
Markov Chains

4
4.1. Introduction

In this chapter, we consider a stochastic process {Xn,n = 0,1,2, . . .} that takes
on a finite or countable number of possible values. Unless otherwise mentioned,
this set of possible values of the process will be denoted by the set of nonnegative
integers {0,1,2, . . .}. If Xn = i, then the process is said to be in state i at time n.
We suppose that whenever the process is in state i, there is a fixed probability Pij

that it will next be in state j . That is, we suppose that

P {Xn+1 = j |Xn = i,Xn−1 = in−1, . . . ,X1 = i1,X0 = i0} = Pij (4.1)

for all states i0, i1, . . . , in−1, i, j and all n � 0. Such a stochastic process is known
as a Markov chain. Equation (4.1) may be interpreted as stating that, for a Markov
chain, the conditional distribution of any future state Xn+1 given the past states
X0,X1, . . . ,Xn−1 and the present state Xn, is independent of the past states and
depends only on the present state.

The value Pij represents the probability that the process will, when in state i,
next make a transition into state j . Since probabilities are nonnegative and since
the process must make a transition into some state, we have that

Pij � 0, i, j � 0;
∞∑

j=0

Pij = 1, i = 0,1, . . .

Let P denote the matrix of one-step transition probabilities Pij , so that

P =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

P00 P01 P02 · · ·
P10 P11 P12 · · ·
...

...
...

Pi0 Pi1 Pi2 · · ·
...

...
...

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
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186 4 Markov Chains

Example 4.1 (Forecasting the Weather) Suppose that the chance of rain to-
morrow depends on previous weather conditions only through whether or not it
is raining today and not on past weather conditions. Suppose also that if it rains
today, then it will rain tomorrow with probability α; and if it does not rain today,
then it will rain tomorrow with probability β .

If we say that the process is in state 0 when it rains and state 1 when it does not
rain, then the preceding is a two-state Markov chain whose transition probabilities
are given by

P =
∥
∥
∥
∥
α 1 − α

β 1 − β

∥
∥
∥
∥ �

Example 4.2 (A Communications System) Consider a communications sys-
tem which transmits the digits 0 and 1. Each digit transmitted must pass through
several stages, at each of which there is a probability p that the digit entered will
be unchanged when it leaves. Letting Xn denote the digit entering the nth stage,
then {Xn,n = 0,1, . . .} is a two-state Markov chain having a transition probability
matrix

P =
∥
∥
∥
∥

p 1 − p

1 − p p

∥
∥
∥
∥ �

Example 4.3 On any given day Gary is either cheerful (C), so-so (S), or glum
(G). If he is cheerful today, then he will be C, S, or G tomorrow with respective
probabilities 0.5, 0.4, 0.1. If he is feeling so-so today, then he will be C, S, or
G tomorrow with probabilities 0.3, 0.4, 0.3. If he is glum today, then he will be
C, S, or G tomorrow with probabilities 0.2, 0.3, 0.5.

Letting Xn denote Gary’s mood on the nth day, then {Xn,n � 0} is a three-state
Markov chain (state 0 = C, state 1 = S, state 2 = G) with transition probability
matrix

P =
∥
∥
∥
∥
∥
∥

0.5 0.4 0.1
0.3 0.4 0.3
0.2 0.3 0.5

∥
∥
∥
∥
∥
∥

�

Example 4.4 (Transforming a Process into a Markov Chain) Suppose that
whether or not it rains today depends on previous weather conditions through
the last two days. Specifically, suppose that if it has rained for the past two days,
then it will rain tomorrow with probability 0.7; if it rained today but not yesterday,
then it will rain tomorrow with probability 0.5; if it rained yesterday but not today,
then it will rain tomorrow with probability 0.4; if it has not rained in the past two
days, then it will rain tomorrow with probability 0.2.
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If we let the state at time n depend only on whether or not it is raining at
time n, then the preceding model is not a Markov chain (why not?). However, we
can transform this model into a Markov chain by saying that the state at any time
is determined by the weather conditions during both that day and the previous
day. In other words, we can say that the process is in

state 0 if it rained both today and yesterday,
state 1 if it rained today but not yesterday,
state 2 if it rained yesterday but not today,
state 3 if it did not rain either yesterday or today.

The preceding would then represent a four-state Markov chain having a transition
probability matrix

P =

∥
∥
∥
∥
∥
∥
∥
∥

0.7 0 0.3 0
0.5 0 0.5 0
0 0.4 0 0.6
0 0.2 0 0.8

∥
∥
∥
∥
∥
∥
∥
∥

You should carefully check the matrix P, and make sure you understand how it
was obtained. �

Example 4.5 (A Random Walk Model) A Markov chain whose state space is
given by the integers i = 0,±1,±2, . . . is said to be a random walk if, for some
number 0 < p < 1,

Pi,i+1 = p = 1 − Pi,i−1, i = 0,±1, . . .

The preceding Markov chain is called a random walk for we may think of it as
being a model for an individual walking on a straight line who at each point of
time either takes one step to the right with probability p or one step to the left
with probability 1 − p. �

Example 4.6 (A Gambling Model) Consider a gambler who, at each play of
the game, either wins $1 with probability p or loses $1 with probability 1 − p. If
we suppose that our gambler quits playing either when he goes broke or he attains
a fortune of $N , then the gambler’s fortune is a Markov chain having transition
probabilities

Pi,i+1 = p = 1 − Pi,i−1, i = 1,2, . . . ,N − 1,

P00 = PNN = 1

States 0 and N are called absorbing states since once entered they are never left.
Note that the preceding is a finite state random walk with absorbing barriers (states
0 and N ). �
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Example 4.7 In most of Europe and Asia annual automobile insurance premi-
ums are determined by use of a Bonus Malus (Latin for Good-Bad) system. Each
policyholder is given a positive integer valued state and the annual premium is a
function of this state (along, of course, with the type of car being insured and the
level of insurance). A policyholder’s state changes from year to year in response to
the number of claims made by that policyholder. Because lower numbered states
correspond to lower annual premiums, a policyholder’s state will usually decrease
if he or she had no claims in the preceding year, and will generally increase if he
or she had at least one claim. (Thus, no claims is good and typically results in a de-
creased premium, while claims are bad and typically result in a higher premium.)

For a given Bonus Malus system, let si(k) denote the next state of a policy-
holder who was in state i in the previous year and who made a total of k claims
in that year. If we suppose that the number of yearly claims made by a particular
policyholder is a Poisson random variable with parameter λ, then the successive
states of this policyholder will constitute a Markov chain with transition proba-
bilities

Pi,j =
∑

k:si (k)=j

e−λ λk

k! , j � 0

Whereas there are usually many states (20 or so is not atypical), the following
table specifies a hypothetical Bonus Malus system having four states.

Next state if

State Annual Premium 0 claims 1 claim 2 claims � 3 claims

1 200 1 2 3 4
2 250 1 3 4 4
3 400 2 4 4 4
4 600 3 4 4 4

Thus, for instance, the table indicates that s2(0) = 1; s2(1) = 3; s2(k) = 4, k � 2.
Consider a policyholder whose annual number of claims is a Poisson random
variable with parameter λ. If ak is the probability that such a policyholder makes
k claims in a year, then

ak = e−λ λk

k! , k � 0
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For the Bonus Malus system specified in the preceding table, the transition prob-
ability matrix of the successive states of this policyholder is

P =

∥
∥
∥
∥
∥
∥
∥
∥

a0 a1 a2 1 − a0 − a1 − a2
a0 0 a1 1 − a0 − a1
0 a0 0 1 − a0
0 0 a0 1 − a0

∥
∥
∥
∥
∥
∥
∥
∥

�

4.2. Chapman–Kolmogorov Equations

We have already defined the one-step transition probabilities Pij . We now define
the n-step transition probabilities P n

ij to be the probability that a process in state i

will be in state j after n additional transitions. That is,

P n
ij = P {Xn+k = j |Xk = i}, n � 0, i, j � 0

Of course P 1
ij = Pij . The Chapman–Kolmogorov equations provide a method for

computing these n-step transition probabilities. These equations are

P n+m
ij =

∞∑

k=0

P n
ikP

m
kj for all n,m � 0, all i, j (4.2)

and are most easily understood by noting that P n
ikP

m
kj represents the probability

that starting in i the process will go to state j in n + m transitions through a
path which takes it into state k at the nth transition. Hence, summing over all
intermediate states k yields the probability that the process will be in state j after
n + m transitions. Formally, we have

P n+m
ij = P {Xn+m = j |X0 = i}

=
∞∑

k=0

P {Xn+m = j,Xn = k|X0 = i}

=
∞∑

k=0

P {Xn+m = j |Xn = k,X0 = i}P {Xn = k|X0 = i}

=
∞∑

k=0

P m
kj P n

ik
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If we let P(n) denote the matrix of n-step transition probabilities P n
ij , then Equa-

tion (4.2) asserts that

P(n+m) = P(n) · P(m)

where the dot represents matrix multiplication.∗ Hence, in particular,

P(2) = P(1+1) = P · P = P2

and by induction

P(n) = P(n−1+1) = Pn−1 · P = Pn

That is, the n-step transition matrix may be obtained by multiplying the matrix P
by itself n times.

Example 4.8 Consider Example 4.1 in which the weather is considered as a
two-state Markov chain. If α = 0.7 and β = 0.4, then calculate the probability
that it will rain four days from today given that it is raining today.

Solution: The one-step transition probability matrix is given by

P =
∥
∥
∥
∥

0.7 0.3
0.4 0.6

∥
∥
∥
∥

Hence,

P(2) = P2 =
∥
∥
∥
∥

0.7 0.3
0.4 0.6

∥
∥
∥
∥ ·
∥
∥
∥
∥

0.7 0.3
0.4 0.6

∥
∥
∥
∥

=
∥
∥
∥
∥

0.61 0.39
0.52 0.48

∥
∥
∥
∥ ,

P(4) = (P2)2 =
∥
∥
∥
∥

0.61 0.39
0.52 0.48

∥
∥
∥
∥ ·
∥
∥
∥
∥

0.61 0.39
0.52 0.48

∥
∥
∥
∥

=
∥
∥
∥
∥

0.5749 0.4251
0.5668 0.4332

∥
∥
∥
∥

and the desired probability P 4
00 equals 0.5749. �

∗If A is an N × M matrix whose element in the ith row and j th column is aij and B is an M × K

matrix whose element in the ith row and j th column is bij , then A · B is defined to be the N × K

matrix whose element in the ith row and j th column is
∑M

k=1 aikbkj .
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Example 4.9 Consider Example 4.4. Given that it rained on Monday and
Tuesday, what is the probability that it will rain on Thursday?

Solution: The two-step transition matrix is given by

P(2) = P2 =

∥
∥
∥
∥
∥
∥
∥
∥

0.7 0 0.3 0
0.5 0 0.5 0
0 0.4 0 0.6
0 0.2 0 0.8

∥
∥
∥
∥
∥
∥
∥
∥

·

∥
∥
∥
∥
∥
∥
∥
∥

0.7 0 0.3 0
0.5 0 0.5 0
0 0.4 0 0.6
0 0.2 0 0.8

∥
∥
∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥
∥
∥

0.49 0.12 0.21 0.18
0.35 0.20 0.15 0.30
0.20 0.12 0.20 0.48
0.10 0.16 0.10 0.64

∥
∥
∥
∥
∥
∥
∥
∥

Since rain on Thursday is equivalent to the process being in either state 0 or
state 1 on Thursday, the desired probability is given by P 2

00 + P 2
01 = 0.49 +

0.12 = 0.61. �
So far, all of the probabilities we have considered are conditional probabilities.

