a probability function

Hm(s) = P{S̃τm > s} = P{s < Sτm ≤ B ∩ Sτj ≤ B; 1 ≤ j < m}, (3)

for 0 < s < B. Then gm(s) = −dHm(s)/ds is given by

gm(s) =
∫ B

0
. . .

∫ B

0
pm|m−1(s|sm−1) . . . p(s2|s1)p(s1|s0)ds1 . . . dsm−1, (4)

where pi|i−1(s|s′) denotes the transition probability density function of St from
τi−1 to τi. The option price is then equal to

p = exp(−rT)

∫ B

X
(s − X)gm(s)ds, (5)

when the interest rate r is constant over the maturity time T. Note that as B goes
to infinity, gm(s) approaches the PDF of the risk-free price process at maturity,
which can be used to price a plain vanilla option.

3 Implementation

Whenever the transition probability density pi|i−1(s|s′), i = 1, . . . , m, is at hand,
Eq. 4 can be used recursively to obtain gm(s):

g2(s) =
∫ B

0
p2|1(s|s′)p1|0(s′|s0)ds′, (6)
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and

gi(s) =
∫ B

0
pi|i−1(s|s′)gi−1(s

′)ds′, i = 3, . . . , m. (7)

In practice, each element in the series of functions

p1|0(s|s0), g2(s), g3(s), . . . , gm−1(s), gm(s)

is represented on a numerical grid. In order to save memory and computing
time, the modest number of 80 uniformly spaced grid points are placed along
the intervals where these functions are expected to have essentially non-zero
values.

A limited number (1000) of Monte Carlo simulations of St are carried out
in order to find reasonable upper and lower limits for the grid points si. Under
any circumstances, the upper cut-off value is never set greater than B.

Under the Black and Scholes framework

dSt = rStdt + σStdWt, (8)

where σ is the constant stock volatility, the transition probability density is
explicitly given as

pi+1|i(s|s′) = 1√
2π�τiσ s

exp

(

−
(

log(s) − log(s′) − (r − σ 2/2)�τi
)2

2σ 2�τi

)

, (9)

where �τi = τi+1 − τi. Hence, whatever the length of the observation intervals
�τi, the accuracy of the recursive scheme above for the Black and Scholes
model will depend solely on the accuracy of the numerical integrations carried
out.

If the exact transition probability density is not available, one possibility is
to use an approximate density derived from an Euler-Maruyama discretiza-
tion (see e.g. Kloeden & Platen, 1992) of the stochastic process St, which is
obtained from Eq. 1:

Sτi+1 = Sτi + µ(Sτi)�τi + σ(Sτi)�Wτi , (10)

where �Wτi = Wτi+1 − Wτi is normally distributed with expectation zero and
variance equal to �τi. The approximate transition probability density then
becomes

pi+1|i(s|s′) = φN(s; s′ + µ(s′)�τi, σ 2(s′)�τi), (11)
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where

φN(s; µ, σ 2) = 1√
2πσ

exp

(
− (s − µ)2

2σ 2

)
. (12)

However, in general the observation interval is too long for this approximation
to be very accurate. A possible remedy is to invoke the Markov property of
St, which allows us to express the transition probability density pi+1|i(s|s′) as
follows: Let τi = t(i)0 < t(i)1 < · · · < t(i)ni = τi+1, then, by the Chapman-Kolmogo-
rov equation, (x0 = s′, xni = s)

pi+1|i(s|s′) =
∫ ∞

0
· · ·

∫ ∞

0

ni∏

j=1

pt(i)j |t(i)j−1
(xj|xj−1)dx1 . . . dxn−1 (13)

where the transition probability density functions pt(i)j |t(i)j−1
(xj|xj−1) are again

given by Eq. 11 where �τi is replaced by �t(i)j = t(i)j+1 − t(i)j . Clearly the accuracy

of Eq. 13 depends on the quantity max{�t(i)j ; j = 1, . . . , ni}.
The complete recursion algorithm may now be written as follows: Let the

obtained total discretization be written as 0 < t1 < . . . < tn = T, where
n = ∑m−1

i=1 ni. Let b(j) = B if tj = τi for some i ∈ {1, . . . , m}, else b(j) = ∞, and
let g̃j(·), j = 2, . . . , n be defined as

g̃2(s) =
∫ b(t1)

0
pt2|t1(s|x)pt1|0(x|s0)dx, (14)

and

g̃j(s) =
∫ b(tj−1)

0
ptj|tj−1(s|x)g̃j−1(x)dx, j = 3, . . . , n, (15)

where then finally g̃n(s) = gm(s) for 0 < s < B, within the approximation of the
given discretization.

