
Random Variables

2
2.1. Random Variables

It frequently occurs that in performing an experiment we are mainly interested in
some functions of the outcome as opposed to the outcome itself. For instance, in
tossing dice we are often interested in the sum of the two dice and are not really
concerned about the actual outcome. That is, we may be interested in knowing
that the sum is seven and not be concerned over whether the actual outcome was
(1, 6) or (2, 5) or (3, 4) or (4, 3) or (5, 2) or (6, 1). These quantities of interest,
or more formally, these real-valued functions defined on the sample space, are
known as random variables.

Since the value of a random variable is determined by the outcome of the exper-
iment, we may assign probabilities to the possible values of the random variable.

Example 2.1 Letting X denote the random variable that is defined as the sum
of two fair dice; then

P {X = 2} = P {(1,1)} = 1
36 ,

P {X = 3} = P {(1,2), (2,1)} = 2
36 ,

P {X = 4} = P {(1,3), (2,2), (3,1)} = 3
36 ,

P {X = 5} = P {(1,4), (2,3), (3,2), (4,1)} = 4
36 ,

P {X = 6} = P {(1,5), (2,4), (3,3), (4,2), (5,1)} = 5
36 ,

P {X = 7} = P {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)} = 6
36 ,

P {X = 8} = P {(2,6), (3,5), (4,4), (5,3), (6,2)} = 5
36 ,

P {X = 9} = P {(3,6), (4,5), (5,4), (6,3)} = 4
36 ,
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24 2 Random Variables

P {X = 10} = P {(4,6), (5,5), (6,4)} = 3
36 ,

P {X = 11} = P {(5,6), (6,5)} = 2
36 ,

P {X = 12} = P {(6,6)} = 1
36 (2.1)

In other words, the random variable X can take on any integral value between
two and twelve, and the probability that it takes on each value is given by
Equation (2.1). Since X must take on one of the values two through twelve,
we must have that

1 = P

{
12⋃

i=2

{X = n}
}

=
12∑

n=2

P {X = n}

which may be checked from Equation (2.1). �

Example 2.2 For a second example, suppose that our experiment consists
of tossing two fair coins. Letting Y denote the number of heads appearing,
then Y is a random variable taking on one of the values 0, 1, 2 with respective
probabilities

P {Y = 0} = P {(T ,T )} = 1
4 ,

P {Y = 1} = P {(T ,H), (H,T )} = 2
4 ,

P {Y = 2} = P {(H,H)} = 1
4

Of course, P {Y = 0} + P {Y = 1} + P {Y = 2} = 1. �

Example 2.3 Suppose that we toss a coin having a probability p of coming up
heads, until the first head appears. Letting N denote the number of flips required,
then assuming that the outcome of successive flips are independent, N is a random
variable taking on one of the values 1, 2, 3, . . . , with respective probabilities

P {N = 1} = P {H } = p,

P {N = 2} = P {(T ,H)} = (1 − p)p,

P {N = 3} = P {(T ,T ,H)} = (1 − p)2p,

...

P {N = n} = P {(T ,T , . . . , T
︸ ︷︷ ︸

n−1

,H)} = (1 − p)n−1p, n � 1
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As a check, note that

P

( ∞⋃

n=1

{N = n}
)

=
∞∑

n=1

P {N = n}

= p

∞∑

n=1

(1 − p)n−1

= p

1 − (1 − p)

= 1 �

Example 2.4 Suppose that our experiment consists of seeing how long a bat-
tery can operate before wearing down. Suppose also that we are not primarily in-
terested in the actual lifetime of the battery but are concerned only about whether
or not the battery lasts at least two years. In this case, we may define the random
variable I by

I =
{

1, if the lifetime of battery is two or more years
0, otherwise

If E denotes the event that the battery lasts two or more years, then the random
variable I is known as the indicator random variable for event E. (Note that I

equals 1 or 0 depending on whether or not E occurs.) �

Example 2.5 Suppose that independent trials, each of which results in any
of m possible outcomes with respective probabilities p1, . . . , pm,

∑m
i=1 pi = 1,

are continually performed. Let X denote the number of trials needed until each
outcome has occurred at least once.

Rather than directly considering P {X = n} we will first determine P {X > n},
the probability that at least one of the outcomes has not yet occurred after n trials.
Letting Ai denote the event that outcome i has not yet occurred after the first
n trials, i = 1, . . . ,m, then

P {X > n} = P

(
m⋃

i=1

Ai

)

=
m∑

i=1

P(Ai) −
∑∑

i<j

P (AiAj )

+
∑∑∑

i<j<k

P (AiAjAk) − · · · + (−1)m+1P(A1 · · ·Am)
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Now, P(Ai) is the probability that each of the first n trials results in a non-i
outcome, and so by independence

P(Ai) = (1 − pi)
n

Similarly, P(AiAj ) is the probability that the first n trials all result in a non-i and
non-j outcome, and so

P(AiAj ) = (1 − pi − pj )
n

As all of the other probabilities are similar, we see that

P {X > n} =
m∑

i=1

(1 − pi)
n −

∑∑

i<j

(1 − pi − pj )
n

+
∑∑∑

i<j<k

(1 − pi − pj − pk)
n − · · ·

Since P {X = n} = P {X > n − 1} − P {X > n}, we see, upon using the algebraic
identity (1 − a)n−1 − (1 − a)n = a(1 − a)n−1, that

P {X = n} =
m∑

i=1

pi(1 − pi)
n−1 −

∑∑

i<j

(pi + pj )(1 − pi − pj )
n−1

+
∑∑∑

i<j<k

(pi + pj + pk)(1 − pi − pj − pk)
n−1 − · · · �

In all of the preceding examples, the random variables of interest took on ei-
ther a finite or a countable number of possible values.∗ Such random variables are
called discrete. However, there also exist random variables that take on a contin-
uum of possible values. These are known as continuous random variables. One
example is the random variable denoting the lifetime of a car, when the car’s life-
time is assumed to take on any value in some interval (a, b).

The cumulative distribution function (cdf ) (or more simply the distribution
function) F(·) of the random variable X is defined for any real number b,

−∞ < b < ∞, by

F(b) = P {X � b}
In words, F(b) denotes the probability that the random variable X takes on a value
that is less than or equal to b. Some properties of the cdf F are

(i) F(b) is a nondecreasing function of b,

∗A set is countable if its elements can be put in a one-to-one correspondence with the sequence of
positive integers.
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(ii) limb→∞ F(b) = F(∞) = 1,
(iii) limb→−∞ F(b) = F(−∞) = 0.

Property (i) follows since for a < b the event {X � a} is contained in the event
{X � b}, and so it must have a smaller probability. Properties (ii) and (iii) follow
since X must take on some finite value.

All probability questions about X can be answered in terms of the cdf F(·).
For example,

P {a < X � b} = F(b) − F(a) for all a < b

This follows since we may calculate P {a <X �b} by first computing the proba-
bility that X � b [that is, F(b)] and then subtracting from this the probability that
X � a [that is, F(a)].

If we desire the probability that X is strictly smaller than b, we may calculate
this probability by

P {X < b} = lim
h→0+ P {X � b − h}

= lim
h→0+ F(b − h)

where limh→0+ means that we are taking the limit as h decreases to 0. Note that
P {X < b} does not necessarily equal F(b) since F(b) also includes the probabil-
ity that X equals b.

2.2. Discrete Random Variables

As was previously mentioned, a random variable that can take on at most a count-
able number of possible values is said to be discrete. For a discrete random vari-
able X, we define the probability mass function p(a) of X by

p(a) = P {X = a}
The probability mass function p(a) is positive for at most a countable number of
values of a. That is, if X must assume one of the values x1, x2, . . . , then

p(xi) > 0, i = 1,2, . . .

p(x) = 0, all other values of x

Since X must take on one of the values xi , we have

∞∑

i=1

p(xi) = 1
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Figure 2.1. Graph of F(x).

The cumulative distribution function F can be expressed in terms of p(a) by

F(a) =
∑

all xi�a

p(xi)

For instance, suppose X has a probability mass function given by

p(1) = 1
2 , p(2) = 1

3 , p(3) = 1
6

then, the cumulative distribution function F of X is given by

F(a) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, a < 1
1
2 , 1 � a < 2
5
6 , 2 � a < 3

1, 3 � a

This is graphically presented in Figure 2.1.
Discrete random variables are often classified according to their probability

mass functions. We now consider some of these random variables.

2.2.1. The Bernoulli Random Variable

Suppose that a trial, or an experiment, whose outcome can be classified as either
a “success” or as a “failure” is performed. If we let X equal 1 if the outcome is a
success and 0 if it is a failure, then the probability mass function of X is given by

p(0) = P {X = 0} = 1 − p,

p(1) = P {X = 1} = p
(2.2)

where p, 0 � p � 1, is the probability that the trial is a “success.”
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A random variable X is said to be a Bernoulli random variable if its probability
mass function is given by Equation (2.2) for some p ∈ (0,1).

2.2.2. The Binomial Random Variable

Suppose that n independent trials, each of which results in a “success” with prob-
ability p and in a “failure” with probability 1 − p, are to be performed. If X

represents the number of successes that occur in the n trials, then X is said to be
a binomial random variable with parameters (n,p).

The probability mass function of a binomial random variable having parameters
(n,p) is given by

p(i) =
(

n

i

)

pi(1 − p)n−i , i = 0,1, . . . , n (2.3)

where

(
n

i

)

= n!
(n − i)! i!

equals the number of different groups of i objects that can be chosen from a set
of n objects. The validity of Equation (2.3) may be verified by first noting that the
probability of any particular sequence of the n outcomes containing i successes
and n − i failures is, by the assumed independence of trials, pi(1 − p)n−i . Equa-
tion (2.3) then follows since there are

(
n
i

)
different sequences of the n outcomes

leading to i successes and n − i failures. For instance, if n = 3, i = 2, then there
are

(3
2

)= 3 ways in which the three trials can result in two successes. Namely,
any one of the three outcomes (s, s, f ), (s, f, s), (f, s, s), where the outcome
(s, s, f ) means that the first two trials are successes and the third a failure. Since
each of the three outcomes (s, s, f ), (s, f, s), (f, s, s) has a probability p2(1−p)

of occurring the desired probability is thus
(3

2

)
p2(1 − p).

Note that, by the binomial theorem, the probabilities sum to one, that is,

∞∑

i=0

p(i) =
n∑

i=0

(
n

i

)

pi(1 − p)n−i = (
p + (1 − p)

)n = 1

Example 2.6 Four fair coins are flipped. If the outcomes are assumed
independent, what is the probability that two heads and two tails are obtained?

Solution: Letting X equal the number of heads (“successes”) that ap-
pear, then X is a binomial random variable with parameters (n = 4, p = 1

2 ).
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Hence, by Equation (2.3),

P {X = 2} =
(

4

2

)(
1

2

)2(1

2

)2

= 3

8
�

Example 2.7 It is known that any item produced by a certain machine will
be defective with probability 0.1, independently of any other item. What is the
probability that in a sample of three items, at most one will be defective?

Solution: If X is the number of defective items in the sample, then X is a bi-
nomial random variable with parameters (3, 0.1). Hence, the desired probability
is given by

P {X = 0} + P {X = 1} =
(

3

0

)

(0.1)0(0.9)3 +
(

3

1

)

(0.1)1(0.9)2 = 0.972 �

Example 2.8 Suppose that an airplane engine will fail, when in flight, with
probability 1−p independently from engine to engine; suppose that the air-
plane will make a successful flight if at least 50 percent of its engines remain
operative. For what values of p is a four-engine plane preferable to a two-engine
plane?

