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Abstract

When we use stochastic differential equations as models of financial data that
appear as time series, we have to estimate the equation parameters. For complex
models this is not straightforward. Approximate maximum likelihood methods are
useful tools for this purpose. We suggest the following approach: The likelihood
function given by the time series and the parameters is estimated for fixed values
of the parameter vector. We apply a standard optimization method that repetedly
calls the estimation procedure, with different parameter vectors as arguments, until
the optimization converges. The likelihood function is the product of the transition
probability densities given by the data. By solving the Fokker-Planck equation
associated with the stochastic differential equation, one can obtain these probabil-
ity densities. Exact, analytical solutions to the Fokker-Planck equation can rarely
be found. We therefore apply a path integral method to find approximate solutions.
This path integral method is based on the fact that solutions to stochastic differ-
ential equations are Markov processes. The time intervals between all the pairs of
consecutive data are split in smaller partitions, so that the Euler-Maruyama method
is fairly accurate. For all the pairs of data, the total probability law is then applied
recursively with the delta distribution given by the first data point as the initial
density. The propagating density is represented numerically on a finite, adaptive
grid, and the Euler-Maruyama method provides an approximation to the condi-
tional probability density that appears in the total probability law. The method is
tested on artificially generated time series with known parameter vectors. It is seen
that it yields satisfying parameter estimates for different models in quite reason-
able CPU-time, even with thousands of data. It also compares favorably with other
methods.
Keywords: stochastic differential equations, parameter estimation, maximum like-
lihood, Fokker-Planck, path integration.



1 Introduction

Stochastic differential equations (SDEs) have a wide range of applications in sci-
ence, engineering and economics. They are essential for pricing and hedging finan-
cial derivatives and also appear in interest rates modeling. Numerical simulation
of SDE sample paths can be done in a large number of ways and there exists a
well established theory of order, convergence and stability of these methods (see
e. g. [1]).

Whenever an SDE is used as a model, we have to use the empirical data to
estimate its parameters. This is an inverse problem: We observe what we assume
is the solution at discrete points in time, and then try to figure out the parameters
of the equation. It is probably fair to say that the theory of this inverse problem is a
bit less developed. For some simple models there exist feasible analytical solutions
to the estimation problem based on the maximum likelihood principle. But these
models more often than not fail to describe financial data adequately. Realistic
models thus require approximate inference methods. These methods are getting
increased attention and research seems to develop in many different directions:

� Approximate maximum likelihood estimation
� Martingale estimating functions
� Bayesian analysis (Markov chain Monte Carlo)
� Moment methods
� Kalman filtering
� Neural networks

For details on some of the above methods, see [2], [3], [4] and [5]. The approach to
be presented here belongs to the class of approximate maximum likelihood meth-
ods for one-dimensional SDEs whose solutions are ergodic stochastic processes.
We shall not be concerned with the challenging inference problem for stochas-
tic volatility models, i. e. vector SDEs where some vector components are unob-
served.

2 Model and assumptions

Consider an Itô stochastic differential equation

��� � ������� ����� ������� ������ (1)

where �� is a standard brownian motion and � is a parameter vector in an �-
dimensional space. We shall assume sufficient smoothness of the functions � and
�, i. e. the problem is well posed and there will always be a solution to eqn. (1). A
time series of financial data

���� ���� ���� ���� � � � � ��� � ��� (2)

is given. We assume that the series (2) is a discrete-time observation of a sample
path given by eqn. (1) and that the time step �� � � ��� � �� is constant. Our aim
is to develop a numerical method for obtaining the most likely value of the full



parameter vector � for general functions � and �, and for any vector dimension �.
We make no special assumptions that exclude large classes of interesting models.

3 The maximum likelihood principle

Let
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denote the transition probability density associated with the stochastic process � �.
The maximum likelihood method requires that we find the global maximum of
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For implementation purposes, we seek the global minimum of � ��������� in all
our numerical experiments, which is an equivalent problem. If we have a tractable,
exact representation of the transition probability density, the optimal � is easily
obtained. But exact transition probabilities are generally unknown. They can only
be found in the simplest cases. Approximations are thus called for.

4 Approximate maximum likelihood

There exist two schools of thought in approximate maximum likelihood methods.
The analytical approach is to approximate the transition probability density by a
closed-form expression that shares important properties with the exact distribution.
The numerical approach is to approximate the exact distribution on a finite number
of grid points. Here we shall subscribe to the latter philosophy.