For instance, P n
ij is the probability that the state at time n is j given that the

initial state at time 0 is i. If the unconditional distribution of the state at time n

is desired, it is necessary to specify the probability distribution of the initial state.
Let us denote this by

αi ≡ P {X0 = i}, i � 0

( ∞∑

i=0

αi = 1

)

All unconditional probabilities may be computed by conditioning on the initial
state. That is,

P {Xn = j} =
∞∑

i=0

P {Xn = j |X0 = i}P {X0 = i}

=
∞∑

i=0

P n
ijαi

For instance, if α0 = 0.4, α1 = 0.6, in Example 4.8, then the (unconditional)
probability that it will rain four days after we begin keeping weather records is

P {X4 = 0} = 0.4P 4
00 + 0.6P 4

10

= (0.4)(0.5749) + (0.6)(0.5668)

= 0.5700
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Suppose now that you want to determine the probability that a Markov chain
enters any of a specified set of states A by time n. One way to accomplish this is
to reset the transition probabilities out of states in A to

P {Xm+1 = j |Xm = i} =
{

1, if i ∈ A , j = i

0, if i ∈ A , j �= i

That is, transform all states in A into absorbing states which once entered can
never be left. Because the original and transformed Markov chain follows iden-
tical probabilities until a state in A is entered, it follows that the probability the
original Markov chain enters a state in A by time n is equal to the probability
that the transformed Markov chain is in one of the states of A at time n.

Example 4.10 A pensioner receives 2 (thousand dollars) at the beginning of
each month. The amount of money he needs to spend during a month is inde-
pendent of the amount he has and is equal to i with probability Pi, i = 1,2,3,4,∑4

i=1 Pi = 1. If the pensioner has more than 3 at the end of a month, he gives the
amount greater than 3 to his son. If, after receiving his payment at the beginning
of a month, the pensioner has a capital of 5, what is the probability that his capital
is ever 1 or less at any time within the following four months?

Solution: To find the desired probability, we consider a Markov chain with
the state equal to the amount the pensioner has at the end of a month. Because
we are interested in whether this amount ever falls as low as 1, we will let
1 mean that the pensioner’s end-of-month fortune has ever been less than or
equal to 1. Because the pensioner will give any end-of-month amount greater
than 3 to his son, we need only consider the Markov chain with states 1,2,3
and transition probability matrix Q = [Qi,j ] given by

∥
∥
∥
∥
∥
∥

1 0 0
P3 + P4 P2 P1

P4 P3 P1 + P2

∥
∥
∥
∥
∥
∥

To understand the preceding, consider Q2,1, the probability that a month that
ends with the pensioner having the amount 2 will be followed by a month that
ends with the pensioner having less than or equal to 1. Because the pensioner
will begin the new month with the amount 2 + 2 = 4, his ending capital will be
less than or equal to 1 if his expenses are either 3 or 4. Thus, Q2,1 = P3 + P4.

The other transition probabilities are similarly explained.



4.3. Classification of States 193

Suppose now that Pi = 1/4, i = 1,2,3,4. The transition probability ma-
trix is

∥
∥
∥
∥
∥
∥

1 0 0
1/2 1/4 1/4
1/4 1/4 1/2

∥
∥
∥
∥
∥
∥

Squaring this matrix and then squaring the result gives the matrix
∥
∥
∥
∥
∥
∥
∥
∥

1 0 0
222
256

13
256

21
256

201
256

21
256

34
256

∥
∥
∥
∥
∥
∥
∥
∥

Because the pensioner’s initial end of month capital was 3, the desired answer
is Q4

3,1 = 201/256. �
Let {Xn,n � 0} be a Markov chain with transition probabilities Pi,j . If we let

Qi,j denote the transition probabilities that transform all states in A into absorb-
ing states, then

Qi,j =
⎧
⎨

⎩

1, if i ∈ A , j = i

0, if i ∈ A , j �= i

Pi,j , otherwise

For i, j /∈ A , the n stage transition probability Qn
i,j represents the probability

that the original chain, starting in state i, will be in state j at time n without ever
having entered any of the states in A . For instance, in Example 4.10, starting
with 5 at the beginning of January, the probability that the pensioner’s capital is 4
at the beginning of May without ever having been less than or equal to 1 in that
time is Q4

3,2 = 21/256.
We can also compute the conditional probability of Xn given that the chain

starts in state i and has not entered any state in A by time n, as follows. For
i, j /∈ A ,

P {Xn = j |X0 = i,Xk /∈ A , k = 1, . . . , n}

= P {Xn = j,Xk /∈ A , k = 1, . . . , n|X0 = i}
P {Xk /∈ A , k = 1, . . . , n|X0 = i} = Qn

i,j
∑

r /∈A Qn
i,r

4.3. Classification of States

State j is said to be accessible from state i if P n
ij > 0 for some n � 0. Note that

this implies that state j is accessible from state i if and only if, starting in i,
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it is possible that the process will ever enter state j . This is true since if j is not
accessible from i, then

P {ever enterj |start in i} = P

{ ∞⋃

n=0

{Xn = j}
∣
∣
∣X0 = i

}

�
∞∑

n=0

P {Xn = j |X0 = i}

=
∞∑

n=0

P n
ij

= 0

Two states i and j that are accessible to each other are said to communicate, and
we write i ↔ j .

Note that any state communicates with itself since, by definition,

P 0
ii = P {X0 = i|X0 = i} = 1

The relation of communication satisfies the following three properties:

(i) State i communicates with state i, all i � 0.
(ii) If state i communicates with state j , then state j communicates with

state i.
(iii) If state i communicates with state j , and state j communicates with state

k, then state i communicates with state k.

Properties (i) and (ii) follow immediately from the definition of communication.
To prove (iii) suppose that i communicates with j , and j communicates with k.
Thus, there exist integers n and m such that P n

ij > 0, P m
jk > 0. Now by the

Chapman–Kolmogorov equations, we have that

P n+m
ik =

∞∑

r=0

P n
irP

m
rk � P n

ijP
m
jk > 0

Hence, state k is accessible from state i. Similarly, we can show that state i is
accessible from state k. Hence, states i and k communicate.

Two states that communicate are said to be in the same class. It is an easy
consequence of (i), (ii), and (iii) that any two classes of states are either identical
or disjoint. In other words, the concept of communication divides the state space
up into a number of separate classes. The Markov chain is said to be irreducible
if there is only one class, that is, if all states communicate with each other.
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Example 4.11 Consider the Markov chain consisting of the three states 0, 1,
2 and having transition probability matrix

P =

∥
∥
∥
∥
∥
∥
∥

1
2

1
2 0

1
2

1
4

1
4

0 1
3

2
3

∥
∥
∥
∥
∥
∥
∥

It is easy to verify that this Markov chain is irreducible. For example, it is possible
to go from state 0 to state 2 since

0 → 1 → 2

That is, one way of getting from state 0 to state 2 is to go from state 0 to state 1
(with probability 1

2 ) and then go from state 1 to state 2 (with probability 1
4 ). �

Example 4.12 Consider a Markov chain consisting of the four states 0, 1, 2, 3
and having transition probability matrix

P =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

1
2

1
2 0 0

1
2

1
2 0 0

1
4

1
4

1
4

1
4

0 0 0 1

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

The classes of this Markov chain are {0, 1}, {2}, and {3}. Note that while state
0 (or 1) is accessible from state 2, the reverse is not true. Since state 3 is an
absorbing state, that is, P33 = 1, no other state is accessible from it. �

For any state i we let fi denote the probability that, starting in state i, the
process will ever reenter state i. State i is said to be recurrent if fi = 1 and tran-
sient if fi < 1.

Suppose that the process starts in state i and i is recurrent. Hence, with prob-
ability 1, the process will eventually reenter state i. However, by the definition
of a Markov chain, it follows that the process will be starting over again when it
reenters state i and, therefore, state i will eventually be visited again. Continual
repetition of this argument leads to the conclusion that if state i is recurrent then,
starting in state i, the process will reenter state i again and again and again—in
fact, infinitely often.

On the other hand, suppose that state i is transient. Hence, each time the process
enters state i there will be a positive probability, namely, 1 − fi , that it will never
again enter that state. Therefore, starting in state i, the probability that the process
will be in state i for exactly n time periods equals f n−1

i (1 − fi), n � 1. In other
words, if state i is transient then, starting in state i, the number of time periods
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that the process will be in state i has a geometric distribution with finite mean
1/(1 − fi).

From the preceding two paragraphs, it follows that state i is recurrent if and
only if, starting in state i, the expected number of time periods that the process is
in state i is infinite. But, letting

In =
{

1, if Xn = i

0, if Xn �= i

we have that
∑∞

n=0 In represents the number of periods that the process is in
state i. Also,

E

[ ∞∑

n=0

In|X0 = i

]

=
∞∑

n=0

E[In|X0 = i]

=
∞∑

n=0

P {Xn = i|X0 = i}

=
∞∑

n=0

P n
ii

We have thus proven the following.

Proposition 4.1 State i is

recurrent if
∞∑

n=1

P n
ii = ∞,

transient if
∞∑

n=1

P n
ii < ∞

The argument leading to the preceding proposition is doubly important be-
cause it also shows that a transient state will only be visited a finite number of
times (hence the name transient). This leads to the conclusion that in a finite-state
Markov chain not all states can be transient. To see this, suppose the states are
0,1, . . . ,M and suppose that they are all transient. Then after a finite amount of
time (say, after time T0) state 0 will never be visited, and after a time (say, T1) state
1 will never be visited, and after a time (say, T2) state 2 will never be visited, and
so on. Thus, after a finite time T = max{T0, T1, . . . , TM} no states will be visited.
But as the process must be in some state after time T we arrive at a contradiction,
which shows that at least one of the states must be recurrent.

Another use of Proposition 4.1 is that it enables us to show that recurrence is a
class property.



4.3. Classification of States 197

Corollary 4.2 If state i is recurrent, and state i communicates with state j ,
then state j is recurrent.

Proof To prove this we first note that, since state i communicates with state j ,
there exist integers k and m such that P k

ij > 0, P m
ji > 0. Now, for any integer n

P m+n+k
jj � P m

ji P
n
iiP

k
ij

This follows since the left side of the preceding is the probability of going from
j to j in m+n+k steps, while the right side is the probability of going from j to j

in m + n + k steps via a path that goes from j to i in m steps, then from i to i in
an additional n steps, then from i to j in an additional k steps.

From the preceding we obtain, by summing over n, that

∞∑

n=1

P m+n+k
jj � P m

ji P
k
ij

∞∑

n=1

P n
ii = ∞

since P m
ji P

k
ij > 0 and

∑∞
n=1 P n

ii is infinite since state i is recurrent. Thus, by
Proposition 4.1 it follows that state j is also recurrent. �

Remarks (i) Corollary 4.2 also implies that transience is a class property. For
if state i is transient and communicates with state j , then state j must also be
transient. For if j were recurrent then, by Corollary 4.2, i would also be recurrent
and hence could not be transient.

(ii) Corollary 4.2 along with our previous result that not all states in a finite
Markov chain can be transient leads to the conclusion that all states of a finite
irreducible Markov chain are recurrent.

Example 4.13 Let the Markov chain consisting of the states 0,1,2,3 have
the transition probability matrix

P =

∥
∥
∥
∥
∥
∥
∥
∥

0 0 1
2

1
2

1 0 0 0
0 1 0 0
0 1 0 0

∥
∥
∥
∥
∥
∥
∥
∥

Determine which states are transient and which are recurrent.

Solution: It is a simple matter to check that all states communicate and,
hence, since this is a finite chain, all states must be recurrent. �
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Example 4.14 Consider the Markov chain having states 0, 1, 2, 3, 4 and

P =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

1
2

1
2 0 0 0

1
2

1
2 0 0 0

0 0 1
2

1
2 0

0 0 1
2

1
2 0

1
4

1
4 0 0 1

2

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

Determine the recurrent state.