Solution: Because each engine is assumed to fail or function independently
of what happens with the other engines, it follows that the number of engines
remaining operative is a binomial random variable. Hence, the probability that
a four-engine plane makes a successful flight is

(
4

2

)

p2(1 − p)2 +
(

4

3

)

p3(1 − p) +
(

4

4

)

p4(1 − p)0

= 6p2(1 − p)2 + 4p3(1 − p) + p4

whereas the corresponding probability for a two-engine plane is

(
2

1

)

p(1 − p) +
(

2

2

)

p2 = 2p(1 − p) + p2

Hence the four-engine plane is safer if

6p2(1 − p)2 + 4p3(1 − p) + p4 � 2p(1 − p) + p2

or equivalently if

6p(1 − p)2 + 4p2(1 − p) + p3 � 2 − p
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which simplifies to

3p3 − 8p2 + 7p − 2 � 0 or (p − 1)2(3p − 2) � 0

which is equivalent to

3p − 2 � 0 or p � 2
3

Hence, the four-engine plane is safer when the engine success probability is
at least as large as 2

3 , whereas the two-engine plane is safer when this probabil-
ity falls below 2

3 . �

Example 2.9 Suppose that a particular trait of a person (such as eye color or
left handedness) is classified on the basis of one pair of genes and suppose that
d represents a dominant gene and r a recessive gene. Thus a person with dd genes
is pure dominance, one with rr is pure recessive, and one with rd is hybrid. The
pure dominance and the hybrid are alike in appearance. Children receive one gene
from each parent. If, with respect to a particular trait, two hybrid parents have a
total of four children, what is the probability that exactly three of the four children
have the outward appearance of the dominant gene?

Solution: If we assume that each child is equally likely to inherit either
of two genes from each parent, the probabilities that the child of two hybrid
parents will have dd , rr , or rd pairs of genes are, respectively, 1

4 , 1
4 , 1

2 . Hence,
because an offspring will have the outward appearance of the dominant gene if
its gene pair is either dd or rd , it follows that the number of such children is
binomially distributed with parameters (4, 3

4 ). Thus the desired probability is

(
4

3

)(
3

4

)3(1

4

)1

= 27

64
�

Remark on Terminology If X is a binomial random variable with pa-
rameters (n,p), then we say that X has a binomial distribution with parameters
(n,p).

2.2.3. The Geometric Random Variable

Suppose that independent trials, each having probability p of being a success, are
performed until a success occurs. If we let X be the number of trials required
until the first success, then X is said to be a geometric random variable with
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parameter p. Its probability mass function is given by

p(n) = P {X = n} = (1 − p)n−1p, n = 1,2, . . . (2.4)

Equation (2.4) follows since in order for X to equal n it is necessary and sufficient
that the first n − 1 trials be failures and the nth trial a success. Equation (2.4)
follows since the outcomes of the successive trials are assumed to be independent.

To check that p(n) is a probability mass function, we note that

∞∑

n=1

p(n) = p

∞∑

n=1

(1 − p)n−1 = 1

2.2.4. The Poisson Random Variable

A random variable X, taking on one of the values 0, 1, 2, . . . , is said to be a Poisson
random variable with parameter λ, if for some λ > 0,

p(i) = P {X = i} = e−λ λi

i! , i = 0,1, . . . (2.5)

Equation (2.5) defines a probability mass function since

∞∑

i=0

p(i) = e−λ
∞∑

i=0

λi

i! = e−λeλ = 1

The Poisson random variable has a wide range of applications in a diverse number
of areas, as will be seen in Chapter 5.

An important property of the Poisson random variable is that it may be used to
approximate a binomial random variable when the binomial parameter n is large
and p is small. To see this, suppose that X is a binomial random variable with
parameters (n,p), and let λ = np. Then

P {X = i} = n!
(n − i)! i!p

i(1 − p)n−i

= n!
(n − i)! i!

(
λ

n

)i (

1 − λ

n

)n−i

= n(n − 1) · · · (n − i + 1)

ni

λi

i!
(1 − λ/n)n

(1 − λ/n)i
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Now, for n large and p small

(

1 − λ

n

)n

≈ e−λ,
n(n − 1) · · · (n − i + 1)

ni
≈ 1,

(

1 − λ

n

)i

≈ 1

Hence, for n large and p small,

P {X = i} ≈ e−λ λi

i!

Example 2.10 Suppose that the number of typographical errors on a single
page of this book has a Poisson distribution with parameter λ = 1. Calculate the
probability that there is at least one error on this page.

Solution:

P {X � 1} = 1 − P {X = 0} = 1 − e−1 ≈ 0.633 �

Example 2.11 If the number of accidents occurring on a highway each day
is a Poisson random variable with parameter λ = 3, what is the probability that no
accidents occur today?

Solution:

P {X = 0} = e−3 ≈ 0.05 �

Example 2.12 Consider an experiment that consists of counting the number
of α-particles given off in a one-second interval by one gram of radioactive ma-
terial. If we know from past experience that, on the average, 3.2 such α-particles
are given off, what is a good approximation to the probability that no more than
two α-particles will appear?

Solution: If we think of the gram of radioactive material as consisting of a
large number n of atoms each of which has probability 3.2/n of disintegrating
and sending off an α-particle during the second considered, then we see that, to
a very close approximation, the number of α-particles given off will be a Pois-
son random variable with parameter λ = 3.2. Hence the desired probability is

P {X � 2} = e−3.2 + 3.2e−3.2 + (3.2)2

2
e−3.2 ≈ 0.382 �
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2.3. Continuous Random Variables

In this section, we shall concern ourselves with random variables whose set of
possible values is uncountable. Let X be such a random variable. We say that X is
a continuous random variable if there exists a nonnegative function f (x), defined
for all real x ∈ (−∞,∞), having the property that for any set B of real numbers

P {X ∈ B} =
∫

B

f (x) dx (2.6)

The function f (x) is called the probability density function of the random vari-
able X.

In words, Equation (2.6) states that the probability that X will be in B may
be obtained by integrating the probability density function over the set B . Since
X must assume some value, f (x) must satisfy

1 = P {X ∈ (−∞,∞)} =
∫ ∞

−∞
f (x) dx

All probability statements about X can be answered in terms of f (x). For in-
stance, letting B = [a, b], we obtain from Equation (2.6) that

P {a � X � b} =
∫ b

a

f (x) dx (2.7)

If we let a = b in the preceding, then

P {X = a} =
∫ a

a

f (x) dx = 0

In words, this equation states that the probability that a continuous random vari-
able will assume any particular value is zero.

The relationship between the cumulative distribution F(·) and the probability
density f (·) is expressed by

F(a) = P {X ∈ (−∞, a]} =
∫ a

−∞
f (x)dx

Differentiating both sides of the preceding yields

d

da
F(a) = f (a)

That is, the density is the derivative of the cumulative distribution function.
A somewhat more intuitive interpretation of the density function may be obtained
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from Equation (2.7) as follows:

P
{
a − ε

2
� X � a + ε

2

}
=
∫ a+ε/2

a−ε/2
f (x) dx ≈ εf (a)

when ε is small. In other words, the probability that X will be contained in an
interval of length ε around the point a is approximately εf (a). From this, we see
that f (a) is a measure of how likely it is that the random variable will be near a.

There are several important continuous random variables that appear frequently
in probability theory. The remainder of this section is devoted to a study of certain
of these random variables.

2.3.1. The Uniform Random Variable

A random variable is said to be uniformly distributed over the interval (0,1) if its
probability density function is given by

f (x) =
{

1, 0 < x < 1
0, otherwise

Note that the preceding is a density function since f (x) � 0 and

∫ ∞

−∞
f (x) dx =

∫ 1

0
dx = 1

Since f (x) > 0 only when x ∈ (0,1), it follows that X must assume a value in
(0,1). Also, since f (x) is constant for x ∈ (0,1), X is just as likely to be “near”
any value in (0, 1) as any other value. To check this, note that, for any 0 < a <

b < 1,

P {a � X � b} =
∫ b

a

f (x) dx = b − a

In other words, the probability that X is in any particular subinterval of (0,1)

equals the length of that subinterval.
In general, we say that X is a uniform random variable on the interval (α,β) if

its probability density function is given by

f (x) =
⎧
⎨

⎩

1

β − α
, if α < x < β

0, otherwise
(2.8)

Example 2.13 Calculate the cumulative distribution function of a random
variable uniformly distributed over (α,β).
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Solution: Since F(a) = ∫ a

−∞ f (x) dx, we obtain from Equation (2.8) that

F(a) =

⎧
⎪⎪⎨

⎪⎪⎩

0, a � α

a − α

β − α
, α < a < β

1, a � β �

Example 2.14 If X is uniformly distributed over (0,10), calculate the prob-
ability that (a) X < 3, (b) X > 7, (c) 1 < X < 6.

Solution:

P {X < 3} =
∫ 3

0 dx

10
= 3

10
,

P {X > 7} =
∫ 10

7 dx

10
= 3

10
,

P {1 < X < 6} =
∫ 6

1 dx

10
= 1

2
�

2.3.2. Exponential Random Variables

A continuous random variable whose probability density function is given, for
some λ > 0, by

f (x) =
{
λe−λx, if x � 0
0, if x < 0

is said to be an exponential random variable with parameter λ. These random
variables will be extensively studied in Chapter 5, so we will content ourselves
here with just calculating the cumulative distribution function F :

F(a) =
∫ a

0
λe−λx = 1 − e−λa, a � 0

Note that F(∞) = ∫∞
0 λe−λxdx = 1, as, of course, it must.
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2.3.3. Gamma Random Variables

A continuous random variable whose density is given by

f (x) =
⎧
⎨

⎩

λe−λx(λx)α−1

�(α)
, if x � 0

0, if x < 0

for some λ > 0, α > 0 is said to be a gamma random variable with parameters
α,λ. The quantity �(α) is called the gamma function and is defined by

�(α) =
∫ ∞

0
e−xxα−1 dx

It is easy to show by induction that for integral α, say, α = n,

�(n) = (n − 1)!

2.3.4. Normal Random Variables

We say that X is a normal random variable (or simply that X is normally distrib-
uted) with parameters μ and σ 2 if the density of X is given by

f (x) = 1√
2π σ

e−(x−μ)2/2σ 2
, −∞ < x < ∞

This density function is a bell-shaped curve that is symmetric around μ (see Fig-
ure 2.2).

An important fact about normal random variables is that if X is normally dis-
tributed with parameters μ and σ 2 then Y = αX + β is normally distributed with
parameters αμ+β and α2σ 2. To prove this, suppose first that α > 0 and note that

Figure 2.2. Normal density function.
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FY (·)∗ the cumulative distribution function of the random variable Y is given by

FY (a) = P {Y � a}
= P {αX + β � a}

= P

{

X � a − β

α

}

= FX

(
a − β

α

)

=
∫ (a−β)/α

−∞
1√

2π σ
e−(x−μ)2/2σ 2

dx

=
∫ a

−∞
1√

2π ασ
exp

{−(v − (αμ + β))2

2α2σ 2

}

dv (2.9)

where the last equality is obtained by the change in variables v = αx + β . How-
ever, since FY (a) = ∫ a

−∞ fY (v) dv, it follows from Equation (2.9) that the proba-
bility density function fY (·) is given by

fY (v) = 1√
2πασ

exp

{−(v − (αμ + β))2

2(ασ)2

}

, − ∞ < v < ∞

Hence, Y is normally distributed with parameters αμ + β and (ασ)2. A similar
result is also true when α < 0.

One implication of the preceding result is that if X is normally distributed with
parameters μ and σ 2 then Y = (X−μ)/σ is normally distributed with parameters
0 and 1. Such a random variable Y is said to have the standard or unit normal
distribution.

2.4. Expectation of a Random Variable

2.4.1. The Discrete Case

If X is a discrete random variable having a probability mass function p(x), then
the expected value of X is defined by

E[X] =
∑

x:p(x)>0

xp(x)

∗When there is more than one random variable under consideration, we shall denote the cumulative
distribution function of a random variable Z by Fz(·). Similarly, we shall denote the density of Z

by fz(·).
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In other words, the expected value of X is a weighted average of the possible
values that X can take on, each value being weighted by the probability that X

assumes that value. For example, if the probability mass function of X is given by

p(1) = 1
2 = p(2)

then

E[X] = 1( 1
2 ) + 2( 1

2 ) = 3
2

is just an ordinary average of the two possible values 1 and 2 that X can assume.
On the other hand, if

p(1) = 1
3 , p(2) = 2

3

then

E[X] = 1( 1
3 ) + 2( 2

3 ) = 5
3

is a weighted average of the two possible values 1 and 2 where the value 2 is given
twice as much weight as the value 1 since p(2) = 2p(1).