An idea that comes up immediately is to substitute the exact transition proba-
bility density with the closed-form approximation derived from the forward Euler-
Maruyama scheme [1]:
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The approximate maximum likelihood function is thus
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Finding the global maximum of (6) is an easy, quickly solvable problem. But that
maximum will be a poor approximation to the true value of � unless the time-
steps ��� are very small. In practice, samples of �� are taken less frequently than
required for the Euler scheme to provide a sharp estimate of �. The relative error
with respect to the true value can be high, even orders of magnitude. Introducing
some higher order method like the Milstein scheme can improve the situation, but
still it will not yield adequate approximations to �.



Another idea, suggested by Poulsen [6], is based on the fundamental result
from stochastic calculus that the transition probability density is the solution to
the Fokker-Planck equation
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In our case, the initial distribution at �� is the delta “function” centered at ��.
Eqn. (7) is also known as the forward Kolmogorov equation. By solving this equa-
tion � times, for the steps between the � � 	 observations, we obtain the like-
lihood function ����. Since the Fokker-Planck equation is hard to solve in the
general case, we apply a numerical method to find approximations to ���� at fixed
values of �. An approximation to the optimal � can then be found by optimisation.
This method has the advantage that it is asymptotically as accurate as the exact
maximum likelihood estimator.

5 Optimisation aspects

In practice, the optimisation problem is not trivial to solve efficiently, even if the
likelihood function is often well-behaved and smooth without local maxima. When
using algorithms like conjugate gradient or Newton’s method “blindly”, we are
likely to encounter problems with different parameter scales and lack of quality of
the initial guess for �. Without any a priori knowledge of the approximate scales,
finite difference approximations to the gradient may be inaccurate. Many fast opti-
misation methods assume that the object function is similar to a quadratic form
near the maximum. While that may be true in a neighbourhood sufficiently close
to the maximum, it might not be the case elsewhere. A direct optimisation method
may thus be required to localise the maximum’s neighbourhood. However, scale
differences can remain a problem even as we get closer to the maximum. The
optimization algorithm takes tentative steps in different search directions. With-
out approximate knowledge of the scales, we risk stepping out of the interesting
area, or spend a lot of time back-stepping. The likelihood function can also be
ill-conditioned. These potential problems, as well as our ambitions of making a
robust method, constitute an argument in favour of using a direct optimisation
method until convergence, even if a more sophisticated scheme may sometimes
be a lot faster. We are then forced to calculate approximations to the likelihood
function quite a few times, so it is essential to keep the computational cost of each
evaluation down. See [7] for a detailed discussion on optimisation matters.

6 Solving Fokker-Planck by the path integral method

We would like to solve the Fokker-Planck equation numerically, but how? Poulsen
[6] uses the Crank-Nicholson finite difference method and obtains satisfying results.



However, numerical experience suggests that finite difference methods often fail
if the equation is significantly nonlinear, especially in the deterministic compo-
nent. The same goes for finite elements. We shall take on an approach that has
been successfully applied to Fokker-Planck equations with nonlinear drift terms in
stochastic mechanics [8], although we do not test it on financial models with non-
linear drift terms in the present work (that is the topic of ongoing research). Our
approach exploits the fact that solutions to SDEs are Markov processes. A Markov
process obeys the total probability law
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for an intermediate �
 at �� � ���� �����. By introducing �� 	 intermediate points
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in time, the right hand side of the total probability law (8) is rewritten as an �-
dimensional path integral (the dependence of � is omitted for clarity):
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And then the naive Euler approach suddenly becomes useful. If � is large enough
to render the Euler-Maruyama scheme sufficiently accurate, it provides analytic
approximations to the transition probability densities required by the path inte-
gral. The path integral (10) and the Euler method (5) are the core elements of our
method. The rest is implementation details, however important they may be.

7 Implementation

We assume that the time steps of the partition (9) are all equal to Æ� � ����.
The first integrand is just a transition density times a delta distribution, so the cor-
responding integral is carried out analytically. The resulting distribution is repre-
sented numerically on a finite grid with 31 equally spaced points. The grid is on an
interval whose endpoints are defined by the deterministic drift component of the
SDE plus-minus four times the standard deviation given by the stochastic com-
ponent at ��. The grid points move adaptively according to the same criteria as
the probability density propagates by means of the � � 	 remaining integrations.
These are carried out consecutively for all grid points using Simpson’s method,
limiting the numerical quadrature to the intervals where the transition probability
density as it would have been provided by the backward Euler scheme is greater
than 	���. The number of quadrature points is also equal to 31. As Simpson’s
method calls for numerical values of the probability density outside the grid, an
interpolated value is provided by natural cubic splines [9].
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Figure 1: Exact likelihood and the two approximations

8 A simple numerical experiment

Consider the Ornstein-Uhlenbeck (OU) process
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This very simple SDE has an analytical solution to the parameter estimation prob-
lem, as the transition probability density is given by