Solution: This chain consists of the three classes {0,1}, {2,3}, and {4}. The
first two classes are recurrent and the third transient. �

Example 4.15 (A Random Walk) Consider a Markov chain whose state
space consists of the integers i = 0,±1,±2, . . . , and have transition probabili-
ties given by

Pi,i+1 = p = 1 − Pi,i−1, i = 0,±1,±2, . . .

where 0 < p < 1. In other words, on each transition the process either moves one
step to the right (with probability p) or one step to the left (with probability 1−p).
One colorful interpretation of this process is that it represents the wanderings of
a drunken man as he walks along a straight line. Another is that it represents the
winnings of a gambler who on each play of the game either wins or loses one
dollar.

Since all states clearly communicate, it follows from Corollary 4.2 that they
are either all transient or all recurrent. So let us consider state 0 and attempt to
determine if

∑∞
n=1 P n

00 is finite or infinite.
Since it is impossible to be even (using the gambling model interpretation) after

an odd number of plays we must, of course, have that

P 2n−1
00 = 0, n = 1,2, . . .

On the other hand, we would be even after 2n trials if and only if we won n

of these and lost n of these. Because each play of the game results in a win with
probability p and a loss with probability 1 − p, the desired probability is thus the
binomial probability

P 2n
00 =

(
2n

n

)

pn(1 − p)n = (2n)!
n!n! (p(1 − p))n, n = 1,2,3, . . .

By using an approximation, due to Stirling, which asserts that

n! ∼ nn+1/2e−n
√

2π (4.3)
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where we say that an ∼ bn when limn→∞ an/bn = 1, we obtain

P 2n
00 ∼ (4p(1 − p))n√

πn

Now it is easy to verify, for positive an, bn, that if an ∼ bn, then
∑

n an < ∞ if
and only if

∑
n bn < ∞. Hence,

∑∞
n=1 P n

00 will converge if and only if

∞∑

n=1

(4p(1 − p))n√
πn

does. However, 4p(1 − p) � 1 with equality holding if and only if p = 1
2 . Hence,

∑∞
n=1P

n
00 = ∞ if and only if p = 1

2 . Thus, the chain is recurrent when p = 1
2 and

transient if p �= 1
2 .

When p = 1
2 , the preceding process is called a symmetric random walk. We

could also look at symmetric random walks in more than one dimension. For
instance, in the two-dimensional symmetric random walk the process would, at
each transition, either take one step to the left, right, up, or down, each having
probability 1

4 . That is, the state is the pair of integers (i, j ) and the transition
probabilities are given by

P(i,j),(i+1,j) = P(i,j),(i−1,j) = P(i,j),(i,j+1) = P(i,j),(i,j−1) = 1
4

By using the same method as in the one-dimensional case, we now show that this
Markov chain is also recurrent.

Since the preceding chain is irreducible, it follows that all states will be recur-
rent if state 0 = (0,0) is recurrent. So consider P 2n

00 . Now after 2n steps, the chain
will be back in its original location if for some i,0 � i � n, the 2n steps consist of
i steps to the left, i to the right, n − i up, and n − i down. Since each step will be
either of these four types with probability 1

4 , it follows that the desired probability
is a multinomial probability. That is,

P 2n
00 =

n∑

i=0

(2n)!
i!i!(n − i)!(n − i)!

(
1

4

)2n

=
n∑

i=0

(2n)!
n!n!

n!
(n − i)!i!

n!
(n − i)!i!

(
1

4

)2n

=
(

1

4

)2n(2n

n

) n∑

i=0

(
n

i

)(
n

n − i

)

=
(

1

4

)2n(2n

n

)(
2n

n

)

(4.4)
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where the last equality uses the combinatorial identity

(
2n

n

)

=
n∑

i=0

(
n

i

)(
n

n − i

)

which follows upon noting that both sides represent the number of subgroups of
size n one can select from a set of n white and n black objects. Now,

(
2n

n

)

= (2n)!
n!n!

∼ (2n)2n+1/2e−2n
√

2π

n2n+1e−2n(2π)
by Stirling’s approximation

= 4n

√
πn

Hence, from Equation (4.4) we see that

P 2n
00 ∼ 1

πn

which shows that
∑

nP
2n
00 = ∞, and thus all states are recurrent.

Interestingly enough, whereas the symmetric random walks in one and two
dimensions are both recurrent, all higher-dimensional symmetric random walks
turn out to be transient. (For instance, the three-dimensional symmetric random
walk is at each transition equally likely to move in any of six ways—either to the
left, right, up, down, in, or out.) �

Remarks For the one-dimensional random walk of Example 4.15 here is a
direct argument for establishing recurrence in the symmetric case, and for deter-
mining the probability that it ever returns to state 0 in the nonsymmetric case.
Let

β = P {ever return to 0}
To determine β , start by conditioning on the initial transition to obtain

β = P {ever return to 0|X1 = 1}p + P {ever return to 0|X1 = −1}(1 − p) (4.5)

Now, let α denote the probability that the Markov chain will ever return to state 0
given that it is currently in state 1. Because the Markov chain will always increase
by 1 with probability p or decrease by 1 with probability 1 −p no matter what its
current state, note that α is also the probability that the Markov chain currently in
state i will ever enter state i − 1, for any i. To obtain an equation for α, condition
on the next transition to obtain
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α = P {every return|X1 = 1,X2 = 0}(1 − p) + P {ever return|X1 = 1,X2 = 2}p
= 1 − p + P {ever return|X1 = 1,X2 = 2}p
= 1 − p + pα2

where the final equation follows by noting that in order for the chain to ever go
from state 2 to state 0 it must first go to state 1—and the probability of that ever
happening is α—and if it does eventually go to state 1 then it must still go to state
0—and the conditional probability of that ever happening is also α. Therefore,

α = 1 − p + pα2

The two roots of this equation are α = 1 and α = (1 −p)/p. Consequently, in the
case of the symmetric random walk where p = 1/2 we can conclude that α = 1.
By symmetry, the probability that the symmetric random walk will ever enter
state 0 given that it is currently in state −1 is also 1, proving that the symmetric
random walk is recurrent.

Suppose now that p > 1/2. In this case, it can be shown (see Exercise 17 at
the end of this chapter) that P {ever return to|X1 = −1} = 1. Consequently, Equa-
tion (4.5) reduces to

β = αp + 1 − p

Because the random walk is transient in this case we know that β < 1, showing
that α �= 1. Therefore, α = (1 − p)/p, yielding that

β = 2(1 − p), p > 1/2

Similarly, when p < 1/2 we can show that β = 2p. Thus, in general

P {ever return to 0} = 2 min(p,1 − p) �

Example 4.16 (On the Ultimate Instability of the Aloha Protocol) Consider
a communications facility in which the numbers of messages arriving during each
of the time periods n = 1,2, . . . are independent and identically distributed ran-
dom variables. Let ai = P {i arrivals}, and suppose that a0 +a1 < 1. Each arriving
message will transmit at the end of the period in which it arrives. If exactly one
message is transmitted, then the transmission is successful and the message leaves
the system. However, if at any time two or more messages simultaneously trans-
mit, then a collision is deemed to occur and these messages remain in the system.
Once a message is involved in a collision it will, independently of all else, trans-
mit at the end of each additional period with probability p—the so-called Aloha
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protocol (because it was first instituted at the University of Hawaii). We will show
that such a system is asymptotically unstable in the sense that the number of suc-
cessful transmissions will, with probability 1, be finite.

To begin let Xn denote the number of messages in the facility at the beginning
of the nth period, and note that {Xn,n � 0} is a Markov chain. Now for k � 0
define the indicator variables Ik by

Ik =
⎧
⎨

⎩

1, if the first time that the chain departs state k it
directly goes to state k − 1

0, otherwise

and let it be 0 if the system is never in state k, k � 0. (For instance, if the successive
states are 0,1,3,4, . . . , then I3 = 0 since when the chain first departs state 3 it
goes to state 4; whereas, if they are 0,3,3,2, . . . , then I3 = 1 since this time it
goes to state 2.) Now,

E

[ ∞∑

k=0

Ik

]

=
∞∑

k=0

E[Ik]

=
∞∑

k=0

P {Ik = 1}

�
∞∑

k=0

P {Ik = 1|k is ever visited} (4.6)

Now, P {Ik = 1|k is ever visited} is the probability that when state k is departed
the next state is k − 1. That is, it is the conditional probability that a transition
from k is to k − 1 given that it is not back into k, and so

P {Ik = 1|k is ever visited} = Pk,k−1

1 − Pkk

Because

Pk,k−1 = a0kp(1 − p)k−1,

Pk,k = a0[1 − kp(1 − p)k−1] + a1(1 − p)k

which is seen by noting that if there are k messages present on the beginning of
a day, then (a) there will be k − 1 at the beginning of the next day if there are no
new messages that day and exactly one of the k messages transmits; and (b) there
will be k at the beginning of the next day if either
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(i) there are no new messages and it is not the case that exactly one of the
existing k messages transmits, or

(ii) there is exactly one new message (which automatically transmits) and none
of the other k messages transmits.

Substitution of the preceding into Equation (4.6) yields

E

[ ∞∑

k=0

Ik

]

�
∞∑

k=0

a0kp(1 − p)k−1

1 − a0[1 − kp(1 − p)k−1] − a1(1 − p)k

< ∞
where the convergence follows by noting that when k is large the denominator of
the expression in the preceding sum converges to 1 − a0 and so the convergence
or divergence of the sum is determined by whether or not the sum of the terms in
the numerator converge and

∑∞
k=0 k(1 − p)k−1 < ∞.

Hence, E[∑∞
k=0 Ik] < ∞, which implies that

∑∞
k=0 Ik < ∞ with probability 1

(for if there was a positive probability that
∑∞

k=0 Ik could be ∞, then its mean
would be ∞). Hence, with probability 1, there will be only a finite number of
states that are initially departed via a successful transmission; or equivalently,
there will be some finite integer N such that whenever there are N or more mes-
sages in the system, there will never again be a successful transmission. From this
(and the fact that such higher states will eventually be reached—why?) it follows
that, with probability 1, there will only be a finite number of successful transmis-
sions. �

Remarks For a (slightly less than rigorous) probabilistic proof of Stirling’s
approximation, let X1X2, . . . be independent Poisson random variables each hav-
ing mean 1. Let Sn = ∑n

i=1 Xi , and note that both the mean and variance of
Sn are equal to n. Now,

P {Sn = n} = P {n − 1 < Sn � n}
= P {−1/

√
n < (Sn − n)/

√
n � 0}

≈
∫ 0

−1/
√

n

(2π)−1/2e−x2/2 dx
when n is large, by the
central limit theorem

≈ (2π)−1/2(1/
√

n)

= (2πn)−1/2

But Sn is Poisson with mean n, and so

P {Sn = n} = e−nnn

n!
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Hence, for n large

e−nnn

n! ≈ (2πn)−1/2

or, equivalently

n! ≈ nn+1/2e−n
√

2π

which is Stirling’s approximation.

4.4. Limiting Probabilities

In Example 4.8, we calculated P(4) for a two-state Markov chain; it turned out to
be

P(4) =
∥
∥
∥
∥

0.5749 0.4251
0.5668 0.4332

∥
∥
∥
∥

From this it follows that P(8) = P(4) · P(4) is given (to three significant places) by

P(8) =
∥
∥
∥
∥

0.572 0.428
0.570 0.430

∥
∥
∥
∥

Note that the matrix P(8) is almost identical to the matrix P(4), and secondly, that
each of the rows of P(8) has almost identical entries. In fact it seems that P n

ij is
converging to some value (as n → ∞) which is the same for all i. In other words,
there seems to exist a limiting probability that the process will be in state j after
a large number of transitions, and this value is independent of the initial state.

To make the preceding heuristics more precise, two additional properties of the
states of a Markov chain need to be considered. State i is said to have period d
if P n

ii = 0 whenever n is not divisible by d , and d is the largest integer with this
property. For instance, starting in i, it may be possible for the process to enter
state i only at the times 2,4,6,8, . . . , in which case state i has period 2. A state
with period 1 is said to be aperiodic. It can be shown that periodicity is a class
property. That is, if state i has period d , and states i and j communicate, then
state j also has period d .