Example 2.15 Find E[X] where X is the outcome when we roll a fair die.

Solution: Since p(1) = p(2) = p(3) = p(4) = p(5) = p(6) = 1
6 , we obtain

E[X] = 1( 1
6 ) + 2( 1

6 ) + 3( 1
6 ) + 4( 1

6 ) + 5( 1
6 ) + 6( 1

6 ) = 7
2 �

Example 2.16 (Expectation of a Bernoulli Random Variable) Calculate E[X]
when X is a Bernoulli random variable with parameter p.

Solution: Since p(0) = 1 − p, p(1) = p, we have

E[X] = 0(1 − p) + 1(p) = p

Thus, the expected number of successes in a single trial is just the probability
that the trial will be a success. �

Example 2.17 (Expectation of a Binomial Random Variable) Calculate E[X]
when X is binomially distributed with parameters n and p.
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Solution:

E[X] =
n∑

i=0

ip(i)

=
n∑

i=0

i

(
n

i

)

pi(1 − p)n−i

=
n∑

i=1

in!
(n − i)! i!p

i(1 − p)n−i

=
n∑

i=1

n!
(n − i)!(i − 1)!p

i(1 − p)n−i

= np

n∑

i=1

(n − 1)!
(n − i)!(i − 1)!p

i−1(1 − p)n−i

= np

n−1∑

k=0

(
n − 1

k

)

pk(1 − p)n−1−k

= np[p + (1 − p)]n−1

= np

where the second from the last equality follows by letting k = i − 1. Thus, the
expected number of successes in n independent trials is n multiplied by the
probability that a trial results in a success. �

Example 2.18 (Expectation of a Geometric Random Variable) Calculate the
expectation of a geometric random variable having parameter p.

Solution: By Equation (2.4), we have

E[X] =
∞∑

n=1

np(1 − p)n−1

= p

∞∑

n=1

nqn−1

where q = 1 − p,

E[X] = p

∞∑

n=1

d

dq
(qn)

= p
d

dq

( ∞∑

n=1

qn

)
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= p
d

dq

(
q

1 − q

)

= p

(1 − q)2

= 1

p

In words, the expected number of independent trials we need to perform until
we attain our first success equals the reciprocal of the probability that any one
trial results in a success. �

Example 2.19 (Expectation of a Poisson Random Variable) Calculate E[X]
if X is a Poisson random variable with parameter λ.

Solution: From Equation (2.5), we have

E[X] =
∞∑

i=0

ie−λλi

i!

=
∞∑

i=1

e−λλi

(i − 1)!

= λe−λ

∞∑

i=1

λi−1

(i − 1)!

= λe−λ

∞∑

k=0

λk

k!
= λe−λeλ

= λ

where we have used the identity
∑∞

k=0 λk/k! = eλ. �

2.4.2. The Continuous Case

We may also define the expected value of a continuous random variable. This is
done as follows. If X is a continuous random variable having a probability density
function f (x), then the expected value of X is defined by

E[X] =
∫ ∞

−∞
xf (x)dx
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Example 2.20 (Expectation of a Uniform Random Variable) Calculate the
expectation of a random variable uniformly distributed over (α,β).

Solution: From Equation (2.8) we have

E[X] =
∫ β

α

x

β − α
dx

= β2 − α2

2(β − α)

= β + α

2

In other words, the expected value of a random variable uniformly distributed
over the interval (α,β) is just the midpoint of the interval. �

Example 2.21 (Expectation of an Exponential Random Variable) Let X be
exponentially distributed with parameter λ. Calculate E[X].

Solution:

E[X] =
∫ ∞

0
xλe−λx dx

Integrating by parts yields

E[X] = −xe−λx
∣
∣∞
0 +

∫ ∞

0
e−λx dx

= 0 − e−λx

λ

∣
∣
∣
∣

∞

0

= 1

λ
�

Example 2.22 (Expectation of a Normal Random Variable) Calculate E[X]
when X is normally distributed with parameters μ and σ 2.

Solution:

E[X] = 1√
2πσ

∫ ∞

−∞
xe−(x−μ)2/2σ 2

dx

Writing x as (x − μ) + μ yields

E[X] = 1√
2πσ

∫ ∞

−∞
(x − μ)e−(x−μ)2/2σ 2

dx + μ
1√

2πσ

∫ ∞

−∞
e−(x−μ)2/2σ 2

dx
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Letting y = x − μ leads to

E[X] = 1√
2πσ

∫ ∞

−∞
ye−y2/2σ 2

dy + μ

∫ ∞

−∞
f (x)dx

where f (x) is the normal density. By symmetry, the first integral must be 0,
and so

E[X] = μ

∫ ∞

−∞
f (x)dx = μ �

2.4.3. Expectation of a Function of a Random Variable

Suppose now that we are given a random variable X and its probability distri-
bution (that is, its probability mass function in the discrete case or its probability
density function in the continuous case). Suppose also that we are interested in
calculating, not the expected value of X, but the expected value of some function
of X, say, g(X). How do we go about doing this? One way is as follows. Since
g(X) is itself a random variable, it must have a probability distribution, which
should be computable from a knowledge of the distribution of X. Once we have
obtained the distribution of g(X), we can then compute E[g(X)] by the definition
of the expectation.

Example 2.23 Suppose X has the following probability mass function:

p(0) = 0.2, p(1) = 0.5, p(2) = 0.3

Calculate E[X2].
Solution: Letting Y = X2, we have that Y is a random variable that can take
on one of the values 02,12,22 with respective probabilities

pY (0) = P {Y = 02} = 0.2,

pY (1) = P {Y = 12} = 0.5,

pY (4) = P {Y = 22} = 0.3

Hence,

E[X2] = E[Y ] = 0(0.2) + 1(0.5) + 4(0.3) = 1.7

Note that

1.7 = E[X2] �= (E[X])2 = 1.21 �
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Example 2.24 Let X be uniformly distributed over (0,1). Calculate E[X3].
Solution: Letting Y = X3, we calculate the distribution of Y as follows.
For 0 � a � 1,

FY (a) = P {Y � a}
= P {X3 � a}
= P {X � a1/3}
= a1/3

where the last equality follows since X is uniformly distributed over (0,1).
By differentiating FY (a), we obtain the density of Y , namely,

fY (a) = 1
3a−2/3, 0 � a � 1

Hence,

E[X3] = E[Y ] =
∫ ∞

−∞
afY (a) da

=
∫ 1

0
a 1

3a−2/3 da

= 1
3

∫ 1

0
a1/3 da

= 1
3

3
4a4/3

∣
∣1
0

= 1
4 �

While the foregoing procedure will, in theory, always enable us to compute
the expectation of any function of X from a knowledge of the distribution of
X, there is, fortunately, an easier way to do this. The following proposition
shows how we can calculate the expectation of g(X) without first determining
its distribution.

Proposition 2.1 (a) If X is a discrete random variable with probability mass
function p(x), then for any real-valued function g,

E[g(X)] =
∑

x:p(x)>0

g(x)p(x)
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(b) If X is a continuous random variable with probability density function
f (x), then for any real-valued function g,

E[g(X)] =
∫ ∞

−∞
g(x)f (x) dx �

Example 2.25 Applying the proposition to Example 2.23 yields

E[X2] = 02(0.2) + (12)(0.5) + (22)(0.3) = 1.7

which, of course, checks with the result derived in Example 2.23. �

Example 2.26 Applying the proposition to Example 2.24 yields

E[X3] =
∫ 1

0
x3 dx (since f (x) = 1, 0 < x < 1)

= 1
4 �

A simple corollary of Proposition 2.1 is the following.

Corollary 2.2 If a and b are constants, then

E[aX + b] = aE[X] + b

Proof In the discrete case,

E[aX + b] =
∑

x:p(x)>0

(ax + b)p(x)

= a
∑

x:p(x)>0

xp(x)+b
∑

x:p(x)>0

p(x)

= aE[X] + b

In the continuous case,

E[aX + b] =
∫ ∞

−∞
(ax + b)f (x) dx

= a

∫ ∞

−∞
xf (x)dx +b

∫ ∞

−∞
f (x)dx

= aE[X] + b �
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The expected value of a random variable X,E[X], is also referred to as the mean
or the first moment of X. The quantity E[Xn], n � 1, is called the nth moment
of X. By Proposition 2.1, we note that

E[Xn] =

⎧
⎪⎪⎨

⎪⎪⎩

∑

x:p(x)>0

xnp(x), if X is discrete

∫ ∞

−∞
xnf (x) dx, if X is continuous

Another quantity of interest is the variance of a random variable X, denoted by
Var(X), which is defined by

Var(X) = E
[
(X − E[X])2]

Thus, the variance of X measures the expected square of the deviation of X from
its expected value.

Example 2.27 (Variance of the Normal Random Variable) Let X be normally
distributed with parameters μ and σ 2. Find Var(X).

Solution: Recalling (see Example 2.22) that E[X] = μ, we have that

Var(X) = E[(X − μ)2]
= 1√

2πσ

∫ ∞

−∞
(x − μ)2e−(x−μ)2/2σ 2

dx

Substituting y = (x − μ)/σ yields

Var(X) = σ 2

√
2π

∫ ∞

−∞
y2e−y2/2 dy

Integrating by parts (u = y, dv = ye−y2/2dy) gives

Var(X) = σ 2

√
2π

(

−ye−y2/2
∣
∣
∣
∞
−∞ +

∫ ∞

−∞
e−y2/2 dy

)

= σ 2

√
2π

∫ ∞

−∞
e−y2/2 dy

= σ 2

Another derivation of Var(X) will be given in Example 2.42. �



2.5. Jointly Distributed Random Variables 47

Suppose that X is continuous with density f, and let E[X] = μ. Then,

Var(X) = E[(X − μ)2]
= E[X2 − 2μX + μ2]

=
∫ ∞

−∞
(x2 − 2μx + μ2)f (x) dx

=
∫ ∞

−∞
x2f (x) dx − 2μ

∫ ∞

−∞
xf (x)dx + μ2

∫ ∞

−∞
f (x)dx

= E[X2] − 2μμ + μ2

= E[X2] − μ2

A similar proof holds in the discrete case, and so we obtain the useful identity

Var(X) = E[X2] − (E[X])2

Example 2.28 Calculate Var(X) when X represents the outcome when a fair
die is rolled.