	�
����
�� �� � 	�


�	� �������

��


�
� �
��� � 
��

������


�	� �������

�
(12)

Using the exact solution and a random number generator, we provide 
� realiza-
tions of eqn. (11) in the interval � � ��� 	��� at 	��� discrete, equally spaced
sample points for � � 	. The likelihood function is then evaluated on a fine grid
at the interval ����� 	�
� for all the 
� experiments in the following three ways:

� Exact maximum likelihood
� Path integration with � � 	� (ten subintervals)
� Naive Euler method as described above

The mean and standard deviation of the three sets of corresponding parameter esti-
mates are seen in Table 1. For one of the realizations, we have plotted the three
corresponding negative log-likelihood functions in Figure 1. The full line corre-
sponds to the exact likelihood, the circles to the approximate likelihood provided
by the path integral, and the asterisks to the one provided by the Euler method.



Table 1: Statistics of OU parameter estimates from 
� experiments.

Method � mean � standard deviation

Exact maximum likelihood 1.002 0.045

Path integration 1.012 0.051

Naive Euler 0.919 0.039
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Figure 2: Part of a sample of the CIR process

It is seen that path integration provides almost as sharp an estimate as exact max-
imum likelihood. That was perhaps to be expected with such a high data density,
but note that the Euler method is biased even for such a small time step.

9 An experiment with the CIR process

We now try out the full estimation method on the so-called Cox-Ingersoll-Ross (CIR)
model, given by

��� � ���������� �
�
������ (13)

Eqn. (13) has been suggested as an interest rates model [10]. We have simu-
lated 100 different realizations of the CIR model on the interval ��� 
���� using
the Milstein scheme and a time step equal to ���	 with the parameter vector
��� �� �� � ������ 
� ���
��. From this realization we have sampled 2000 data,
i. e. the time step between the “observed” data is 	��. Part of one of these sam-
ples is seen in Figure 2. For all the samples, we have fed the data into the path



Table 2: Statistics of CIR parameter estimates from 	�� experiments.

Parameter Mean Standard deviation

� 0.05998 0.00013

� 1.929 0.15

� 0.02386 0.00084

integration procedure to be called by the Simplex direct optimisation method [9].
First we run the Simplex method with initial parameter vector �	� 	� 	� to conver-
gence using a path integral method with two subintervals. The result is then used
as the initial value in another call to Simplex, this time with four path integration
subintervals. The subintervals are doubled until Simplex provides two consecutive
estimates that differ by less than five percent in the �� metric (this usually hap-
pens at sixteen subintervals). The resulting parameter estimate statistics are shown
in Table 2. For one of the samples, we have evaluated the approximate likelihood
function with sixteen partitions on a 3D parameter grid to check by brute force
that Simplex actually comes up with the global minimum. A contour plot of the
likelihood for � fixed at ���� is shown in Figure 3.

It is not surprising that � is estimated sharply, as it is very close to the time
series’ mean value. The estimate of the diffusion parameter � is also close to the
mark. It turns out that the most difficult parameter to estimate is the speed of mean
reversion �. The mean estimate of � is between three and four percent biased and it
has the largest relative standard deviation (about twice that of �). These results are
of slightly inferior quality with respect to the ones provided by Sørensen [11], who
develops a special Martingale method for small diffusion terms. In a similar exper-
iment with the parameter vector ��� 
� ���	�, his mean estimate for � is 
��	��with
standard deviation ��		�
. But the time step between his “observed” data is ��	,
that is ten times denser. Keeping in mind that our method is completely general,
it provides a very good result. Mean CPU time for our calculations is about ten
minutes on a Dell PC with a 2.6GHz processor, which is a decent computational
cost considering the accuracy of the results.

10 Conclusion and suggestions for further research

We have studied the parameter estimation problem for one-dimensional stochastic
differential equations that are observed at discrete points in time. It is seen that
even with a large number of data points, a relatively sharp estimate of the unknown
parameter vector can be found in quite reasonable CPU time by repeatedly solving
the Fokker-Planck equation for the transition probability densities of the maximum
likelihood function by the path integral method at fixed parameter values, applying
standard direct optimisation methodology to find the optimal parameter vector.
The suggested algorithm should be tested on more complicated financial models,
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Figure 3: Contour plot of the approximate likelihood as a function of � and � with
� fixed at ����.

also models with nonlinear drift terms, to assess more thoroughly its potential as a
general parameter estimation method for stochastic differential equations. It should
also be possible to reduce CPU time, as very little has so far been done to optimise
the implementation or speed up the code. Perhaps a higher order approximation
for the transition probability density can also save time.
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