So far the analysis has been based on the Euler-Maruyama approximation
to Eq. 1, which centers on the approximation

∫ tj+1

tj
σ (St) dWt = σ

(
Stj

)
(Wtj+1 − Wtj) = σ

(
Stj

)
�Wtj . (16)

The advantage of this approximation is obvious from the preceding analy-
sis, viz. that the transition probability density ptj+1|tj(s|s′) can be represented
by a Gaussian density. As discussed extensively in Kloeden & Platen (1992),
there are several ways of improving on the simple Euler-Maruyama approxima-
tion, both by weak and strong discretization schemes. Since the goal here is to
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calculate the probability density functions g̃j(s) of the option price process, it is
sufficient to limit the attention to the weak schemes. In particular, the simplified
weak Taylor scheme of order 2.0 will be discussed. It may be noted that the
Euler-Maruyama scheme is of weak order 1.0. According to Kloeden & Platen
(1992), the simplified weak order 2.0 Taylor scheme for the conditional random
variable S̃j+1 = {Stj+1 |Stj = sj} may be written as

S̃j+1 = αj + βj�Wtj + γj�W2
tj . (17)

Here

αj = sj + µ(sj)�tj − σ(sj)σ
′(sj)�tj/2

+
(
µ(sj)µ

′(sj) + µ′′(sj)σ (sj)
2/2

)
�t2j /2, (18)

βj = σ(sj) +
(
µ′(sj)σ (sj) + µ(sj)σ

′(sj) + σ ′′(sj)σ (sj)
2/2

)
�tj/2, (19)

and
γj = σ(sj)σ

′(sj)/2. (20)

The prime ′ denotes differentiation, that is, µ′(s) = dµ(s)/ds, and so on.
Convergence of the present weak Taylor scheme of order 2.0 is guaranteed
if the functions µ(s) and σ(s) satisfy certain regularity conditions, cf. Kloeden
& Platen (1992).

Having achieved the representation of Eq. 17, we may proceed to calculate
ptj+1|tj(s|sj). This transition probability density can, of course, still be expressed

in closed form since S̃j+1 is a quadratic expression in the Gaussian variable
�Wtj . Let ξ±

j denote the two solutions of the equation

s = h(ξ) = αj + βjξ + γjξ
2. (21)

That is

ξ±
j = −βj/(2γj) ±

√
(s − αj)/γj + (βj/(2γj))2. (22)

It is then obtained that

ptj+1|tj(s|sj) =
∑

ε=+,−

φN(ξε
j ; 0, �tj)

|h′(ξε
j )|

= φN(ξ+
j ; 0, �tj) + φN(ξ−

j ; 0, �tj)
√

(s − αj)/γj + (βj/(2γj))2
(23)

for (s − αj)/γj + (βj/(2γj))
2 > 0. So even if the transition probability density

ptj+1|tj(s|sj) is more complicated for the weak order 2.0 approximation above
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than the previous transition probability density, which was simply a Gaussian
density, it is still tractable for numerical calculations. It is therefore of interest
to explore the impact of this approximation on the numerical accuracy of the
calculated values for the option price by combining Eqs. 6 and 7 or 14 and 15
with Eq. 23.

To carry out the numerical integrations, we use Simpson’s method with 400
partitions. When the algorithm calls for a value of gi−1 or g̃j−1 outside the chosen
grid, the value of a cubically interpolated spline is provided. The integrations
in Eqs. 6 and 7 or 14 and 15 are limited to the intervals where almost all the
narrow transition density’s mass is localized. Given s, we limit the integration
to the interval defined by a backwards Euler-Maruyama step plus–minus six
standard deviations as determined by the transition density.

4 Numerical results

We base our numerical experiments on an up-and-out call option in a Black
and Scholes market with initial stock price 110, strike 100, interest rate 10%,
volatility 30% and time to maturity 0.2 years, i.e. 50 trading days. Barriers are in
intervals of five between 115 and 155 and the stock price is monitored daily. The
situation has been studied by Broadie et al. (1997), who derived an analytical
approximation to the pricing problem. For comparison they calculated the true
values using a trinomial tree with 80,000 partitions. This approach is computa-
tionally expensive, but their results will serve us the same purpose.