Solution: As previously noted in Example 2.15, E[X] = 7
2 . Also,

E[X2] = 1
(

1
6

)
+ 22

(
1
6

)
+ 32

(
1
6

)
+ 42

(
1
6

)
+ 52

(
1
6

)
+ 62

(
1
6

)
=
(

1
6

)
(91)

Hence,

Var(X) = 91
6 − ( 7

2

)2 = 35
12 �

2.5. Jointly Distributed Random Variables

2.5.1. Joint Distribution Functions

Thus far, we have concerned ourselves with the probability distribution of a single
random variable. However, we are often interested in probability statements con-
cerning two or more random variables. To deal with such probabilities, we define,
for any two random variables X and Y , the joint cumulative probability distribu-
tion function of X and Y by

F(a, b) = P {X � a,Y � b}, −∞ < a,b < ∞
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The distribution of X can be obtained from the joint distribution of X and Y as
follows:

FX(a) = P {X � a}
= P {X � a, Y < ∞}
= F(a,∞)

Similarly, the cumulative distribution function of Y is given by

FY (b) = P {Y � b} = F(∞, b)

In the case where X and Y are both discrete random variables, it is convenient to
define the joint probability mass function of X and Y by

p(x, y) = P {X = x, Y = y}
The probability mass function of X may be obtained from p(x, y) by

pX(x) =
∑

y:p(x,y)>0

p(x, y)

Similarly,

pY (y) =
∑

x:p(x,y)>0

p(x, y)

We say that X and Y are jointly continuous if there exists a function f (x, y),
defined for all real x and y, having the property that for all sets A and B of real
numbers

P {X ∈A,Y ∈B} =
∫

B

∫

A

f (x, y) dx dy

The function f (x, y) is called the joint probability density function of X and Y .
The probability density of X can be obtained from a knowledge of f (x, y) by the
following reasoning:

P {X ∈A} = P {X ∈A, Y ∈ (−∞,∞)}
=
∫ ∞

−∞

∫

A

f (x, y) dx dy

=
∫

A

fX(x)dx
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where

fX(x) =
∫ ∞

−∞
f (x, y) dy

is thus the probability density function of X. Similarly, the probability density
function of Y is given by

fY (y) =
∫ ∞

−∞
f (x, y) dx

A variation of Proposition 2.1 states that if X and Y are random variables and
g is a function of two variables, then

E[g(X,Y )] =
∑

y

∑

x

g(x, y)p(x, y) in the discrete case

=
∫ ∞

−∞

∫ ∞

−∞
g(x, y)f (x, y) dx dy in the continuous case

For example, if g(X,Y ) = X + Y , then, in the continuous case,

E[X + Y ] =
∫ ∞

−∞

∫ ∞

−∞
(x + y)f (x, y) dx dy

=
∫ ∞

−∞

∫ ∞

−∞
xf (x, y) dx dy +

∫ ∞

−∞

∫ ∞

−∞
yf (x, y) dx dy

= E[X] + E[Y ]
where the first integral is evaluated by using the variation of Proposition 2.1 with
g(x, y) = x, and the second with g(x, y) = y.

The same result holds in the discrete case and, combined with the corollary in
Section 2.4.3, yields that for any constants a, b

E[aX + bY ] = aE[X] + bE[Y ] (2.10)

Joint probability distributions may also be defined for n random variables. The
details are exactly the same as when n = 2 and are left as an exercise. The cor-
responding result to Equation (2.10) states that if X1,X2, . . . ,Xn are n random
variables, then for any n constants a1, a2, . . . , an,

E[a1X1 + a2X2 + · · · + anXn] = a1E[X1] + a2E[X2] + · · · + anE[Xn] (2.11)

Example 2.29 Calculate the expected sum obtained when three fair dice are
rolled.
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Solution: Let X denote the sum obtained. Then X = X1 + X2 + X3 where
Xi represents the value of the ith die. Thus,

E[X] = E[X1] + E[X2] + E[X3] = 3
( 7

2

)= 21
2 �

Example 2.30 As another example of the usefulness of Equation (2.11), let
us use it to obtain the expectation of a binomial random variable having parame-
ters n and p. Recalling that such a random variable X represents the number of
successes in n trials when each trial has probability p of being a success, we have
that

X = X1 + X2 + · · · + Xn

where

Xi =
{

1, if the ith trial is a success
0, if the ith trial is a failure

Hence, Xi is a Bernoulli random variable having expectation E[Xi] = 1(p) +
0(1 − p) = p. Thus,

E[X] = E[X1] + E[X2] + · · · + E[Xn] = np

This derivation should be compared with the one presented in Example 2.17. �

Example 2.31 At a party N men throw their hats into the center of a room.
The hats are mixed up and each man randomly selects one. Find the expected
number of men who select their own hats.

Solution: Letting X denote the number of men that select their own hats,
we can best compute E[X] by noting that

X = X1 + X2 + · · · + XN

where

Xi =
{

1, if the ith man selects his own hat
0, otherwise

Now, because the ith man is equally likely to select any of the N hats, it follows
that

P {Xi = 1} = P {ith man selects his own hat} = 1

N

and so

E[Xi] = 1P {Xi = 1} + 0P {Xi = 0} = 1

N
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Hence, from Equation (2.11) we obtain that

E[X] = E[X1] + · · · + E[XN ] =
(

1

N

)

N = 1

Hence, no matter how many people are at the party, on the average exactly one
of the men will select his own hat. �

Example 2.32 Suppose there are 25 different types of coupons and suppose
that each time one obtains a coupon, it is equally likely to be any one of the
25 types. Compute the expected number of different types that are contained in a
set of 10 coupons.

Solution: Let X denote the number of different types in the set of 10
coupons. We compute E[X] by using the representation

X = X1 + · · · + X25

where

Xi =
{

1, if at least one type i coupon is in the set of 10
0, otherwise

Now,

E[Xi] = P {Xi = 1}
= P {at least one type i coupon is in the set of 10}
= 1 − P {no type i coupons are in the set of 10}
= 1 −

(
24
25

)10

when the last equality follows since each of the 10 coupons will (independently)
not be a type i with probability 24

25 . Hence,

E[X] = E[X1] + · · · + E[X25] = 25
[
1 − ( 24

25

)10
]

�

2.5.2. Independent Random Variables

The random variables X and Y are said to be independent if, for all a, b,

P {X � a, Y � b} = P {X � a}P {Y � b} (2.12)

In other words, X and Y are independent if, for all a and b, the events Ea =
{X �a} and Fb = {Y � b} are independent.
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In terms of the joint distribution function F of X and Y , we have that X and Y

are independent if

F(a, b) = FX(a)FY (b) for all a, b

When X and Y are discrete, the condition of independence reduces to

p(x, y) = pX(x)pY (y) (2.13)

while if X and Y are jointly continuous, independence reduces to

f (x, y) = fX(x)fY (y) (2.14)

To prove this statement, consider first the discrete version, and suppose that the
joint probability mass function p(x, y) satisfies Equation (2.13). Then

P {X � a, Y � b} =
∑

y�b

∑

x�a

p(x, y)

=
∑

y�b

∑

x�a

pX(x)pY (y)

=
∑

y�b

pY (y)
∑

x�a

pX(x)

= P {Y � b}P {X � a}
and so X and Y are independent. That Equation (2.14) implies independence in
the continuous case is proven in the same manner and is left as an exercise.

An important result concerning independence is the following.

Proposition 2.3 If X and Y are independent, then for any functions h and g

E[g(X)h(Y )] = E[g(X)]E[h(Y )]
Proof Suppose that X and Y are jointly continuous. Then

E[g(X)h(Y )] =
∫ ∞

−∞

∫ ∞

−∞
g(x)h(y)f (x, y) dx dy

=
∫ ∞

−∞

∫ ∞

−∞
g(x)h(y)fX(x)fY (y) dx dy

=
∫ ∞

−∞
h(y)fY (y) dy

∫ ∞

−∞
g(x)fX(x)dx

= E[h(Y )]E[g(X)]
The proof in the discrete case is similar. �
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2.5.3. Covariance and Variance of Sums of Random Variables

The covariance of any two random variables X and Y , denoted by Cov(X,Y ), is
defined by

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]
= E[XY − YE[X] − XE[Y ] + E[X]E[Y ]]
= E[XY ] − E[Y ]E[X] − E[X]E[Y ] + E[X]E[Y ]
= E[XY ] − E[X]E[Y ]

Note that if X and Y are independent, then by Proposition 2.3 it follows that
Cov(X,Y ) = 0.

Let us consider now the special case where X and Y are indicator variables for
whether or not the events A and B occur. That is, for events A and B , define

X =
{

1, if A occurs
0, otherwise,

Y =
{

1, if B occurs
0, otherwise

Then,

Cov(X,Y ) = E[XY ] − E[X]E[Y ]
and, because XY will equal 1 or 0 depending on whether or not both X and Y

equal 1, we see that

Cov(X,Y ) = P {X = 1, Y = 1} − P {X = 1}P {Y = 1}

From this we see that

Cov(X,Y ) > 0 ⇔ P {X = 1, Y = 1} > P {X = 1}P {Y = 1}
⇔ P {X = 1, Y = 1}

P {X = 1} > P {Y = 1}
⇔ P {Y = 1|X = 1} > P {Y = 1}

That is, the covariance of X and Y is positive if the outcome X = 1 makes it more
likely that Y = 1 (which, as is easily seen by symmetry, also implies the reverse).

In general it can be shown that a positive value of Cov(X,Y ) is an indication
that Y tends to increase as X does, whereas a negative value indicates that Y tends
to decrease as X increases.

The following are important properties of covariance.
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Properties of Covariance

For any random variables X,Y,Z and constant c,

1. Cov(X,X) = Var(X),
2. Cov(X,Y ) = Cov(Y,X),
3. Cov(cX,Y ) = c Cov(X,Y ),
4. Cov(X,Y + Z) = Cov(X,Y ) + Cov(X,Z).

Whereas the first three properties are immediate, the final one is easily proven as
follows:

Cov(X,Y + Z) = E[X(Y + Z)] − E[X]E[Y + Z]
= E[XY ] − E[X]E[Y ] + E[XZ] − E[X]E[Z]
= Cov(X,Y ) + Cov(X,Z)

The fourth property listed easily generalizes to give the following result:

Cov

⎛

⎝
n∑

i=1

Xi,

m∑

j=1

Yj

⎞

⎠=
n∑

i=1

m∑

j=1

Cov(Xi, Yj ) (2.15)

A useful expression for the variance of the sum of random variables can be
obtained from Equation (2.15) as follows:

Var

(
n∑

i=1

Xi

)

= Cov

⎛

⎝
n∑

i=1

Xi,

n∑

j=1

Xj

⎞

⎠

=
n∑

i=1

n∑

j=1

Cov(Xi,Xj )

=
n∑

i=1

Cov(Xi,Xi) +
n∑

i=1

∑

j �=i

Cov(Xi,Xj )

=
n∑

i=1

Var(Xi) + 2
n∑

i=1

∑

j< i

Cov(Xi,Xj ) (2.16)

If Xi, i = 1, . . . , n are independent random variables, then Equation (2.16) re-
duces to

Var

(
n∑

i=1

Xi

)

=
n∑

i=1

Var(Xi)



2.5. Jointly Distributed Random Variables 55

Definition 2.1 If X1, . . . ,Xn are independent and identically distributed,
then the random variable X̄ =∑n

i=1 Xi/n is called the sample mean.

The following proposition shows that the covariance between the sample mean
and a deviation from that sample mean is zero. It will be needed in Section 2.6.1.

Proposition 2.4 Suppose that X1, . . . ,Xn are independent and identically
distributed with expected value μ and variance σ 2. Then,

(a) E[X̄] = μ.
(b) Var(X̄) = σ 2/n.
(c) Cov(X̄,Xi − X̄) = 0, i = 1, . . . , n.

Proof Parts (a) and (b) are easily established as follows:

E[X̄] = 1

n

m∑

i=1

E[Xi] = μ,

Var(X̄) =
(

1

n

)2

Var

(
n∑

i=1

Xi

)

=
(

1

n

)2 n∑

i=1

Var(Xi) = σ 2

n

To establish part (c) we reason as follows:

Cov(X̄,Xi − X̄) = Cov(X̄,Xi) − Cov(X̄, X̄)

= 1

n
Cov

(

Xi +
∑

j �=i

Xj ,Xi

)

− Var(X̄)

= 1

n
Cov(Xi,Xi) + 1

n
Cov

(∑

j �=i

Xj ,Xi

)

− σ 2

n

= σ 2

n
− σ 2

n
= 0

where the final equality used the fact that Xi and
∑

j �=i Xj are independent and
thus have covariance 0. �

Equation (2.16) is often useful when computing variances.

Example 2.33 (Variance of a Binomial Random Variable) Compute the vari-
ance of a binomial random variable X with parameters n and p.
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Solution: Since such a random variable represents the number of successes
in n independent trials when each trial has a common probability p of being a
success, we may write

X = X1 + · · · + Xn

where the Xi are independent Bernoulli random variables such that

Xi =
{

1, if the ith trial is a success
0, otherwise

Hence, from Equation (2.16) we obtain

Var(X) = Var(X1) + · · · + Var(Xn)

But

Var(Xi) = E[X2
i ] − (E[Xi])2

= E[Xi] − (E[Xi])2 since X2
i = Xi

= p − p2

and thus

Var(X) = np(1 − p) �

Example 2.34 (Sampling from a Finite Population: The Hypergeometric)
Consider a population of N individuals, some of whom are in favor of a cer-
tain proposition. In particular suppose that Np of them are in favor and N − Np

are opposed, where p is assumed to be unknown. We are interested in estimating
p, the fraction of the population that is for the proposition, by randomly choosing
and then determining the positions of n members of the population.