If state i is recurrent, then it is said to be positive recurrent if, starting in i,
the expected time until the process returns to state i is finite. It can be shown
that positive recurrence is a class property. While there exist recurrent states that
are not positive recurrent,∗ it can be shown that in a finite-state Markov chain
all recurrent states are positive recurrent. Positive recurrent, aperiodic states are
called ergodic.

∗Such states are called null recurrent.
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We are now ready for the following important theorem which we state without
proof.

Theorem 4.1 For an irreducible ergodic Markov chain limn→∞ P n
ij exists

and is independent of i. Furthermore, letting

πj = lim
n→∞P n

ij , j � 0

then πj is the unique nonnegative solution of

πj =
∞∑

i=0

πiPij , j � 0,

∞∑

j=0

πj = 1 (4.7)

Remarks (i) Given that πj = limn→∞ P n
ij exists and is independent of the ini-

tial state i, it is not difficult to (heuristically) see that the π ’s must satisfy Equa-
tion (4.7). Let us derive an expression for P {Xn+1 = j} by conditioning on the
state at time n. That is,

P {Xn+1 = j} =
∞∑

i=0

P {Xn+1 = j |Xn = i}P {Xn = i}

=
∞∑

i=0

PijP {Xn = i}

Letting n → ∞, and assuming that we can bring the limit inside the summation,
leads to

πj =
∞∑

i=0

Pijπi

(ii) It can be shown that πj , the limiting probability that the process will be in
state j at time n, also equals the long-run proportion of time that the process will
be in state j .

(iii) If the Markov chain is irreducible, then there will be a solution to

πj =
∑

i

πiPij , j � 0,

∑

j

πj = 1

if and only if the Markov chain is positive recurrent. If a solution exists then it
will be unique, and πj will equal the long run proportion of time that the Markov
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chain is in state j . If the chain is aperiodic, then πj is also the limiting probability
that the chain is in state j .

Example 4.17 Consider Example 4.1, in which we assume that if it rains
today, then it will rain tomorrow with probability α; and if it does not rain today,
then it will rain tomorrow with probability β . If we say that the state is 0 when it
rains and 1 when it does not rain, then by Equation (4.7) the limiting probabilities
π0 and π1 are given by

π0 = απ0 + βπ1,

π1 = (1 − α)π0 + (1 − β)π1,

π0 + π1 = 1

which yields that

π0 = β

1 + β − α
, π1 = 1 − α

1 + β − α

For example if α = 0.7 and β = 0.4, then the limiting probability of rain is π0 =
4
7 = 0.571. �

Example 4.18 Consider Example 4.3 in which the mood of an individual is
considered as a three-state Markov chain having a transition probability matrix

P =
∥
∥
∥
∥
∥
∥

0.5 0.4 0.1
0.3 0.4 0.3
0.2 0.3 0.5

∥
∥
∥
∥
∥
∥

In the long run, what proportion of time is the process in each of the three states?

Solution: The limiting probabilities πi, i = 0,1,2, are obtained by solving
the set of equations in Equation (4.1). In this case these equations are

π0 = 0.5π0 + 0.3π1 + 0.2π2,

π1 = 0.4π0 + 0.4π1 + 0.3π2,

π2 = 0.1π0 + 0.3π1 + 0.5π2,

π0 + π1 + π2 = 1

Solving yields

π0 = 21
62 , π1 = 23

62 , π2 = 18
62 �
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Example 4.19 (A Model of Class Mobility) A problem of interest to soci-
ologists is to determine the proportion of society that has an upper- or lower-class
occupation. One possible mathematical model would be to assume that transitions
between social classes of the successive generations in a family can be regarded
as transitions of a Markov chain. That is, we assume that the occupation of a child
depends only on his or her parent’s occupation. Let us suppose that such a model
is appropriate and that the transition probability matrix is given by

P =
∥
∥
∥
∥
∥
∥

0.45 0.48 0.07
0.05 0.70 0.25
0.01 0.50 0.49

∥
∥
∥
∥
∥
∥

(4.8)

That is, for instance, we suppose that the child of a middle-class worker will attain
an upper-, middle-, or lower-class occupation with respective probabilities 0.05,
0.70, 0.25.

The limiting probabilities πi , thus satisfy

π0 = 0.45π0 + 0.05π1 + 0.01π2,

π1 = 0.48π0 + 0.70π1 + 0.50π2,

π2 = 0.07π0 + 0.25π1 + 0.49π2,

π0 + π1 + π2 = 1

Hence,

π0 = 0.07, π1 = 0.62, π2 = 0.31

In other words, a society in which social mobility between classes can be de-
scribed by a Markov chain with transition probability matrix given by Equation
(4.8) has, in the long run, 7 percent of its people in upper-class jobs, 62 percent of
its people in middle-class jobs, and 31 percent in lower-class jobs. �

Example 4.20 (The Hardy–Weinberg Law and a Markov Chain in Genetics)
Consider a large population of individuals, each of whom possesses a particular
pair of genes, of which each individual gene is classified as being of type A or
type a. Assume that the proportions of individuals whose gene pairs are AA, aa,
or Aa are, respectively, p0, q0, and r0 (p0 + q0 + r0 = 1). When two individuals
mate, each contributes one of his or her genes, chosen at random, to the resultant
offspring. Assuming that the mating occurs at random, in that each individual is
equally likely to mate with any other individual, we are interested in determining
the proportions of individuals in the next generation whose genes are AA, aa, or
Aa. Calling these proportions p, q , and r , they are easily obtained by focusing
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attention on an individual of the next generation and then determining the proba-
bilities for the gene pair of that individual.

To begin, note that randomly choosing a parent and then randomly choos-
ing one of its genes is equivalent to just randomly choosing a gene from the total
gene population. By conditioning on the gene pair of the parent, we see that a
randomly chosen gene will be type A with probability

P {A} = P {A|AA}p0 + P {A|aa}q0 + P {A|Aa}r0

= p0 + r0/2

Similarly, it will be type a with probability

P {a} = q0 + r0/2

Thus, under random mating a randomly chosen member of the next generation
will be type AA with probability p, where

p = P {A}P {A} = (p0 + r0/2)2

Similarly, the randomly chosen member will be type aa with probability

q = P {a}P {a} = (q0 + r0/2)2

and will be type Aa with probability

r = 2P {A}P {a} = 2(p0 + r0/2)(q0 + r0/2)

Since each member of the next generation will independently be of each of the
three gene types with probabilities p, q , r , it follows that the percentages of the
members of the next generation that are of type AA, aa, or Aa are respectively
p, q , and r .

If we now consider the total gene pool of this next generation, then p + r/2,
the fraction of its genes that are A, will be unchanged from the previous genera-
tion. This follows either by arguing that the total gene pool has not changed from
generation to generation or by the following simple algebra:

p + r/2 = (p0 + r0/2)2 + (p0 + r0/2)(q0 + r0/2)

= (p0 + r0/2)[p0 + r0/2 + q0 + r0/2]
= p0 + r0/2 since p0 + r0 + q0 = 1

= P {A} (4.9)

Thus, the fractions of the gene pool that are A and a are the same as in the initial
generation. From this it follows that, under random mating, in all successive gen-
erations after the initial one the percentages of the population having gene pairs
AA, aa, and Aa will remain fixed at the values p, q , and r . This is known as the
Hardy–Weinberg law.
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Suppose now that the gene pair population has stabilized in the percentages p,
q , r , and let us follow the genetic history of a single individual and her descen-
dants. (For simplicity, assume that each individual has exactly one offspring.) So,
for a given individual, let Xn denote the genetic state of her descendant in the nth
generation. The transition probability matrix of this Markov chain, namely,

AA aa Aa

AA

∥
∥
∥
∥
∥

p + r

2
0 q + r

2

∥
∥
∥
∥
∥

aa

∥
∥
∥
∥
∥

0 q + r

2
p + r

2

∥
∥
∥
∥
∥

Aa

∥
∥
∥
∥
∥

p

2
+ r

4

q

2
+ r

4

p

2
+ q

2
+ r

2

∥
∥
∥
∥
∥

is easily verified by conditioning on the state of the randomly chosen mate. It is
quite intuitive (why?) that the limiting probabilities for this Markov chain (which
also equal the fractions of the individual’s descendants that are in each of the
three genetic states) should just be p, q , and r . To verify this we must show that
they satisfy Equation (4.7). Because one of the equations in Equation (4.7) is
redundant, it suffices to show that

p = p

(

p + r

2

)

+ r

(
p

2
+ r

4

)

=
(

p + r

2

)2

,

q = q

(

q + r

2

)

+ r

(
q

2
+ r

4

)

=
(

q + r

2

)2

,

p + q + r = 1

But this follows from Equation (4.9), and thus the result is established. �

Example 4.21 Suppose that a production process changes states in accor-
dance with an irreducible, positive recurrent Markov chain having transition prob-
abilities Pij , i, j = 1, . . . , n, and suppose that certain of the states are considered
acceptable and the remaining unacceptable. Let A denote the acceptable states
and Ac the unacceptable ones. If the production process is said to be “up” when
in an acceptable state and “down” when in an unacceptable state, determine

1. the rate at which the production process goes from up to down (that is, the
rate of breakdowns);

2. the average length of time the process remains down when it goes down;
and

3. the average length of time the process remains up when it goes up.
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Solution: Let πk, k = 1, . . . , n, denote the long-run proportions. Now for
i ∈ A and j ∈ Ac the rate at which the process enters state j from state i is

rate enter j from i = πiPij

and so the rate at which the production process enters state j from an acceptable
state is

rate enter j from A =
∑

i∈A

πiPij

Hence, the rate at which it enters an unacceptable state from an acceptable one
(which is the rate at which breakdowns occur) is

rate breakdowns occur =
∑

j∈Ac

∑

i∈A

πiPij (4.10)

Now let Ū and D̄ denote the average time the process remains up when it
goes up and down when it goes down. Because there is a single breakdown
every Ū + D̄ time units on the average, it follows heuristically that

rate at which breakdowns occur = 1

Ū + D̄

and, so from Equation (4.10),

1

Ū + D̄
=
∑

j∈Ac

∑

i∈A

πiPij (4.11)

To obtain a second equation relating Ū and D̄, consider the percentage of
time the process is up, which, of course, is equal to

∑
i∈A πi . However, since the

process is up on the average Ū out of every Ū + D̄ time units, it follows (again
somewhat heuristically) that the

proportion of up time = Ū

Ū + D̄

and so

Ū

Ū + D̄
=
∑

i∈A

πi (4.12)
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Hence, from Equations (4.11) and (4.12) we obtain

Ū =
∑

i∈A πi
∑

j∈Ac

∑
i∈A πiPij

,

D̄ = 1 −∑
i∈A πi

∑
j∈Ac

∑
i∈A πiPij

=
∑

i∈Ac πi
∑

j∈Ac

∑
i∈A πiPij

For example, suppose the transition probability matrix is

P =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

1
4

1
4

1
2 0

0 1
4

1
2

1
4

1
4

1
4

1
4

1
4

1
4

1
4 0 1

2

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

where the acceptable (up) states are 1, 2 and the unacceptable (down) ones are
3, 4. The limiting probabilities satisfy

π1 = π1
1
4 + π3

1
4 + π4

1
4 ,

π2 = π1
1
4 + π2

1
4 + π3

1
4 + π4

1
4 ,

π3 = π1
1
2 + π2

1
2 + π3

1
4 ,

π1 + π2 + π3 + π4 = 1

These solve to yield

π1 = 3
16 , π2 = 1

4 , π3 = 14
48 , π4 = 13

48

and thus

rate of breakdowns = π1(P13 + P14) + π2(P23 + P24)

= 9
32 ,

Ū = 14
9 and D̄ = 2

Hence, on the average, breakdowns occur about 9
32 (or 28 percent) of the time.