To try out our path integral approach, we have tested the method using
different implementations:

1. Exact transition probability density
2. Taylor based transition probability density with 1-day discretization inter-

vals
3. Euler-Maruyama based transition probability density dividing each day into

5 discretization intervals, that is, ni = 5 in Eq. 13.
4. Euler-Maruyama based transition probability density with 1-day discreti-

zation intervals

The CPU time is a fraction of a second for the implementations 1, 2, and 4, and
slightly above a second for number 3. As we can see in the Table 1, the exact
and the Taylor based transition density come up with identical results that are
practically equal to the benchmark results. Whenever the underlying stock price
dynamics are more complicated and the exact transition density is not avail-
able, PI 2 should still provide good results. With the Euler-Maruyama based
transition density some accuracy is lost. But is compares rather well with e.g.
the approximate results of Kou (2003), who has studied the same example, and
it is improved by dividing the days in 5 intervals. The disadvantage of this finer
discretization is a fivefold increase in the CPU time. It must also be noted that
further discretization does not produce more accurate results without refining
the grid, which will increase the CPU time even more.
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Table 1 Option price results

B True PI 1 PI 2 PI 3 PI 4 Kou Duan et al.

115 0.807 0.806 0.806 0.806 0.806 0.819 0.807
120 2.418 2.418 2.418 2.416 2.419 2.442
125 4.616 4.616 4.616 4.615 4.623 4.649
130 6.922 6.922 6.922 6.922 6.936 6.959
135 8.959 8.959 8.959 8.960 8.979 8.994 8.958
140 10.551 10.552 10.552 10.553 10.574 10.581
145 11.684 11.685 11.685 11.686 11.706 11.707
150 12.431 12.432 12.432 12.434 12.451 12.448
155 12.894 12.895 12.895 12.897 12.905 12.894 12.894

Duan et al. (2003) also provide very accurate results in a short time with a
method that is similar to ours in the sense that is exploits the Markov property
of the stochastic differential equation, but our method is perhaps conceptually
simpler and consequently very easy to program. Not counting library routines
for interpolation and an external random number generator, the program writ-
ten to perform our calculations consists of about 100 lines of FORTRAN code.

5 Accuracy and computational cost

Broadie et al. demonstrated that reasonably accurate pricing could be obtained
by applying the continuous barrier formula after slightly moving the barrier.
This analytical solution to the pricing problem permits nearly instant pricing
of a large number of barrier options (1000s in a second). Using numerical
path integration we have priced one option in 0.2 seconds when time to matu-
rity is 50 days (the price corresponding to a different strike can be found at an
insignificant computational cost as long as the function g in (5) has been found).
Although clever implementations may reduce the CPU time, is is clear that path
integration can never compete with an analytical approximation as far as speed
is concerned. On the other hand it provides more accurate results, particularly
when the barrier is close to the initial price, as can be seen in Table 2. And it
remains orders of magnitude faster than using the trinomial tree. The choice
of method thus depends on the trade-off between computational speed and
accuracy.

6 Conclusion

We have demonstrated that the price of a European call option in a Black–
Scholes market with an up-and-out barrier that is monitored daily for 50 days
can be estimated very accurately in a fraction of a second by recursive numerical
integration of the transition probability density associated with the stochastic
differential equation describing the risk-adjusted stock price dynamics. To take
full advantage of the potential of this path integration scheme it is crucial how
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Table 2 Comparison to
corrected continuous barrier
method

B True Broadie et al. Err. (%) PI 2 Err. (%)

115 0.807 0.819 1.5 0.806 0.124
120 2.418 2.442 1.0 2.418 0.000
125 4.616 4.649 0.7 4.616 0.000
130 6.922 6.959 0.5 6.922 0.000
135 8.959 8.994 0.4 8.959 0.000
140 10.551 10.581 0.3 10.552 0.009
145 11.684 11.707 0.2 11.685 0.009
150 12.431 12.448 0.1 12.432 0.008
155 12.894 12.905 0.1 12.895 0.008

the numerical scheme is implemented. Here we have described briefly a few
such implementation strategies.

The same method might as well have been applied to many other cases,
including up-and-in, down-and-in, down-and-out or double barrier options. The
essential requirement is that the price can be found by repeated calculation of
an integral over transition densities, like Eq. 4. It is clear that by changing the
upper integration limits of 4, we might also have priced an option with a time-
varying barrier. Since the integral can be suited to the monitoring frequency of
the option, this approach is uniquely flexible.

Finally, it should also be noted that the Euler-Maruyama or Taylor approxi-
mations can be used to estimate the price of options with more complex under-
lying dynamics by essentially the same method. The path integration method
in combination with a suitable approximation scheme for the transition prob-
ability density and an interpolation procedure, provided very accurate results
in the classical Black–Scholes case. On the basis of a consideration of each
of the elements entering the numerical solution procedure, it appears possi-
ble to accurately price a wide variety of options in this way as long as the
underlying dynamics is driven by a process with stationary, independent incre-
ments, whether it be Brownian motion or not. This generality of the method
suggests numerous possibilities of future developments.
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