In such situations as described in the preceding, it is common to use the fraction
of the sampled population that is in favor of the proposition as an estimator of p.
Hence, if we let

Xi =
{

1, if the ith person chosen is in favor
0, otherwise

then the usual estimator of p is
∑n

i=1 Xi/n. Let us now compute its mean and
variance. Now

E

[
n∑

i=1

Xi

]

=
n∑

1

E[Xi]
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= np

where the final equality follows since the ith person chosen is equally likely to be
any of the N individuals in the population and so has probability Np/N of being
in favor.

Var

(
n∑

1

Xi

)

=
n∑

1

Var(Xi) + 2
∑∑

i<j

Cov(Xi,Xj )

Now, since Xi is a Bernoulli random variable with mean p, it follows that

Var(Xi) = p(1 − p)

Also, for i �= j ,

Cov(Xi,Xj ) = E[XiXj ] − E[Xi]E[Xj ]
= P {Xi = 1,Xj = 1} − p2

= P {Xi = 1}P {Xj = 1 | Xi = 1} − p2

= Np

N

(Np − 1)

N − 1
− p2

where the last equality follows since if the ith person to be chosen is in favor,
then the j th person chosen is equally likely to be any of the other N − 1 of which
Np − 1 are in favor. Thus, we see that

Var

(
n∑

1

Xi

)

= np(1 − p) + 2

(
n

2

)[
p(Np − 1)

N − 1
− p2

]

= np(1 − p) − n(n − 1)p(1 − p)

N − 1

and so the mean and variance of our estimator are given by

E

[
n∑

1

Xi

n

]

= p,

Var

[
n∑

1

Xi

n

]

= p(1 − p)

n
− (n − 1)p(1 − p)

n(N − 1)

Some remarks are in order: As the mean of the estimator is the unknown value p,
we would like its variance to be as small as possible (why is this?), and we see by
the preceding that, as a function of the population size N , the variance increases
as N increases. The limiting value, as N → ∞, of the variance is p(1 − p)/n,
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which is not surprising since for N large each of the Xi will be (approximately)
independent random variables, and thus

∑n
1 Xi will have an (approximately) bi-

nomial distribution with parameters n and p.
The random variable

∑n
1 Xi can be thought of as representing the number of

white balls obtained when n balls are randomly selected from a population con-
sisting of Np white and N − Np black balls. (Identify a person who favors the
proposition with a white ball and one against with a black ball.) Such a random
variable is called hypergeometric and has a probability mass function given by

P

{
n∑

1

Xi = k

}

=

(
Np

k

)(
N − Np

n − k

)

(
N

n

) �

It is often important to be able to calculate the distribution of X + Y from the
distributions of X and Y when X and Y are independent. Suppose first that X and
Y are continuous, X having probability density f and Y having probability den-
sity g. Then, letting FX+Y (a) be the cumulative distribution function of X + Y ,
we have

FX+Y (a) = P {X + Y � a}
=
∫∫

x+y�a

f (x)g(y) dx dy

=
∫ ∞

−∞

∫ a−y

−∞
f (x)g(y) dx dy

=
∫ ∞

−∞

(∫ a−y

−∞
f (x)dx

)

g(y)dy

=
∫ ∞

−∞
FX(a − y)g(y) dy (2.17)

The cumulative distribution function FX+Y is called the convolution of the distri-
butions FX and FY (the cumulative distribution functions of X and Y , respec-
tively).

By differentiating Equation (2.17), we obtain that the probability density func-
tion fX+Y (a) of X + Y is given by

fX+Y (a) = d

da

∫ ∞

−∞
FX(a − y)g(y) dy

=
∫ ∞

−∞
d

da
(FX(a − y))g(y) dy

=
∫ ∞

−∞
f (a − y)g(y) dy (2.18)
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Example 2.35 (Sum of Two Independent Uniform Random Variables) If X

and Y are independent random variables both uniformly distributed on (0, 1), then
calculate the probability density of X + Y .

Solution: From Equation (2.18), since

f (a) = g(a) =
{

1, 0 < a < 1
0, otherwise

we obtain

fX+Y (a) =
∫ 1

0
f (a − y)dy

For 0 � a � 1, this yields

fX+Y (a) =
∫ a

0
dy = a

For 1 < a < 2, we get

fX+Y (a) =
∫ 1

a−1
dy = 2 − a

Hence,

fX+Y (a) =
⎧
⎨

⎩

a, 0 � a � 1
2 − a, 1 < a < 2
0, otherwise �

Rather than deriving a general expression for the distribution of X + Y in the
discrete case, we shall consider an example.

Example 2.36 (Sums of Independent Poisson Random Variables) Let X and
Y be independent Poisson random variables with respective means λ1 and λ2.
Calculate the distribution of X + Y .

Solution: Since the event {X + Y = n} may be written as the union of the
disjoint events {X = k,Y = n − k}, 0 � k � n, we have

P {X + Y = n} =
n∑

k=0

P {X = k, Y = n − k}

=
n∑

k=0

P {X = k}P {Y = n − k}
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=
n∑

k=0

e−λ1
λk

1

k! e
−λ2

λn−k
2

(n − k)!

= e−(λ1+λ2)

n∑

k=0

λk
1λ

n−k
2

k!(n − k)!

= e−(λ1+λ2)

n!
n∑

k=0

n!
k!(n − k)!λ

k
1λ

n−k
2

= e−(λ1+λ2)

n! (λ1 + λ2)
n

In words, X1 + X2 has a Poisson distribution with mean λ1 + λ2. �
The concept of independence may, of course, be defined for more than two

random variables. In general, the n random variables X1,X2, . . . ,Xn are said
to be independent if, for all values a1, a2, . . . , an,

P {X1 � a1,X2 � a2, . . . ,Xn � an} = P {X1 � a1}P {X2 � a2} · · ·P {Xn � an}
Example 2.37 Let X1, . . . ,Xn be independent and identically distributed
continuous random variables with probability distribution F and density func-
tion F ′ = f . If we let X(i) denote the ith smallest of these random variables, then
X(1), . . . ,X(n) are called the order statistics. To obtain the distribution of X(i),
note that X(i) will be less than or equal to x if and only if at least i of the n

random variables X1, . . . ,Xn are less than or equal to x. Hence,

P {X(i) � x} =
n∑

k=i

(
n

k

)

(F (x))k(1 − F(x))n−k

Differentiation yields that the density function of X(i) is as follows:

fX(i)
(x) = f (x)

n∑

k=i

(
n

k

)

k(F (x))k−1(1 − F(x))n−k

− f (x)

n∑

k=i

(
n

k

)

(n − k)(F (x))k(1 − F(x))n−k−1

= f (x)

n∑

k=i

n!
(n − k)!(k − 1)! (F (x))k−1(1 − F(x))n−k

− f (x)

n−1∑

k=i

n!
(n − k − 1)!k! (F (x))k(1 − F(x))n−k−1
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= f (x)

n∑

k=i

n!
(n − k)!(k − 1)! (F (x))k−1(1 − F(x))n−k

− f (x)

n∑

j=i+1

n!
(n − j)!(j − 1)! (F (x))j−1(1 − F(x))n−j

= n!
(n − i)!(i − 1)!f (x)(F (x))i−1(1 − F(x))n−i

The preceding density is quite intuitive, since in order for X(i) to equal x, i − 1 of
the n values X1, . . . ,Xn must be less than x; n− i of them must be greater than x;
and one must be equal to x. Now, the probability density that every member of a
specified set of i−1 of the Xj is less than x, every member of another specified set
of n − i is greater than x, and the remaining value is equal to x is (F (x))i−1(1 −
F(x))n−if (x). Therefore, since there are n!/[(i − 1)!(n − i)!] different partitions
of the n random variables into the three groups, we obtain the preceding density
function. �

2.5.4. Joint Probability Distribution of Functions of Random
Variables

Let X1 and X2 be jointly continuous random variables with joint probability den-
sity function f (x1, x2). It is sometimes necessary to obtain the joint distribution
of the random variables Y1 and Y2 which arise as functions of X1 and X2. Specif-
ically, suppose that Y1 = g1(X1,X2) and Y2 = g2(X1,X2) for some functions g1

and g2.
Assume that the functions g1 and g2 satisfy the following conditions:

1. The equations y1 = g1(x1, x2) and y2 = g2(x1, x2) can be uniquely solved
for x1 and x2 in terms of y1 and y2 with solutions given by, say, x1 =
h1(y1, y2), x2 = h2(y1, y2).

2. The functions g1 and g2 have continuous partial derivatives at all points
(x1, x2) and are such that the following 2 × 2 determinant

J (x1, x2) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

∂g1

∂x1

∂g1

∂x2

∂g2

∂x1

∂g2

∂x2

∣
∣
∣
∣
∣
∣
∣
∣
∣

≡ ∂g1

∂x1

∂g2

∂x2
− ∂g1

∂x2

∂g2

∂x1
�= 0

at all points (x1, x2).
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Under these two conditions it can be shown that the random variables Y1 and Y2

are jointly continuous with joint density function given by

fY1,Y2(y1, y2) = fX1,X2(x1, x2)|J (x1, x2)|−1 (2.19)

where x1 = h1(y1, y2), x2 = h2(y1, y2).

A proof of Equation (2.19) would proceed along the following lines:

P {Y1 � y1, Y2 � y2} =
∫∫

(x1,x2):
g1(x1,x2)�y1
g2(x1,x2)�y2

fX1,X2(x1, x2) dx1 dx2 (2.20)

The joint density function can now be obtained by differentiating Equation (2.20)
with respect to y1 and y2. That the result of this differentiation will be equal to
the right-hand side of Equation (2.19) is an exercise in advanced calculus whose
proof will not be presented in the present text.

Example 2.38 If X and Y are independent gamma random variables with
parameters (α,λ) and (β,λ), respectively, compute the joint density of U = X+Y

and V = X/(X + Y).

Solution: The joint density of X and Y is given by

fX,Y (x, y) = λe−λx(λx)α−1

�(α)

λe−λy(λy)β−1

�(β)

= λα+β

�(α)�(β)
e−λ(x+y)xα−1yβ−1

Now, if g1(x, y) = x + y, g2(x, y) = x/(x + y), then

∂g1

∂x
= ∂g1

∂y
= 1,

∂g2

∂x
= y

(x + y)2
,

∂g2

∂y
= − x

(x + y)2

and so

J (x, y) =
∣
∣
∣
∣
∣
∣

1 1
y

(x + y)2

−x

(x + y)2

∣
∣
∣
∣
∣
∣
= − 1

x + y
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Finally, because the equations u = x +y, v = x/(x +y) have as their solutions
x = uv, y = u(1 − v), we see that

fU,V (u, v) = fX,Y [uv, u(1 − v)]u

= λe−λu(λu)α+β−1

�(α + β)

vα−1(1 − v)β−1�(α + β)

�(α)�(β)

Hence X + Y and X/(X + Y) are independent, with X + Y having a gamma
distribution with parameters (α +β,λ) and X/(X+Y) having density function

fV (v) = �(α + β)

�(α)�(β)
vα−1(1 − v)β−1, 0 < v < 1

This is called the beta density with parameters (α,β).
This result is quite interesting. For suppose there are n + m jobs to be per-

formed, with each (independently) taking an exponential amount of time with
rate λ for performance, and suppose that we have two workers to perform these
jobs. Worker I will do jobs 1,2, . . . , n, and worker II will do the remaining m

jobs. If we let X and Y denote the total working times of workers I and II,
respectively, then upon using the preceding result it follows that X and Y will
be independent gamma random variables having parameters (n,λ) and (m,λ),
respectively. Then the preceding result yields that independently of the working
time needed to complete all n+m jobs (that is, of X+Y ), the proportion of this
work that will be performed by worker I has a beta distribution with parameters
(n,m). �

When the joint density function of the n random variables X1,X2, . . . ,Xn is
given and we want to compute the joint density function of Y1, Y2, . . . , Yn, where

Y1 = g1(X1, . . . ,Xn), Y2 = g2(X1, . . . ,Xn), . . . ,

Yn = gn(X1, . . . ,Xn)

the approach is the same. Namely, we assume that the functions gi have continu-
ous partial derivatives and that the Jacobian determinant J (x1, . . . , xn) �= 0 at all
points (x1, . . . , xn), where

J (x1, . . . , xn) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∂g1

∂x1

∂g1

∂x2
· · · ∂g1

∂xn

∂g2

∂x1

∂g2

∂x2
· · · ∂g2

∂xn

∂gn

∂x1

∂gn

∂x2
· · · ∂gn

∂xn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣



64 2 Random Variables

Furthermore, we suppose that the equations y1 =g1(x1, . . . , xn), y2 =
g2(x1, . . . , xn), . . . , yn =gn(x1, . . . , xn) have a unique solution, say, x1 =
h1(y1, . . . , yn), . . . , xn =hn(y1, . . . , yn). Under these assumptions the joint den-
sity function of the random variables Yi is given by

fY1,...,Yn(y1, . . . , yn) = fX1,...,Xn(x1, . . . , xn) |J (x1, . . . , xn)|−1

where xi = hi(y1, . . . , yn), i = 1,2, . . . , n.