They last, on the average, 2 time units, and then there follows a stretch of (on
the average) 14

9 time units when the system is up. �
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Remarks (i) The long run proportions πj , j � 0, are often called stationary
probabilities. The reason being that if the initial state is chosen according to the
probabilities πj , j � 0, then the probability of being in state j at any time n is
also equal to πj . That is, if

P {X0 = j} = πj , j � 0

then

P {Xn = j} = πj for all n, j � 0

The preceding is easily proven by induction, for if we suppose it true for n − 1,
then writing

P {Xn = j} =
∑

i

P {Xn = j |Xn−1 = i}P {Xn−1 = i}

=
∑

i

Pijπi by the induction hypothesis

= πj by Equation (4.7)

(ii) For state j , define mjj to be the expected number of transitions until a
Markov chain, starting in state j , returns to that state. Since, on the average, the
chain will spend 1 unit of time in state j for every mjj units of time, it follows
that

πj = 1

mjj

In words, the proportion of time in state j equals the inverse of the mean time
between visits to j . (The preceding is a special case of a general result, sometimes
called the strong law for renewal processes, which will be presented in Chapter 7.)

Example 4.22 (Mean Pattern Times in Markov Chain Generated Data) Con-
sider an irreducible Markov chain {Xn,n � 0} with transition probabilities Pi,j

and stationary probabilities πj , j � 0. Starting in state r , we are interested in
determining the expected number of transitions until the pattern i1, i2, . . . , ik ap-
pears. That is, with

N(i1, i2, . . . , ik) = min{n � k: Xn−k+1 = i1, . . . ,Xn = ik}
we are interested in

E[N(i1, i2, . . . , ik)|X0 = r]
Note that even if i1 = r , the initial state X0 is not considered part of the pattern
sequence.

Let μ(i, i1) be the mean number of transitions for the chain to enter state i1,

given that the initial state is i, i � 0. The quantities μ(i, i1) can be determined as



4.4. Limiting Probabilities 213

the solution of the following set of equations, obtained by conditioning on the first
transition out of state i:

μ(i, i1) = 1 +
∑

j �=i1

Pi,jμ(j, i1), i � 0

For the Markov chain {Xn,n � 0} associate a corresponding Markov chain, which
we will refer to as the k-chain, whose state at any time is the sequence of the most
recent k states of the original chain. (For instance, if k = 3 and X2 = 4, X3 = 1,
X4 = 1, then the state of the k-chain at time 4 is (4,1,1).) Let π(j1, . . . , jk) be the
stationary probabilities for the k-chain. Because π(j1, . . . , jk) is the proportion
of time that the state of the original Markov chain k units ago was j1 and the
following k − 1 states, in sequence, were j2, . . . , jk, we can conclude that

π(j1, . . . , jk) = πj1Pj1,j2 · · ·Pjk−1,jk

Moreover, because the mean number of transitions between successive visits of
the k-chain to the state i1, i2, . . . , ik is equal to the inverse of the stationary prob-
ability of that state, we have that

E[number of transitions between visits to i1, i2, . . . , ik]

= 1

π(i1, . . . , ik)
(4.13)

Let A(i1, . . . , im) be the additional number of transitions needed until the pat-
tern appears, given that the first m transitions have taken the chain into states
X1 = i1, . . . ,Xm = im.

We will now consider whether the pattern has overlaps, where we say that the
pattern i1, i2, . . . , ik has an overlap of size j, j < k, if the sequence of its final j

elements is the same as that of its first j elements. That is, it has an overlap of
size j if

(ik−j+1, . . . , ik) = (i1, . . . , ij ), j < k

Case 1: The pattern i1, i2, . . . , ik has no overlaps.
Because there is no overlap, Equation (4.13) yields that

E[N(i1, i2, . . . , ik)|X0 = ik] = 1

π(i1, . . . , ik)

Because the time until the pattern occurs is equal to the time until the chain enters
state i1 plus the additional time, we may write

E[N(i1, i2, . . . , ik)|X0 = ik] = μ(ik, i1) + E[A(i1)]
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The preceding two equations imply

E[A(i1)] = 1

π(i1, . . . , ik)
− μ(ik, i1)

Using that

E[N(i1, i2, . . . , ik)|X0 = r] = μ(r, i1) + E[A(i1)]

gives the result

E[N(i1, i2, . . . , ik)|X0 = r] = μ(r, i1) + 1

π(i1, . . . , ik)
− μ(ik, i1)

where

π(i1, . . . , ik) = πi1Pi1,i2 · · ·Pik−1,ik

Case 2: Now suppose that the pattern has overlaps and let its largest overlap be
of size s. In this case the number of transitions between successive visits of the
k-chain to the state i1, i2, . . . , ik is equal to the additional number of transitions
of the original chain until the pattern appears given that it has already made s

transitions with the results X1 = i1, . . . ,Xs = is . Therefore, from Equation (4.13)

E[A(i1, . . . , is)] = 1

π(i1, . . . , ik)

But because

N(i1, i2, . . . , ik) = N(i1, . . . , is) + A(i1, . . . , is)

we have

E[N(i1, i2, . . . , ik)|X0 = r] = E[N(i1, i2, . . . , is)|X0 = r] + 1

π(i1, . . . , ik)

We can now repeat the same procedure on the pattern i1, . . . , is , continuing to do
so until we reach one that has no overlap, and then apply the result from Case 1.
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For instance, suppose the desired pattern is 1,2,3,1,2,3,1,2. Then

E[N(1,2,3,1,2,3,1,2)|X0 = r] = E[N(1,2,3,1,2)|X0 = r]

+ 1

π(1,2,3,1,2,3,1,2)

Because the largest overlap of the pattern (1,2,3,1,2) is of size 2, the same
argument as in the preceding gives

E[N(1,2,3,1,2)|X0 = r] = E[N(1,2)|X0 = r] + 1

π(1,2,3,1,2)

Because the pattern (1,2) has no overlap, we obtain from Case 1 that

E[N(1,2)|X0 = r] = μ(r,1) + 1

π(1,2)
− μ(2,1)

Putting it together yields

E[N(1,2,3,1,2,3,1,2)|X0 = r] = μ(r,1) + 1

π1P1,2
− μ(2,1)

+ 1

π1P
2
1,2P2,3P3,1

+ 1

π1P
3
1,2P

2
2,3P

2
3,1

If the generated data is a sequence of independent and identically distributed ran-
dom variables, with each value equal to j with probability Pj , then the Markov
chain has Pi,j = Pj . In this case, πj = Pj . Also, because the time to go from
state i to state j is a geometric random variable with parameter Pj , we have
μ(i, j) = 1/Pj . Thus, the expected number of data values that need be generated
before the pattern 1,2,3,1,2,3,1,2 appears would be

1

P1
+ 1

P1P2
− 1

P1
+ 1

P 2
1 P 2

2 P3
+ 1

P 3
1 P 3

2 P 2
3

= 1

P1P2
+ 1

P 2
1 P 2

2 P3
+ 1

P 3
1 P 3

2 P 2
3

�

The following result is quite useful.

Proposition 4.3 Let {Xn,n � 1} be an irreducible Markov chain with sta-
tionary probabilities πj , j � 0, and let r be a bounded function on the state space.
Then, with probability 1,

lim
N→∞

∑N
n=1 r(Xn)

N
=

∞∑

j=0

r(j)πj
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Proof If we let aj (N) be the amount of time the Markov chain spends in state
j during time periods 1, . . . ,N , then

N∑

n=1

r(Xn) =
∞∑

j=0

aj (N)r(j)

Since aj (N)/N → πj the result follows from the preceding upon dividing by N

and then letting N → ∞. �

If we suppose that we earn a reward r(j) whenever the chain is in state j , then
Proposition 4.3 states that our average reward per unit time is

∑
j r(j)πj .

Example 4.23 For the four state Bonus Malus automobile insurance system
specified in Example 4.7, find the average annual premium paid by a policyholder
whose yearly number of claims is a Poisson random variable with mean 1/2.

Solution: With ak = e−1/2 (1/2)k

k! , we have

a0 = 0.6065, a1 = 0.3033, a2 = 0.0758

Therefore, the Markov chain of successive states has the following transition
probability matrix.

∥
∥
∥
∥
∥
∥
∥
∥

0.6065 0.3033 0.0758 0.0144
0.6065 0.0000 0.3033 0.0902
0.0000 0.6065 0.0000 0.3935
0.0000 0.0000 0.6065 0.3935

∥
∥
∥
∥
∥
∥
∥
∥

The stationary probabilities are given as the solution of

π1 = 0.6065π1 + 0.6065π2,

π2 = 0.3033π1 + 0.6065π3,

π3 = 0.0758π1 + 0.3033π2 + 0.6065π4,

π1 + π2 + π3 + π4 = 1

Rewriting the first three of these equations gives

π2 = 1 − 0.6065

0.6065
π1,

π3 = π2 − 0.3033π1

0.6065
,

π4 = π3 − 0.0758π1 − 0.3033π2

0.6065
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or

π2 = 0.6488π1,

π3 = 0.5697π1,

π4 = 0.4900π1

Using that
∑4

i=1 πi = 1 gives the solution (rounded to four decimal places)

π1 = 0.3692, π2 = 0.2395, π3 = 0.2103, π4 = 0.1809

Therefore, the average annual premium paid is

200π1 + 250π2 + 400π3 + 600π4 = 326.375 �

4.5. Some Applications

4.5.1. The Gambler’s Ruin Problem

Consider a gambler who at each play of the game has probability p of winning
one unit and probability q = 1 − p of losing one unit. Assuming that successive
plays of the game are independent, what is the probability that, starting with i

units, the gambler’s fortune will reach N before reaching 0?
If we let Xn denote the player’s fortune at time n, then the process {Xn,n =

0,1,2, . . .} is a Markov chain with transition probabilities

P00 = PNN = 1,

Pi,i+1 = p = 1 − Pi,i−1, i = 1, 2, . . . ,N − 1

This Markov chain has three classes, namely, {0}, {1,2, . . . ,N − 1}, and {N}; the
first and third class being recurrent and the second transient. Since each transient
state is visited only finitely often, it follows that, after some finite amount of time,
the gambler will either attain his goal of N or go broke.

Let Pi , i = 0,1, . . . ,N , denote the probability that, starting with i, the gam-
bler’s fortune will eventually reach N . By conditioning on the outcome of the
initial play of the game we obtain

Pi = pPi+1 + qPi−1, i = 1,2, . . . ,N − 1

or equivalently, since p + q = 1,

pPi + qPi = pPi+1 + qPi−1
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or

Pi+1 − Pi = q

p
(Pi − Pi−1), i = 1,2, . . . ,N − 1

Hence, since P0 = 0, we obtain from the preceding line that

P2 − P1 = q

p
(P1 − P0) = q

p
P1,

P3 − P2 = q

p
(P2 − P1) =

(
q

p

)2

P1,

...

Pi − Pi−1 = q

p
(Pi−1 − Pi−2) =

(
q

p

)i−1

P1,

...

PN − PN−1 =
(

q

p

)

(PN−1 − PN−2) =
(

q

p

)N−1

P1

Adding the first i − 1 of these equations yields

Pi − P1 = P1

[(
q

p

)

+
(

q

p

)2

+ · · · +
(

q

p

)i−1
]

or

Pi =

⎧
⎪⎪⎨

⎪⎪⎩

1 − (q/p)i

1 − (q/p)
P1, if

q

p
�= 1

iP1, if
q

p
= 1

Now, using the fact that PN = 1, we obtain that

P1 =

⎧
⎪⎪⎨

⎪⎪⎩

1 − (q/p)

1 − (q/p)N
, if p �= 1

2
1

N
, if p = 1

2
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and hence

Pi =

⎧
⎪⎪⎨

⎪⎪⎩

1 − (q/p)i

1 − (q/p)N
, if p �= 1

2
i

N
, if p = 1

2

(4.14)

Note that, as N → ∞,

Pi →

⎧
⎪⎪⎨

⎪⎪⎩

1 −
(

q

p

)i

, if p >
1

2

0, if p � 1

2

Thus, if p > 1
2 , there is a positive probability that the gambler’s fortune will in-

crease indefinitely; while if p � 1
2 , the gambler will, with probability 1, go broke

against an infinitely rich adversary.