2.6. Moment Generating Functions

The moment generating function φ(t) of the random variable X is defined for all
values t by

φ(t) = E[etX]

=

⎧
⎪⎪⎨

⎪⎪⎩

∑

x

etxp(x), if X is discrete

∫ ∞

−∞
etxf (x) dx, if X is continuous

We call φ(t) the moment generating function because all of the moments of X

can be obtained by successively differentiating φ(t). For example,

φ′(t) = d

dt
E[etX]

= E

[
d

dt
(etX)

]

= E[XetX]
Hence,

φ′(0) = E[X]
Similarly,

φ′′(t) = d

dt
φ′(t)

= d

dt
E[XetX]

= E

[
d

dt
(XetX)

]

= E[X2etX]
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and so

φ′′(0) = E[X2]
In general, the nth derivative of φ(t) evaluated at t = 0 equals E[Xn], that is,

φn(0) = E[Xn], n � 1

We now compute φ(t) for some common distributions.

Example 2.39 (The Binomial Distribution with Parameters n and p)

φ(t) = E[etX]

=
n∑

k=0

etk

(
n

k

)

pk(1 − p)n−k

=
n∑

k=0

(
n

k

)

(pet )k(1 − p)n−k

= (pet + 1 − p)n

Hence,

φ′(t) = n(pet + 1 − p)n−1pet

and so

E[X] = φ′(0) = np

which checks with the result obtained in Example 2.17. Differentiating a second
time yields

φ′′(t) = n(n − 1)(pet + 1 − p)n−2(pet )2 + n(pet + 1 − p)n−1pet

and so

E[X2] = φ′′(0) = n(n − 1)p2 + np

Thus, the variance of X is given

Var(X) = E[X2] − (E[X])2

= n(n − 1)p2 + np − n2p2

= np(1 − p) �
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Example 2.40 (The Poisson Distribution with Mean λ)

φ(t) = E[etX]

=
∞∑

n=0

etne−λλn

n!

= e−λ

∞∑

n=0

(λet )n

n!

= e−λeλet

= exp{λ(et − 1)}

Differentiation yields

φ′(t) = λet exp{λ(et − 1)},
φ′′(t) = (λet )2 exp{λ(et − 1)} + λet exp{λ(et − 1)}

and so

E[X] = φ′(0) = λ,

E[X2] = φ′′(0) = λ2 + λ,

Var(X) = E[X2] − (E[X])2

= λ

Thus, both the mean and the variance of the Poisson equal λ. �

Example 2.41 (The Exponential Distribution with Parameter λ)

φ(t) = E[etX]
=
∫ ∞

0
etxλe−λxdx

= λ

∫ ∞

0
e−(λ−t)xdx

= λ

λ − t
for t < λ
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We note by the preceding derivation that, for the exponential distribution, φ(t) is
only defined for values of t less than λ. Differentiation of φ(t) yields

φ′(t) = λ

(λ − t)2
, φ′′(t) = 2λ

(λ − t)3

Hence,

E[X] = φ′(0) = 1

λ
, E[X2] = φ′′(0) = 2

λ2

The variance of X is thus given by

Var(X) = E[X2] − (E[X])2 = 1

λ2
�

Example 2.42 (The Normal Distribution with Parameters μ and σ 2)
The moment generating function of a standard normal random variable Z is

obtained as follows.

E[etZ] = 1√
2π

∫ ∞

−∞
etxe−x2/2 dx

= 1√
2π

∫ ∞

−∞
e−(x2−2tx)/2 dx

= et2/2 1√
2π

∫ ∞

−∞
e−(x−t)2/2 dx

= et2/2

If Z is a standard normal, then X = σZ + μ is normal with parameters μ and σ 2;
therefore,

φ(t) = E[etX] = E[et(σZ+μ)] = etμE[etσZ] = exp

{
σ 2t2

2
+ μt

}

By differentiating we obtain

φ′(t) = (μ + tσ 2) exp

{
σ 2t2

2
+ μt

}

,

φ′′(t) = (μ + tσ 2)2 exp

{
σ 2t2

2
+ μt

}

+ σ 2 exp

{
σ 2t2

2
+ μt

}
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and so

E[X] = φ′(0) = μ,

E[X2] = φ′′(0) = μ2 + σ 2

implying that

Var(X) = E[X2] − E([X])2

= σ 2 �

Tables 2.1 and 2.2 give the moment generating function for some common
distributions.

An important property of moment generating functions is that the moment gen-
erating function of the sum of independent random variables is just the product
of the individual moment generating functions. To see this, suppose that X and
Y are independent and have moment generating functions φX(t) and φY (t), re-
spectively. Then φX+Y (t), the moment generating function of X + Y , is given
by

φX+Y (t) = E[et(X+Y)]
= E[etXetY ]
= E[etX]E[etY ]
= φX(t)φY (t)

where the next to the last equality follows from Proposition 2.3 since X and Y are
independent.

Table 2.1

Discrete Probability Moment
probability mass generating
distribution function, p(x) function, φ(t) Mean Variance

Binomial with
parameters n,p
0 � p � 1

(n
x

)
px(1 − p)n−x ,

x = 0,1, . . . , n

(pet + (1 − p))n np np(1 − p)

Poisson with
parameter
λ > 0

e−λ λx

x! ,

x = 0,1,2, . . .

exp{λ(et − 1)} λ λ

Geometric with
parameter
0 � p � 1

p(1 − p)x−1,

x = 1, 2, . . .

pet

1 − (1 − p)et

1

p

1 − p

p2
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Table 2.2

Continuous Moment
probability Probability density generating
distribution function, f (x) function, φ(t) Mean Variance

Uniform
over (a, b)

f (x) =
⎧
⎨

⎩

1

b − a
, a < x < b

0, otherwise

etb − eta

t (b − a)

a + b

2

(b − a)2

12

Exponential with
parameter λ > 0

f (x) =
{
λe−λx, x > 0
0, x < 0

λ

λ − t

1

λ

1

λ2

Gamma with
parameters
(n,λ) λ > 0

f (x) =
⎧
⎨

⎩

λe−λx(λx)n−1

(n − 1)! , x � 0

0, x < 0

(
λ

λ − t

)n
n

λ

n

λ2

Normal with
parameters
(μ,σ 2)

f (x) = 1√
2πσ

× exp{−(x − μ)2/2σ 2},
−∞ < x < ∞

exp

{

μt + σ 2t2

2

}

μ σ 2

Another important result is that the moment generating function uniquely deter-
mines the distribution. That is, there exists a one-to-one correspondence between
the moment generating function and the distribution function of a random vari-
able.

Example 2.43 Suppose the moment generating function of a random variable
X is given by φ(t) = e3(et−1). What is P {X = 0}?

Solution: We see from Table 2.1 that φ(t) = e3(et−1) is the moment gener-
ating function of a Poisson random variable with mean 3. Hence, by the one-
to-one correspondence between moment generating functions and distribution
functions, it follows that X must be a Poisson random variable with mean 3.
Thus, P {X = 0} = e−3. �

Example 2.44 (Sums of Independent Binomial Random Variables) If X and
Y are independent binomial random variables with parameters (n,p) and (m,p),
respectively, then what is the distribution of X + Y ?

Solution: The moment generating function of X + Y is given by

φX+Y (t) = φX(t)φY (t) = (pet + 1 − p)n(pet + 1 − p)m

= (pet + 1 − p)m+n
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But (pet + (1 − p))m+n is just the moment generating function of a binomial
random variable having parameters m + n and p. Thus, this must be the distri-
bution of X + Y . �

Example 2.45 (Sums of Independent Poisson Random Variables) Calculate
the distribution of X+Y when X and Y are independent Poisson random variables
with means λ1 and λ2, respectively.

Solution:

φX+Y (t) = φX(t)φY (t)

= eλ1(e
t−1)eλ2(e

t−1)

= e(λ1+λ2)(e
t−1)

Hence, X + Y is Poisson distributed with mean λ1 + λ2, verifying the result
given in Example 2.36. �

Example 2.46 (Sums of Independent Normal Random Variables) Show that
if X and Y are independent normal random variables with parameters (μ1, σ

2
1 )

and (μ2, σ
2
2 ), respectively, then X +Y is normal with mean μ1 +μ2 and variance

σ 2
1 + σ 2

2 .

Solution:

φX+Y (t) = φX(t)φY (t)

= exp

{
σ 2

1 t2

2
+ μ1t

}

exp

{
σ 2

2 t2

2
+ μ2t

}

= exp

{
(σ 2

1 + σ 2
2 )t2

2
+ (μ1 + μ2)t

}

which is the moment generating function of a normal random variable with
mean μ1 + μ2 and variance σ 2

1 + σ 2
2 . Hence, the result follows since the mo-

ment generating function uniquely determines the distribution. �

Example 2.47 (The Poisson Paradigm) We showed in Section 2.2.4 that the
number of successes that occur in n independent trails, each of which results in
a success with probability p is, when n is large and p small, approximately a
Poisson random variable with parameter λ = np. This result, however, can be
substantially strengthened. First it is not necessary that the trials have the same
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success probability, only that all the success probabilities are small. To see that
this is the case, suppose that the trials are independent, with trial i resulting in
a success with probability pi , where all the pi , i = 1, . . . , n are small. Letting
Xi equal 1 if trial i is a success, and 0 otherwise, it follows that the number of
successes, call it X, can be expressed as

X =
n∑

i=1

Xi

Using that Xi is a Bernoulli (or binary) random variable, its moment generating
function is

E[etXi ] = pie
t + 1 − pi = 1 + pi(e

t − 1)

Now, using the result that, for |x| small,

ex ≈ 1 + x

it follows, because pi(e
t − 1) is small when pi is small, that

E[etXi ] = 1 + pi(e
t − 1) ≈ exp{pi(e

t − 1)}
Because the moment generating function of a sum of independent random vari-
ables is the product of their moment generating functions, the preceding implies
that

E[etX] ≈
n∏

i=1

exp{pi(e
t − 1)} = exp

{∑

i

pi(e
t − 1)

}

But the right side of the preceding is the moment generating function of a Poisson
random variable with mean

∑
i pi , thus arguing that this is approximately the

distribution of X.
Not only is it not necessary for the trials to have the same success probability

for the number of successes to approximately have a Poisson distribution, they
need not even be independent, provided that their dependence is weak. For in-
stance, recall the matching problem (Example 2.31) where n people randomly
select hats from a set consisting of one hat from each person. By regarding the
random selections of hats as constituting n trials, where we say that trial i is a
success if person i chooses his or her own hat, it follows that, with Ai being the
event that trial i is a success,

P(Ai) = 1

n
and P(Ai |Aj) = 1

n − 1
, j �= i

Hence, whereas the trials are not independent, their dependence appears, for large
n, to be weak. Because of this weak dependence, and the small trial success prob-
abilities, it would seem that the number of matches should approximately have a



72 2 Random Variables

Poisson distribution with mean 1 when n is large, and this is shown to be the case
in Example 3.23.