Example 4.24 Suppose Max and Patty decide to flip pennies; the one coming
closest to the wall wins. Patty, being the better player, has a probability 0.6 ofwin-
ning on each flip. (a) If Patty starts with five pennies and Max with ten, what is
the probability that Patty will wipe Max out? (b) What if Patty starts with 10 and
Max with 20?

Solution: (a) The desired probability is obtained from Equation (4.14) by
letting i = 5, N = 15, and p = 0.6. Hence, the desired probability is

1 − ( 2
3

)5

1 − ( 2
3

)15
≈ 0.87

(b) The desired probability is

1 − ( 2
3

)10

1 − ( 2
3

)30
≈ 0.98 �

For an application of the gambler’s ruin problem to drug testing, suppose that
two new drugs have been developed for treating a certain disease. Drug i has a
cure rate Pi , i = 1,2, in the sense that each patient treated with drug i will be
cured with probability Pi . These cure rates, however, are not known, and suppose
we are interested in a method for deciding whether P1 > P2 or P2 > P1. To de-
cide upon one of these alternatives, consider the following test: Pairs of patients
are treated sequentially with one member of the pair receiving drug 1 and the other
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drug 2. The results for each pair are determined, and the testing stops when the
cumulative number of cures using one of the drugs exceeds the cumulative num-
ber of cures when using the other by some fixed predetermined number. More
formally, let

Xj =
{

1, if the patient in the j th pair to receive drug number 1 is cured
0, otherwise

Yj =
{

1, if the patient in the j th pair to receive drug number 2 is cured
0, otherwise

For a predetermined positive integer M the test stops after pair N where N is
the first value of n such that either

X1 + · · · + Xn − (Y1 + · · · + Yn) = M

or

X1 + · · · + Xn − (Y1 + · · · + Yn) = −M

In the former case we then assert that P1 > P2, and in the latter that P2 > P1.
In order to help ascertain whether the preceding is a good test, one thing we

would like to know is the probability of it leading to an incorrect decision. That is,
for given P1 and P2 where P1 > P2, what is the probability that the test will
incorrectly assert that P2 > P1? To determine this probability, note that after each
pair is checked the cumulative difference of cures using drug 1 versus drug 2
will either go up by 1 with probability P1(1 − P2)—since this is the probability
that drug 1 leads to a cure and drug 2 does not—or go down by 1 with probability
(1−P1)P2, or remain the same with probability P1P2 + (1−P1)(1−P2). Hence,
if we only consider those pairs in which the cumulative difference changes, then
the difference will go up 1 with probability

p = P {up 1|up1 or down 1}

= P1(1 − P2)

P1(1 − P2) + (1 − P1)P2

and down 1 with probability

q = 1 − p = P2(1 − P1)

P1(1 − P2) + (1 − P1)P2

Hence, the probability that the test will assert that P2 > P1 is equal to the proba-
bility that a gambler who wins each (one unit) bet with probability p will go down
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M before going up M . But Equation (4.14) with i = M , N = 2M , shows that this
probability is given by

P {test asserts that P2 > P1} = 1 − 1 − (q/p)M

1 − (q/p)2M

= 1

1 + (p/q)M

Thus, for instance, if P1 = 0.6 and P2 = 0.4 then the probability of an incorrect
decision is 0.017 when M = 5 and reduces to 0.0003 when M = 10.

4.5.2. A Model for Algorithmic Efficiency

The following optimization problem is called a linear program:

minimize cx,

subject to Ax = b,

x � 0

where A is an m × n matrix of fixed constants; c = (c1, . . . , cn) and b =
(b1, . . . , bm) are vectors of fixed constants; and x = (x1, . . . , xn) is the n-vector of
nonnegative values that is to be chosen to minimize cx ≡ ∑n

i=1 cixi . Supposing
that n > m, it can be shown that the optimal x can always be chosen to have at
least n − m components equal to 0—that is, it can always be taken to be one of
the so-called extreme points of the feasibility region.

The simplex algorithm solves this linear program by moving from an extreme
point of the feasibility region to a better (in terms of the objective function cx)
extreme point (via the pivot operation) until the optimal is reached. Because there
can be as many as N ≡ (

n
m

)
such extreme points, it would seem that this method

might take many iterations, but, surprisingly to some, this does not appear to be
the case in practice.

To obtain a feel for whether or not the preceding statement is surprising, let
us consider a simple probabilistic (Markov chain) model as to how the algorithm
moves along the extreme points. Specifically, we will suppose that if at any time
the algorithm is at the j th best extreme point then after the next pivot the resulting
extreme point is equally likely to be any of the j − 1 best. Under this assumption,
we show that the time to get from the N th best to the best extreme point has
approximately, for large N , a normal distribution with mean and variance equal
to the logarithm (base e) of N .
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Consider a Markov chain for which P11 = 1 and

Pij = 1

i − 1
, j = 1, . . . , i − 1, i > 1

and let Ti denote the number of transitions needed to go from state i to state 1.
A recursive formula for E[Ti] can be obtained by conditioning on the initial tran-
sition:

E[Ti] = 1 + 1

i − 1

i−1∑

j=1

E[Tj ]

Starting with E[T1] = 0, we successively see that

E[T2] = 1,

E[T3] = 1 + 1
2 ,

E[T4] = 1 + 1
3 (1 + 1 + 1

2 ) = 1 + 1
2 + 1

3

and it is not difficult to guess and then prove inductively that

E[Ti] =
i−1∑

j=1

1/j

However, to obtain a more complete description of TN , we will use the repre-
sentation

TN =
N−1∑

j=1

Ij

where

Ij =
{

1, if the process ever enters j

0, otherwise

The importance of the preceding representation stems from the following:

Proposition 4.4 I1, . . . , IN−1 are independent and

P {Ij = 1} = 1/j, 1 � j � N − 1

Proof Given Ij+1, . . . , IN , let n = min{i: i > j, Ii = 1} denote the lowest num-
bered state, greater than j , that is entered. Thus we know that the process enters
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state n and the next state entered is one of the states 1,2, . . . , j . Hence, as the
next state from state n is equally likely to be any of the lower number states
1,2, . . . , n − 1 we see that

P {Ij = 1|Ij+1, . . . , IN } = 1/(n − 1)

j/(n − 1)
= 1/j

Hence, P {Ij = 1} = 1/j , and independence follows since the preceding condi-
tional probability does not depend on Ij+1, . . . , IN . �

Corollary 4.5

(i) E[TN ] =∑N−1
j=1 1/j .

(ii) Var(TN) =∑N−1
j=1 (1/j)(1 − 1/j).

(iii) For N large, TN has approximately a normal distribution with mean logN

and variance logN .

Proof Parts (i) and (ii) follow from Proposition 4.4 and the representation
TN =∑N−1

j=1 Ij . Part (iii) follows from the central limit theorem since

∫ N

1

dx

x
<

N−1∑

1

1/j < 1 +
∫ N−1

1

dx

x

or

logN <

N−1∑

1

1/j < 1 + log(N − 1)

and so

logN ≈
N−1∑

j=1

1/j �

Returning to the simplex algorithm, if we assume that n, m, and n − m are all
large, we have by Stirling’s approximation that

N =
(

n

m

)

∼ nn+1/2

(n − m)n−m+1/2mm+1/2
√

2π

and so, letting c = n/m,

logN ∼ (
mc + 1

2

)
log(mc) − (

m(c − 1) + 1
2

)
log(m(c − 1))

− (
m + 1

2

)
logm − 1

2 log(2π)
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or

logN ∼ m

[

c log
c

c − 1
+ log(c − 1)

]

Now, as limx→∞ x log[x/(x − 1)] = 1, it follows that, when c is large,

logN ∼ m[1 + log(c − 1)]

Thus, for instance, if n = 8000, m = 1000, then the number of necessary tran-
sitions is approximately normally distributed with mean and variance equal to
1000(1 + log 7) ≈ 3000. Hence, the number of necessary transitions would be
roughly between

3000 ± 2
√

3000 or roughly 3000 ± 110

95 percent of the time.

4.5.3. Using a Random Walk to Analyze a Probabilistic Algorithm
for the Satisfiability Problem

Consider a Markov chain with states 0,1, . . . , n having

P0,1 = 1, Pi,i+1 = p, Pi,i−1 = q = 1 − p, 1 � i � n

and suppose that we are interested in studying the time that it takes for the chain
to go from state 0 to state n. One approach to obtaining the mean time to reach
state n would be to let mi denote the mean time to go from state i to state
n, i = 0, . . . , n − 1. If we then condition on the initial transition, we obtain the
following set of equations:

m0 = 1 + m1,

mi = E[time to reach n|next state is i + 1]p
+ E[time to reach n|next state is i − 1]q

= (1 + mi+1)p + (1 + mi−1)q

= 1 + pmi+1 + qmi−1, i = 1, . . . , n − 1

Whereas the preceding equations can be solved for mi, i = 0, . . . , n−1, we do not
pursue their solution; we instead make use of the special structure of the Markov
chain to obtain a simpler set of equations. To start, let Ni denote the number of
additional transitions that it takes the chain when it first enters state i until it enters
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state i + 1. By the Markovian property, it follows that these random variables
Ni , i = 0, . . . , n − 1 are independent. Also, we can express N0,n, the number of
transitions that it takes the chain to go from state 0 to state n, as

N0,n =
n−1∑

i=0

Ni (4.15)

Letting μi = E[Ni] we obtain, upon conditioning on the next transition after the
chain enters state i, that for i = 1, . . . , n − 1

μi = 1 + E[number of additional transitions to reach i + 1|chain to i − 1]q
Now, if the chain next enters state i − 1, then in order for it to reach i + 1 it must
first return to state i and must then go from state i + 1. Hence, we have from the
preceding that

μi = 1 + E[N∗
i−1 + N∗

i ]q
where N∗

i−1 and N∗
i are, respectively, the additional number of transitions to re-

turn to state i from i −1 and the number to then go from i to i +1. Now, it follows
from the Markovian property that these random variables have, respectively, the
same distributions as Ni−1 and Ni . In addition, they are independent (although
we will only use this when we compute the variance of N0,n). Hence, we see that

μi = 1 + q(μi−1 + μi)

or

μi = 1

p
+ q

p
μi−1, i = 1, . . . , n − 1

Starting with μ0 = 1, and letting α = q/p, we obtain from the preceding recursion
that

μ1 = 1/p + α,

μ2 = 1/p + α(1/p + α) = 1/p + α/p + α2,

μ3 = 1/p + α(1/p + α/p + α2)

= 1/p + α/p + α2/p + α3

In general, we see that

μi = 1

p

i−1∑

j=0

αj + αi, i = 1, . . . , n − 1 (4.16)
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Using Equation (4.15), we now get

E[N0,n] = 1 + 1

p

n−1∑

i=1

i−1∑

j=0

αj +
n−1∑

i=1

αi

When p = 1
2 , and so α = 1, we see from the preceding that

E[N0,n] = 1 + (n − 1)n + n − 1 = n2

When p �= 1
2 , we obtain that

E[N0,n] = 1 + 1

p(1 − α)

n−1∑

i=1

(1 − αi) + α − αn

1 − α

= 1 + 1 + α

1 − α

[

n − 1 − (α − αn)

1 − α

]

+ α − αn

1 − α

= 1 + 2αn+1 − (n + 1)α2 + n − 1

(1 − α)2

where the second equality used the fact that p = 1/(1+α). Therefore, we see that
when α > 1, or equivalently when p < 1

2 , the expected number of transitions to
reach n is an exponentially increasing function of n. On the other hand, when p =
1
2 ,E[N0,n] = n2, and when p > 1