The statement that “the number of successes in n trials that are either indepen-
dent or at most weakly dependent is, when the trial success probabilities are all
small, approximately a Poisson random variable” is known as the Poisson para-
digm. �

Remark For a nonnegative random variable X, it is often convenient to define
its Laplace transform g(t), t � 0, by

g(t) = φ(−t) = E[e−tX]
That is, the Laplace transform evaluated at t is just the moment generating func-
tion evaluated at −t . The advantage of dealing with the Laplace transform, rather
than the moment generating function, when the random variable is nonnegative is
that if X � 0 and t � 0, then

0 � e−tX � 1

That is, the Laplace transform is always between 0 and 1. As in the case of mo-
ment generating functions, it remains true that nonnegative random variables that
have the same Laplace transform must also have the same distribution. �

It is also possible to define the joint moment generating function of two or
more random variables. This is done as follows. For any n random variables
X1, . . . ,Xn, the joint moment generating function, φ(t1, . . . , tn), is defined for
all real values of t1, . . . , tn by

φ(t1, . . . , tn) = E[e(t1X1 +···+ tnXn)]
It can be shown that φ(t1, . . . , tn) uniquely determines the joint distribution of
X1, . . . ,Xn.

Example 2.48 (The Multivariate Normal Distribution) Let Z1, . . . ,Zn be a
set of n independent standard normal random variables. If, for some constants
aij ,1 � i � m,1 � j � n, and μi,1 � i � m,

X1 = a11Z1 + · · · + a1nZn + μ1,

X2 = a21Z1 + · · · + a2nZn + μ2,
...

Xi = ai1Z1 + · · · + ainZn + μi,
...

Xm = am1Z1 + · · · + amnZn + μm
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then the random variables X1, . . . ,Xm are said to have a multivariate normal dis-
tribution.

It follows from the fact that the sum of independent normal random variables
is itself a normal random variable that each Xi is a normal random variable with
mean and variance given by

E[Xi] = μi,

Var(Xi) =
n∑

j=1

a2
ij

Let us now determine

φ(t1, . . . , tm) = E[exp{t1X1 + · · · + tmXm}]
the joint moment generating function of X1, . . . ,Xm. The first thing to note is that
since

∑m
i=1tiXi is itself a linear combination of the independent normal random

variables Z1, . . . ,Zn, it is also normally distributed. Its mean and variance are
respectively

E

[
m∑

i=1

tiXi

]

=
m∑

i=1

tiμi

and

Var

(
m∑

i=1

tiXi

)

= Cov

⎛

⎝
m∑

i=1

tiXi,

m∑

j=1

tjXj

⎞

⎠

=
m∑

i=1

m∑

j=1

ti tj Cov(Xi,Xj )

Now, if Y is a normal random variable with mean μ and variance σ 2, then

E[eY ] = φY (t)|t=1 = eμ+σ 2/2

Thus, we see that

φ(t1, . . . , tm) = exp

⎧
⎨

⎩

m∑

i=1

tiμi + 1

2

m∑

i=1

m∑

j=1

ti tj Cov(Xi,Xj )

⎫
⎬

⎭

which shows that the joint distribution of X1, . . . ,Xm is completely determined
from a knowledge of the values of E[Xi] and Cov(Xi,Xj ), i, j = 1, . . . ,m. �
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2.6.1. The Joint Distribution of the Sample Mean and Sample
Variance from a Normal Population

Let X1, . . . ,Xn be independent and identically distributed random variables, each
with mean μ and variance σ 2. The random variable S2 defined by

S2 =
n∑

i=1

(Xi − X̄)2

n − 1

is called the sample variance of these data. To compute E[S2] we use the identity

n∑

i=1

(Xi − X̄)2 =
n∑

i=1

(Xi − μ)2 − n(X̄ − μ)2 (2.21)

which is proven as follows:

n∑

i=1

(Xi − X̄) =
n∑

i=1

(Xi − μ + μ − X̄)2

=
n∑

i=1

(Xi − μ)2 + n(μ − X̄)2 + 2(μ − X̄)

n∑

i=1

(Xi − μ)

=
n∑

i=1

(Xi − μ)2 + n(μ − X̄)2 + 2(μ − X̄)(nX̄ − nμ)

=
n∑

i=1

(Xi − μ)2 + n(μ − X̄)2 − 2n(μ − X̄)2

and Identity (2.21) follows.
Using Identity (2.21) gives

E[(n − 1)S2] =
n∑

i=1

E[(Xi − μ)2] − nE[(X̄ − μ)2]

= nσ 2 − n Var(X̄)

= (n − 1)σ 2 from Proposition 2.4(b)

Thus, we obtain from the preceding that

E[S2] = σ 2

We will now determine the joint distribution of the sample mean X̄ =∑n
i=1 Xi/n and the sample variance S2 when the Xi have a normal distribution.

To begin we need the concept of a chi-squared random variable.
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Definition 2.2 If Z1, . . . ,Zn are independent standard normal random vari-
ables, then the random variable

∑n
i=1 Z2

i is said to be a chi-squared random vari-
able with n degrees of freedom.

We shall now compute the moment generating function of
∑n

i=1 Z2
i . To begin,

note that

E[exp{tZ2
i }] = 1√

2π

∫ ∞

−∞
etx2

e−x2/2 dx

= 1√
2π

∫ ∞

−∞
e−x2/2σ 2

dx where σ 2 = (1 − 2t)−1

= σ

= (1 − 2t)−1/2

Hence,

E

[

exp

{

t

n∑

i=1

Z2
i

}]

=
n∏

i=1

E[exp{tZ2
i }] = (1 − 2t)−n/2

Now, let X1, . . . ,Xn be independent normal random variables, each with mean
μ and variance σ 2, and let X̄ = ∑n

i=1 Xi/n and S2 denote their sample mean
and sample variance. Since the sum of independent normal random variables is
also a normal random variable, it follows that X̄ is a normal random variable with
expected value μ and variance σ 2/n. In addition, from Proposition 2.4,

Cov(X̄,Xi − X̄) = 0, i = 1, . . . , n (2.22)

Also, since X̄,X1 − X̄,X2 − X̄, . . . ,Xn − X̄ are all linear combinations of the in-
dependent standard normal random variables (Xi − μ)/σ, i = 1, . . . , n, it follows
that the random variables X̄,X1 −X̄,X2 −X̄, . . . ,Xn−X̄ have a joint distribution
that is multivariate normal. However, if we let Y be a normal random variable with
mean μ and variance σ 2/n that is independent of X1, . . . ,Xn, then the random
variables Y,X1 − X̄,X2 − X̄, . . . ,Xn − X̄ also have a multivariate normal distrib-
ution, and by Equation (2.22), they have the same expected values and covariances
as the random variables X̄,Xi − X̄, i = 1, . . . , n. Thus, since a multivariate nor-
mal distribution is completely determined by its expected values and covariances,
we can conclude that the random vectors Y,X1 − X̄,X2 − X̄, . . . ,Xn − X̄ and
X̄,X1 − X̄,X2 − X̄, . . . ,Xn − X̄ have the same joint distribution; thus showing
that X̄ is independent of the sequence of deviations Xi − X̄, i = 1, . . . , n.
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Since X̄ is independent of the sequence of deviations Xi − X̄, i = 1, . . . , n, it
follows that it is also independent of the sample variance

S2 ≡
n∑

i=1

(Xi − X̄)2

n − 1

To determine the distribution of S2, use Identity (2.21) to obtain

(n − 1)S2 =
n∑

i=1

(Xi − μ)2 − n(X̄ − μ)2

Dividing both sides of this equation by σ 2 yields

(n − 1)S2

σ 2
+
(

X̄ − μ

σ/
√

n

)2

=
n∑

i=1

(Xi − μ)2

σ 2
(2.23)

Now,
∑n

i=1(Xi − μ)2/σ 2 is the sum of the squares of n independent standard
normal random variables, and so is a chi-squared random variable with n de-
grees of freedom; it thus has moment generating function (1 − 2t)−n/2. Also
[(X̄ − μ)/(σ/

√
n)]2 is the square of a standard normal random variable and so is

a chi-squared random variable with one degree of freedom; and thus has moment
generating function (1 − 2t)−1/2. In addition, we have previously seen that the
two random variables on the left side of Equation (2.23) are independent. There-
fore, because the moment generating function of the sum of independent random
variables is equal to the product of their individual moment generating functions,
we obtain that

E[et(n−1)S2/σ 2](1 − 2t)−1/2 = (1 − 2t)−n/2

or

E[et(n−1)S2/σ 2] = (1 − 2t)−(n−1)/2

But because (1 − 2t)−(n−1)/2 is the moment generating function of a chi-squared
random variable with n − 1 degrees of freedom, we can conclude, since the mo-
ment generating function uniquely determines the distribution of the random vari-
able, that this is the distribution of (n − 1)S2/σ 2.

Summing up, we have shown the following.

Proposition 2.5 If X1, . . . ,Xn are independent and identically distributed
normal random variables with mean μ and variance σ 2, then the sample mean X̄

and the sample variance S2 are independent. X̄ is a normal random variable with
mean μ and variance σ 2/n; (n − 1)S2/σ 2 is a chi-squared random variable with
n − 1 degrees of freedom.



2.7. Limit Theorems 77

2.7. Limit Theorems

We start this section by proving a result known as Markov’s inequality.

Proposition 2.6 (Markov’s Inequality) If X is a random variable that takes
only nonnegative values, then for any value a > 0

P {X � a} � E[X]
a

Proof We give a proof for the case where X is continuous with density f :

E[X] =
∫ ∞

0
xf (x)dx

=
∫ a

0
xf (x)dx +

∫ ∞

a

xf (x) dx

�
∫ ∞

a

xf (x) dx

�
∫ ∞

a

af (x) dx

= a

∫ ∞

a

f (x) dx

= aP {X � a}

and the result is proven. �
As a corollary, we obtain the following.

Proposition 2.7 (Chebyshev’s Inequality) If X is a random variable with
mean μ and variance σ 2, then, for any value k > 0,

P {|X − μ| � k} � σ 2

k2

Proof Since (X−μ)2 is a nonnegative random variable, we can apply Markov’s
inequality (with a = k2) to obtain

P {(X − μ)2 � k2} � E[(X − μ)2]
k2



78 2 Random Variables

But since (X −μ)2 � k2 if and only if |X −μ| � k, the preceding is equivalent to

P {|X − μ| � k} � E[(X − μ)2]
k2

= σ 2

k2

and the proof is complete. �
The importance of Markov’s and Chebyshev’s inequalities is that they enable

us to derive bounds on probabilities when only the mean, or both the mean and the
variance, of the probability distribution are known. Of course, if the actual distri-
bution were known, then the desired probabilities could be exactly computed, and
we would not need to resort to bounds.

Example 2.49 Suppose we know that the number of items produced in a
factory during a week is a random variable with mean 500.

(a) What can be said about the probability that this week’s production will be
at least 1000?

(b) If the variance of a week’s production is known to equal 100, then what can
be said about the probability that this week’s production will be between
400 and 600?

Solution: Let X be the number of items that will be produced in a week.