2 ,E[N0,n] is, for large n, essentially linear in n.
Let us now compute Var(N0,n). To do so, we will again make use of the repre-

sentation given by Equation (4.15). Letting vi = Var(Ni), we start by determining
the vi recursively by using the conditional variance formula. Let Si = 1 if the first
transition out of state i is into state i + 1, and let Si = −1 if the transition is into
state i − 1, i = 1, . . . , n − 1. Then,

given that Si = 1: N1 = 1

given that Si = −1: Ni = 1 + N∗
i−1 + N∗

i

Hence,

E[Ni |Si = 1] = 1,

E[Ni |Si = −1] = 1 + μi−1 + μi
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implying that

Var(E[Ni |Si]) = Var(E[Ni |Si] − 1)

= (μi−1 + μi)
2q − (μi−1 + μi)

2q2

= qp(μi−1 + μi)
2

Also, since N∗
i−1 and N∗

i , the numbers of transitions to return from state i − 1
to i and to then go from state i to state i + 1 are, by the Markovian property,
independent random variables having the same distributions as Ni−1 and Ni , re-
spectively, we see that

Var(Ni |Si = 1) = 0,

Var(Ni |Si = −1) = vi−1 + vi

Hence,

E[Var(Ni |Si)] = q(vi−1 + vi)

From the conditional variance formula, we thus obtain that

vi = pq(μi−1 + μi)
2 + q(vi−1 + vi)

or, equivalently,

vi = q(μi−1 + μi)
2 + αvi−1, i = 1, . . . , n − 1

Starting with v0 = 0, we obtain from the preceding recursion that

v1 = q(μ0 + μ1)
2,

v2 = q(μ1 + μ2)
2 + αq(μ0 + μ1)

2,

v3 = q(μ2 + μ3)
2 + αq(μ1 + μ2)

2 + α2q(μ0 + μ1)
2

In general, we have for i > 0,

vi = q

i∑

j=1

αi−j (μj−1 + μj )
2 (4.17)

Therefore, we see that

Var(N0,n) =
n−1∑

i=0

vi = q

n−1∑

i=1

i∑

j=1

αi−j (μj−1 + μj )
2

where μj is given by Equation (4.16).
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We see from Equations (4.16) and (4.17) that when p � 1
2 , and so α � 1, that μi

and vi , the mean and variance of the number of transitions to go from state i to
i + 1, do not increase too rapidly in i. For instance, when p = 1

2 it follows from
Equations (4.16) and (4.17) that

μi = 2i + 1

and

vi = 1

2

i∑

j=1

(4j)2 = 8
i∑

j=1

j2

Hence, since N0,n is the sum of independent random variables, which are of
roughly similar magnitudes when p � 1

2 , it follows in this case from the cen-
tral limit theorem that N0,n is, for large n, approximately normally distributed. In
particular, when p = 1

2 ,N0,n is approximately normal with mean n2 and variance

Var(N0,n) = 8
n−1∑

i=1

i∑

j=1

j2

= 8
n−1∑

j=1

n−1∑

i=j

j2

= 8
n−1∑

j=1

(n − j)j2

≈ 8
∫ n−1

1
(n − x)x2 dx

≈ 2
3n4

Example 4.25 (The Satisfiability Problem) A Boolean variable x is one that
takes on either of two values: TRUE or FALSE. If xi, i � 1 are Boolean variables,
then a Boolean clause of the form

x1 + x̄2 + x3

is TRUE if x1 is TRUE, or if x2 is FALSE, or if x3 is TRUE. That is, the symbol
“+” means “or” and x̄ is TRUE if x is FALSE and vice versa. A Boolean formula
is a combination of clauses such as

(x1 + x̄2) ∗ (x1 + x3) ∗ (x2 + x̄3) ∗ (x̄1 + x̄2) ∗ (x1 + x2)

In the preceding, the terms between the parentheses represent clauses, and the
formula is TRUE if all the clauses are TRUE, and is FALSE otherwise. For a
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given Boolean formula, the satisfiability problem is either to determine values
for the variables that result in the formula being TRUE, or to determine that the
formula is never true. For instance, one set of values that makes the preceding
formula TRUE is to set x1 = TRUE, x2 = FALSE, and x3 = FALSE.

Consider a formula of the n Boolean variables x1, . . . , xn and suppose that each
clause in this formula refers to exactly two variables. We will now present a prob-
abilistic algorithm that will either find values that satisfy the formula or determine
to a high probability that it is not possible to satisfy it. To begin, start with an arbi-
trary setting of values. Then, at each stage choose a clause whose value is FALSE,
and randomly choose one of the Boolean variables in that clause and change its
value. That is, if the variable has value TRUE then change its value to FALSE,
and vice versa. If this new setting makes the formula TRUE then stop, otherwise
continue in the same fashion. If you have not stopped after n2(1 + 4

√
2
3 ) repeti-

tions, then declare that the formula cannot be satisfied. We will now argue that if
there is a satisfiable assignment then this algorithm will find such an assignment
with a probability very close to 1.

Let us start by assuming that there is a satisfiable assignment of truth values
and let A be such an assignment. At each stage of the algorithm there is a certain
assignment of values. Let Yj denote the number of the n variables whose values at
the j th stage of the algorithm agree with their values in A . For instance, suppose
that n = 3 and A consists of the settings x1 = x2 = x3 = TRUE. If the assignment
of values at the j th step of the algorithm is x1 = TRUE, x2 = x3 = FALSE, then
Yj = 1. Now, at each stage, the algorithm considers a clause that is not satisfied,
thus implying that at least one of the values of the two variables in this clause does
not agree with its value in A . As a result, when we randomly choose one of the
variables in this clause then there is a probability of at least 1

2 that Yj+1 = Yj + 1
and at most 1

2 that Yj+1 = Yj − 1. That is, independent of what has previously
transpired in the algorithm, at each stage the number of settings in agreement with
those in A will either increase or decrease by 1 and the probability of an increase
is at least 1

2 (it is 1 if both variables have values different from their values in A ).
Thus, even though the process Yj , j � 0 is not itself a Markov chain (why not?)
it is intuitively clear that both the expectation and the variance of the number of
stages of the algorithm needed to obtain the values of A will be less than or equal
to the expectation and variance of the number of transitions to go from state 0 to
state n in the Markov chain of Section 4.5.2. Hence, if the algorithm has not yet
terminated because it found a set of satisfiable values different from that of A , it
will do so within an expected time of at most n2 and with a standard deviation of
at most n2√ 2

3 . In addition, since the time for the Markov chain to go from 0 to n

is approximately normal when n is large we can be quite certain that a satisfiable
assignment will be reached by n2 + 4(n2√ 2

3 ) stages, and thus if one has not been
found by this number of stages of the algorithm we can be quite certain that there
is no satisfiable assignment.
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Our analysis also makes it clear why we assumed that there are only two vari-
ables in each clause. For if there were k, k > 2, variables in a clause then as any
clause that is not presently satisfied may have only one incorrect setting, a ran-
domly chosen variable whose value is changed might only increase the number of
values in agreement with A with probability 1/k and so we could only conclude
from our prior Markov chain results that the mean time to obtain the values in
A is an exponential function of n, which is not an efficient algorithm when n is
large. �

4.6. Mean Time Spent in Transient States

Consider now a finite state Markov chain and suppose that the states are numbered
so that T = {1,2, . . . , t} denotes the set of transient states. Let

PT =
⎡

⎢
⎣

P11 P12 · · · P1t

...
...

...
...

Pt1 Pt2 · · · Ptt

⎤

⎥
⎦

and note that since PT specifies only the transition probabilities from transient
states into transient states, some of its row sums are less than 1 (otherwise,
T would be a closed class of states).

For transient states i and j , let sij denote the expected number of time periods
that the Markov chain is in state j , given that it starts in state i. Let δi,j = 1 when
i = j and let it be 0 otherwise. Condition on the initial transition to obtain

sij = δi,j +
∑

k

Pikskj

= δi,j +
t∑

k=1

Pikskj (4.18)

where the final equality follows since it is impossible to go from a recurrent to a
transient state, implying that skj = 0 when k is a recurrent state.

Let S denote the matrix of values sij , i, j = 1, . . . , t . That is,

S =
⎡

⎢
⎣

s11 s12 · · · s1t

...
...

...
...

st1 st2 · · · stt

⎤

⎥
⎦

In matrix notation, Equation (4.18) can be written as

S = I + PT S
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where I is the identity matrix of size t . Because the preceding equation is equiva-
lent to

(I − PT )S = I

we obtain, upon multiplying both sides by (I − PT )−1,

S = (I − PT )−1

That is, the quantities sij , i ∈ T , j ∈ T , can be obtained by inverting the matrix
I − PT . (The existence of the inverse is easily established.)

Example 4.26 Consider the gambler’s ruin problem with p = 0.4 and N = 7.
Starting with 3 units, determine

(a) the expected amount of time the gambler has 5 units,

(b) the expected amount of time the gambler has 2 units.

Solution: The matrix PT , which specifies Pij , i, j ∈ {1,2,3,4,5,6}, is as
follows:

1 2 3 4 5 6

1 0 0.4 0 0 0 0
2 0.6 0 0.4 0 0 0
3 0 0.6 0 0.4 0 0

PT = 4 0 0 0.6 0 0.4 0
5 0 0 0 0.6 0 0.4
6 0 0 0 0 0.6 0

Inverting I − PT gives

S = (I − PT )−1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.6149 1.0248 0.6314 0.3691 0.1943 0.0777
1.5372 2.5619 1.5784 0.9228 0.4857 0.1943
1.4206 2.3677 2.9990 1.7533 0.9228 0.3691
1.2458 2.0763 2.6299 2.9990 1.5784 0.6314
0.9835 1.6391 2.0763 2.3677 2.5619 1.0248
0.5901 0.9835 1.2458 1.4206 1.5372 1.6149

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Hence,

s3,5 = 0.9228, s3,2 = 2.3677 �
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For i ∈ T , j ∈ T , the quantity fij , equal to the probability that the Markov
chain ever makes a transition into state j given that it starts in state i, is easily
determined from PT . To determine the relationship, let us start by deriving an
expression for sij by conditioning on whether state j is ever entered. This yields

sij = E[time in j |start in i, ever transit to j ]fij

+ E[time in j |start in i, never transit to j ](1 − fij )

= (δi,j + sjj )fij + δi,j (1 − fi,j )

= δi,j + fij sjj

since sjj is the expected number of additional time periods spent in state j given
that it is eventually entered from state i. Solving the preceding equation yields

fij = sij − δi,j

sjj

Example 4.27 In Example 4.26, what is the probability that the gambler ever
has a fortune of 1?

Solution: Since s3,1 = 1.4206 and s1,1 = 1.6149, then

f3,1 = s3,1

s1,1
= 0.8797

As a check, note that f3,1 is just the probability that a gambler starting with
3 reaches 1 before 7. That is, it is the probability that the gambler’s fortune will
go down 2 before going up 4; which is the probability that a gambler starting
with 2 will go broke before reaching 6. Therefore,

f3,1 = −1 − (0.6/0.4)2

1 − (0.6/0.4)6
= 0.8797

which checks with our earlier answer. �
Suppose we are interested in the expected time until the Markov chain enters

some sets of states A, which need not be the set of recurrent states. We can reduce
this back to the previous situation by making all states in A absorbing states. That
is, reset the transition probabilities of states in A to satisfy.

Pi,i = 1, i ∈ A

This transforms the states of A into recurrent states, and transforms any state
outside of A from which an eventual transition into A is possible into a transient
state. Thus, our previous approach can be used.
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4.7. Branching Processes

In this section we consider a class of Markov chains, known as branching
processes, which have a wide variety of applications in the biological, sociologi-
cal, and engineering sciences.