(a) By Markov’s inequality,

P {X � 1000} � E[X]
1000

= 500

1000
= 1

2

(b) By Chebyshev’s inequality,

P {|X − 500| � 100} � σ 2

(100)2
= 1

100

Hence,

P {|X − 500| < 100} � 1 − 1

100
= 99

100
and so the probability that this week’s production will be between 400
and 600 is at least 0.99. �

The following theorem, known as the strong law of large numbers, is probably
the most well-known result in probability theory. It states that the average of a
sequence of independent random variables having the same distribution will, with
probability 1, converge to the mean of that distribution.
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Theorem 2.1 (Strong Law of Large Numbers) Let X1,X2, . . . be a se-
quence of independent random variables having a common distribution, and let
E[Xi] = μ. Then, with probability 1,

X1 + X2 + · · · + Xn

n
→ μ as n → ∞

As an example of the preceding, suppose that a sequence of independent trials
is performed. Let E be a fixed event and denote by P(E) the probability that E

occurs on any particular trial. Letting

Xi =
{

1, if E occurs on the ith trial
0, if E does not occur on the ith trial

we have by the strong law of large numbers that, with probability 1,

X1 + · · · + Xn

n
→ E[X] = P(E) (2.24)

Since X1 +· · ·+Xn represents the number of times that the event E occurs in the
first n trials, we may interpret Equation (2.24) as stating that, with probability 1,
the limiting proportion of time that the event E occurs is just P(E).

Running neck and neck with the strong law of large numbers for the honor of
being probability theory’s number one result is the central limit theorem. Besides
its theoretical interest and importance, this theorem provides a simple method for
computing approximate probabilities for sums of independent random variables.
It also explains the remarkable fact that the empirical frequencies of so many
natural “populations” exhibit a bell-shaped (that is, normal) curve.

Theorem 2.2 (Central Limit Theorem) Let X1,X2, . . . be a sequence of in-
dependent, identically distributed random variables, each with mean μ and vari-
ance σ 2. Then the distribution of

X1 + X2 + · · · + Xn − nμ

σ
√

n

tends to the standard normal as n → ∞. That is,

P

{
X1 + X2 + · · · + Xn − nμ

σ
√

n
� a

}

→ 1√
2π

∫ a

−∞
e−x2/2 dx

as n → ∞.

Note that like the other results of this section, this theorem holds for any distri-
bution of the Xi ’s; herein lies its power.
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If X is binomially distributed with parameters n and p, then X has the same
distribution as the sum of n independent Bernoulli random variables, each with
parameter p. (Recall that the Bernoulli random variable is just a binomial random
variable whose parameter n equals 1.) Hence, the distribution of

X − E[X]√
Var(X)

= X − np√
np(1 − p)

approaches the standard normal distribution as n approaches ∞. The nor-
mal approximation will, in general, be quite good for values of n satisfying
np(1 − p) � 10.

Example 2.50 (Normal Approximation to the Binomial) Let X be the num-
ber of times that a fair coin, flipped 40 times, lands heads. Find the probability that
X = 20. Use the normal approximation and then compare it to the exact solution.

Solution: Since the binomial is a discrete random variable, and the normal
a continuous random variable, it leads to a better approximation to write the
desired probability as

P {X = 20} = P {19.5 < X < 20.5}

= P

{
19.5 − 20√

10
<

X − 20√
10

<
20.5 − 20√

10

}

= P

{

−0.16 <
X − 20√

10
< 0.16

}

≈ �(0.16) − �(−0.16)

where �(x), the probability that the standard normal is less than x is given by

�(x) = 1√
2π

∫ x

−∞
e−y2/2 dy

By the symmetry of the standard normal distribution

�(−0.16) = P {N(0, 1) > 0.16} = 1 − �(0.16)

where N(0, 1) is a standard normal random variable. Hence, the desired prob-
ability is approximated by

P {X = 20} ≈ 2�(0.16) − 1

Using Table 2.3, we obtain that

P {X = 20} ≈ 0.1272
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Table 2.3 Area �(x) under the Standard Normal Curve to the Left of x

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5597 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8557 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

The exact result is

P {X = 20} =
(

40

20

)(
1

2

)40

which can be shown to equal 0.1268. �
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Example 2.51 Let Xi, i = 1,2, . . . ,10 be independent random variables,
each being uniformly distributed over (0, 1). Estimate P {∑10

1 Xi > 7}.
Solution: Since E[Xi] = 1

2 , Var(Xi) = 1
12 we have by the central limit the-

orem that

P

{
10∑

1

Xi > 7

}

= P

⎧
⎪⎪⎨

⎪⎪⎩

∑10
1 Xi − 5

√

10
(

1
12

) >
7 − 5

√

10
(

1
12

)

⎫
⎪⎪⎬

⎪⎪⎭

≈ 1 − �(2.2)

= 0.0139 �

Example 2.52 The lifetime of a special type of battery is a random variable
with mean 40 hours and standard deviation 20 hours. A battery is used until it
fails, at which point it is replaced by a new one. Assuming a stockpile of 25 such
batteries, the lifetimes of which are independent, approximate the probability that
over 1100 hours of use can be obtained.

Solution: If we let Xi denote the lifetime of the ith battery to be put in
use, then we desire p = P {X1 + · · · + X25 > 1100}, which is approximated as
follows:

p = P

{
X1 + · · · + X25 − 1000

20
√

25
>

1100 − 1000

20
√

25

}

≈ P {N(0,1) > 1}
= 1 − �(1)

≈ 0.1587 �

We now present a heuristic proof of the Central Limit theorem. Suppose first
that the Xi have mean 0 and variance 1, and let E[etX] denote their common
moment generating function. Then, the moment generating function of X1 +···+Xn√

n

is

E

[

exp

{

t

(
X1 + · · · + Xn√

n

)}]

= E
[
etX1/

√
netX2/

√
n · · · etXn/

√
n
]

= (
E
[
etX/

√
n
])n by independence

Now, for n large, we obtain from the Taylor series expansion of ey that

etX/
√

n ≈ 1 + tX√
n

+ t2X2

2n
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Taking expectations shows that when n is large

E
[
etX/

√
n
] ≈ 1 + tE[X]√

n
+ t2E[X2]

2n

= 1 + t2

2n
because E[X] = 0, E[X2] = 1

Therefore, we obtain that when n is large

E

[

exp

{

t

(
X1 + · · · + Xn√

n

)}]

≈
(

1 + t2

2n

)n

When n goes to ∞ the approximation can be shown to become exact and we have
that

lim
n→∞E

[

exp

{

t

(
X1 + · · · + Xn√

n

)}]

= et2/2

Thus, the moment generating function of X1+···+Xn√
n

converges to the moment
generating function of a (standard) normal random variable with mean 0 and vari-
ance 1. Using this, it can be proven that the distribution function of the random
variable X1+···+Xn√

n
converges to the standard normal distribution function �.

When the Xi have mean μ and variance σ 2, the random variables Xi−μ
σ

have
mean 0 and variance 1. Thus, the preceding shows that

P

{
X1 − μ + X2 − μ + · · · + Xn − μ

σ
√

n
� a

}

→ �(a)

which proves the central limit theorem.

2.8. Stochastic Processes

A stochastic process {X(t), t ∈ T } is a collection of random variables. That is,
for each t ∈ T ,X(t) is a random variable. The index t is often interpreted as time
and, as a result, we refer to X(t) as the state of the process at time t . For example,
X(t) might equal the total number of customers that have entered a supermarket
by time t ; or the number of customers in the supermarket at time t ; or the total
amount of sales that have been recorded in the market by time t ; etc.

The set T is called the index set of the process. When T is a countable set
the stochastic process is said to be a discrete-time process. If T is an interval of
the real line, the stochastic process is said to be a continuous-time process. For
instance, {Xn,n = 0,1, . . .} is a discrete-time stochastic process indexed by the
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nonnegative integers; while {X(t), t � 0} is a continuous-time stochastic process
indexed by the nonnegative real numbers.

The state space of a stochastic process is defined as the set of all possible values
that the random variables X(t) can assume.

Thus, a stochastic process is a family of random variables that describes the
evolution through time of some (physical) process. We shall see much of stochas-
tic processes in the following chapters of this text.

Example 2.53 Consider a particle that moves along a set of m + 1 nodes,
labeled 0,1, . . . ,m, that are arranged around a circle (see Figure 2.3). At each
step the particle is equally likely to move one position in either the clockwise or
counterclockwise direction. That is, if Xn is the position of the particle after its
nth step then

P {Xn+1 = i + 1|Xn = i} = P {Xn+1 = i − 1|Xn = i} = 1
2

where i + 1 ≡ 0 when i = m, and i − 1 ≡ m when i = 0. Suppose now that the
particle starts at 0 and continues to move around according to the preceding rules
until all the nodes 1,2, . . . ,m have been visited. What is the probability that node
i, i = 1, . . . ,m, is the last one visited?

Solution: Surprisingly enough, the probability that node i is the last node
visited can be determined without any computations. To do so, consider the
first time that the particle is at one of the two neighbors of node i, that is, the
first time that the particle is at one of the nodes i − 1 or i + 1 (with m+ 1 ≡ 0).
Suppose it is at node i −1 (the argument in the alternative situation is identical).
Since neither node i nor i + 1 has yet been visited, it follows that i will be the
last node visited if and only if i + 1 is visited before i. This is so because in

Figure 2.3. Particle moving around a circle.
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order to visit i + 1 before i the particle will have to visit all the nodes on the
counterclockwise path from i − 1 to i + 1 before it visits i. But the probability
that a particle at node i − 1 will visit i + 1 before i is just the probability that a
particle will progress m−1 steps in a specified direction before progressing one
step in the other direction. That is, it is equal to the probability that a gambler
who starts with one unit, and wins one when a fair coin turns up heads and loses
one when it turns up tails, will have his fortune go up by m − 1 before he goes
broke. Hence, because the preceding implies that the probability that node i is
the last node visited is the same for all i, and because these probabilities must
sum to 1, we obtain

P {i is the last node visited} = 1/m, i = 1, . . . ,m �

Remark The argument used in Example 2.53 also shows that a gambler who is
equally likely to either win or lose one unit on each gamble will be down n before
being up 1 with probability 1/(n + 1); or equivalently

P {gambler is up 1 before being down n} = n

n + 1

Suppose now we want the probability that the gambler is up 2 before being
down n. Upon conditioning on whether he reaches up 1 before down n, we obtain
that

P {gambler is up 2 before being down n}
= P {up 2 before down n|up 1 before down n} n

n + 1

= P {up 1 before down n + 1} n

n + 1

= n + 1

n + 2

n

n + 1
= n

n + 2

Repeating this argument yields that

P {gambler is up k before being down n} = n

n + k

Exercises

1. An urn contains five red, three orange, and two blue balls. Two balls are
randomly selected. What is the sample space of this experiment? Let X represent
the number of orange balls selected. What are the possible values of X? Calculate
P {X = 0}.
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2. Let X represent the difference between the number of heads and the number
of tails obtained when a coin is tossed n times. What are the possible values of X?

3. In Exercise 2, if the coin is assumed fair, then, for n = 2, what are the prob-
abilities associated with the values that X can take on?

*4. Suppose a die is rolled twice. What are the possible values that the following
random variables can take on?

(i) The maximum value to appear in the two rolls.
(ii) The minimum value to appear in the two rolls.

(iii) The sum of the two rolls.
(iv) The value of the first roll minus the value of the second roll.

5. If the die in Exercise 4 is assumed fair, calculate the probabilities associated
with the random variables in (i)–(iv).

6. Suppose five fair coins are tossed. Let E be the event that all coins land
heads. Define the random variable IE

IE =
{

1, if E occurs
0, if Ec occurs

For what outcomes in the original sample space does IE equal 1? What is
P {IE = 1}?
7. Suppose a coin having probability 0.7 of coming up heads is tossed three
times. Let X denote the number of heads that appear in the three tosses. Determine
the probability mass function of X.

8. Suppose the distribution function of X is given by

F(b) =
⎧
⎨

⎩

0, b < 0
1
2 , 0 � b < 1

1, 1 � b < ∞
What is the probability mass function of X?

9. If the distribution function of F is given by

F(b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, b < 0
1
2 , 0 � b < 1
3
5 , 1 � b < 2
4
5 , 2 � b < 3
9
10 , 3 � b < 3.5

1, b � 3.5

calculate the probability mass function of X.