Consider a population consisting of individuals able to produce offspring of
the same kind. Suppose that each individual will, by the end of its lifetime,
have produced j new offspring with probability Pj , j � 0, independently of the
numbers produced by other individuals. We suppose that Pj < 1 for all j � 0.
The number of individuals initially present, denoted by X0, is called the size of
the zeroth generation. All offspring of the zeroth generation constitute the first
generation and their number is denoted by X1. In general, let Xn denote the size
of the nth generation. It follows that {Xn,n = 0,1, . . .} is a Markov chain having
as its state space the set of nonnegative integers.

Note that state 0 is a recurrent state, since clearly P00 = 1. Also, if P0 > 0, all
other states are transient. This follows since Pi0 = P i

0 , which implies that starting
with i individuals there is a positive probability of at least P i

0 that no later gener-
ation will ever consist of i individuals. Moreover, since any finite set of transient
states {1,2, . . . , n} will be visited only finitely often, this leads to the important
conclusion that, if P0 > 0, then the population will either die out or its size will
converge to infinity.

Let

μ =
∞∑

j=0

jPj

denote the mean number of offspring of a single individual, and let

σ 2 =
∞∑

j=0

(j − μ)2Pj

be the variance of the number of offspring produced by a single individual.
Let us suppose that X0 = 1, that is, initially there is a single individual present.

We calculate E[Xn] and Var(Xn) by first noting that we may write

Xn =
Xn−1∑

i=1

Zi

where Zi represents the number of offspring of the ith individual of the (n − 1)st
generation. By conditioning on Xn−1, we obtain
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E[Xn] = E[E[Xn|Xn−1]]

= E

[

E

[
Xn−1∑

i=1

Zi |Xn−1

]]

= E[Xn−1μ]
= μE[Xn−1]

where we have used the fact that E[Zi] = μ. Since E[X0] = 1, the preceding
yields

E[X1] = μ,

E[X2] = μE[X1] = μ2,

...

E[Xn] = μE[Xn−1] = μn

Similarly, Var(Xn) may be obtained by using the conditional variance formula

Var(Xn) = E[Var(Xn|Xn−1)] + Var(E[Xn|Xn−1])
Now, given Xn−1,Xn is just the sum of Xn−1 independent random variables each
having the distribution {Pj , j � 0}. Hence,

E[Xn|Xn−1] = Xn−1μ, Var(Xn|Xn−1) = Xn−1σ
2

The conditional variance formula now yields

Var(Xn) = E[Xn−1σ
2] + Var(Xn−1μ)

= σ 2μn−1 + μ2 Var(Xn−1)

= σ 2μn−1 + μ2(σ 2μn−2 + μ2 Var(Xn−2)
)

= σ 2(μn−1 + μn) + μ4 Var(Xn−2)

= σ 2(μn−1 + μn) + μ4(σ 2μn−3 + μ2 Var(Xn−3)
)

= σ 2(μn−1 + μn + μn+1) + μ6 Var(Xn−3)

= · · ·
= σ 2(μn−1 + μn + · · · + μ2n−2) + μ2n Var(X0)

= σ 2(μn−1 + μn + · · · + μ2n−2)
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Therefore,

Var(Xn) =
{

σ 2μn−1
( 1−μn

1−μ

)
, if μ �= 1

nσ 2, if μ = 1
(4.19)

Let π0 denote the probability that the population will eventually die out (under
the assumption that X0 = 1). More formally,

π0 = lim
n→∞P {Xn = 0|X0 = 1}

The problem of determining the value of π0 was first raised in connection with
the extinction of family surnames by Galton in 1889.

We first note that π0 = 1 if μ < 1. This follows since

μn = E[Xn] =
∞∑

j=1

jP {Xn = j}

�
∞∑

j=1

1 · P {Xn = j}

= P {Xn � 1}
Since μn → 0 when μ < 1, it follows that P {Xn � 1} → 0, and hence
P {Xn = 0} → 1.

In fact, it can be shown that π0 = 1 even when μ = 1. When μ > 1, it turns out
that π0 < 1, and an equation determining π0 may be derived by conditioning on
the number of offspring of the initial individual, as follows:

π0 = P {population dies out}

=
∞∑

j=0

P {population dies out|X1 = j}Pj

Now, given that X1 = j , the population will eventually die out if and only if each
of the j families started by the members of the first generation eventually dies
out. Since each family is assumed to act independently, and since the probability
that any particular family dies out is just π0, this yields

P {population dies out|X1 = j} = π
j

0

and thus π0 satisfies

π0 =
∞∑

j=0

π
j

0 Pj (4.20)
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In fact when μ > 1, it can be shown that π0 is the smallest positive number satis-
fying Equation (4.20).

Example 4.28 If P0 = 1
2 , P1 = 1

4 , P2 = 1
4 , then determine π0.

Solution: Since μ = 3
4 � 1, it follows that π0 = 1. �

Example 4.29 If P0 = 1
4 , P1 = 1

4 , P2 = 1
2 , then determine π0.

Solution: π0 satisfies

π0 = 1
4 + 1

4π0 + 1
2π2

0

or

2π2
0 − 3π0 + 1 = 0

The smallest positive solution of this quadratic equation is π0 = 1
2 . �

Example 4.30 In Examples 4.28 and 4.29, what is the probability that the
population will die out if it initially consists of n individuals?

Solution: Since the population will die out if and only if the families of each
of the members of the initial generation die out, the desired probability is πn

0 .
For Example 4.28 this yields πn

0 = 1, and for Example 4.29, πn
0 = ( 1

2 )n. �

4.8. Time Reversible Markov Chains

Consider a stationary ergodic Markov chain (that is, an ergodic Markov chain
that has been in operation for a long time) having transition probabilities Pij and
stationary probabilities πi , and suppose that starting at some time we trace the
sequence of states going backward in time. That is, starting at time n, consider the
sequence of states Xn,Xn−1,Xn−2, . . . . It turns out that this sequence of states is
itself a Markov chain with transition probabilities Qij defined by

Qij = P {Xm = j |Xm+1 = i}

= P {Xm = j,Xm+1 = i}
P {Xm+1 = i}

= P {Xm = j}P {Xm+1 = i|Xm = j}
P {Xm+1 = i}

= πjPji

πi
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To prove that the reversed process is indeed a Markov chain, we must verify that

P {Xm = j |Xm+1 = i,Xm+2,Xm+3, . . .} = P {Xm = j |Xm+1 = i}
To see that this is so, suppose that the present time is m + 1. Now, since
X0,X1,X2, . . . is a Markov chain, it follows that the conditional distribution
of the future Xm+2,Xm+3, . . . given the present state Xm+1 is independent of
the past state Xm. However, independence is a symmetric relationship (that is,
if A is independent of B , then B is independent of A), and so this means that
given Xm+1,Xm is independent of Xm+2,Xm+3, . . . . But this is exactly what we
had to verify.

Thus, the reversed process is also a Markov chain with transition probabilities
given by

Qij = πjPji

πi

If Qij = Pij for all i, j , then the Markov chain is said to be time reversible. The
condition for time reversibility, namely, Qij = Pij , can also be expressed as

πiPij = πjPji for all i, j (4.21)

The condition in Equation (4.21) can be stated that, for all states i and j , the
rate at which the process goes from i to j (namely, πiPij ) is equal to the rate
at which it goes from j to i (namely, πjPji ). It is worth noting that this is an
obvious necessary condition for time reversibility since a transition from i to j

going backward in time is equivalent to a transition from j to i going forward in
time; that is, if Xm = i and Xm−1 = j , then a transition from i to j is observed
if we are looking backward, and one from j to i if we are looking forward in
time. Thus, the rate at which the forward process makes a transition from j to i is
always equal to the rate at which the reverse process makes a transition from i to
j ; if time reversible, this must equal the rate at which the forward process makes
a transition from i to j .

If we can find nonnegative numbers, summing to one, that satisfy Equation
(4.21), then it follows that the Markov chain is time reversible and the numbers
represent the limiting probabilities. This is so since if

xiPij = xjPji for all i, j,
∑

i

xi = 1 (4.22)

then summing over i yields
∑

i

xiPij = xj

∑

i

Pji = xj ,
∑

i

xi = 1

and, because the limiting probabilities πi are the unique solution of the preceding,
it follows that xi = πi for all i.
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Example 4.31 Consider a random walk with states 0,1, . . . ,M and transition
probabilities

Pi,i+1 = αi = 1 − Pi,i−1, i = 1, . . . ,M − 1,

P0,1 = α0 = 1 − P0,0,

PM,M = αM = 1 − PM,M−1

Without the need for any computations, it is possible to argue that this Markov
chain, which can only make transitions from a state to one of its two nearest
neighbors, is time reversible. This follows by noting that the number of transitions
from i to i + 1 must at all times be within 1 of the number from i + 1 to i. This is
so because between any two transitions from i to i+1 there must be one from i+1
to i (and conversely) since the only way to reenter i from a higher state is via state
i + 1. Hence, it follows that the rate of transitions from i to i + 1 equals the rate
from i + 1 to i, and so the process is time reversible.

We can easily obtain the limiting probabilities by equating for each state i =
0,1, . . . ,M − 1 the rate at which the process goes from i to i + 1 with the rate at
which it goes from i + 1 to i. This yields

π0α0 = π1(1 − α1),

π1α1 = π2(1 − α2),

...

πiαi = πi+1(1 − αi+1), i = 0,1, . . . ,M − 1

Solving in terms of π0 yields

π1 = α0

1 − α1
π0,

π2 = α1

1 − α2
π1 = α1α0

(1 − α2)(1 − α1)
π0

and, in general,

πi = αi−1 · · ·α0

(1 − αi) · · · (1 − α1)
π0, i = 1,2, . . . ,M

Since
∑M

0 πi = 1, we obtain

π0

[

1 +
M∑

j=1

αj−1 · · ·α0

(1 − αj ) · · · (1 − α1)

]

= 1
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or

π0 =
[

1 +
M∑

j=1

αj−1 · · ·α0

(1 − αj ) · · · (1 − α1)

]−1

(4.23)

and

πi = αi−1 · · ·α0

(1 − αi) · · · (1 − α1)
π0, i = 1, . . . ,M (4.24)

For instance, if αi ≡ α, then

π0 =
[

1 +
M∑

j=1

(
α

1 − α

)j
]−1

= 1 − β

1 − βM+1

and, in general,

πi = βi(1 − β)

1 − βM+1
, i = 0,1, . . . ,M

where

β = α

1 − α
�

Another special case of Example 4.31 is the following urn model, proposed
by the physicists P. and T. Ehrenfest to describe the movements of molecules.
Suppose that M molecules are distributed among two urns; and at each time point
one of the molecules is chosen at random, removed from its urn, and placed in the
other one. The number of molecules in urn I is a special case of the Markov chain
of Example 4.31 having

αi = M − i

M
, i = 0,1, . . . ,M
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Hence, using Equations (4.23) and (4.24) the limiting probabilities in this case are

π0 =
[

1 +
M∑

j=1

(M − j + 1) · · · (M − 1)M

j (j − 1) · · ·1

]−1

=
[

M∑

j=0

(
M

j

)]−1

=
(

1

2

)M

where we have used the identity

1 =
(

1

2
+ 1

2

)M

=
M∑

j=0

(
M

j

)(
1

2

)M

Hence, from Equation (4.24)

πi =
(

M

i

)(
1

2

)M

, i = 0,1, . . . ,M

Because the preceding are just the binomial probabilities, it follows that in the
long run, the positions of each of the M balls are independent and each one is
equally likely to be in either urn. This, however, is quite intuitive, for if we focus
on any one ball, it becomes quite clear that its position will be independent of the
positions of the other balls (since no matter where the other M − 1 balls are, the
ball under consideration at each stage will be moved with probability 1/M) and
by symmetry, it is equally likely to be in either urn.

Example 4.32 Consider an arbitrary connected graph (see Section 3.6 for
definitions) having a number wij associated with arc (i, j ) for each arc. One in-
stance of such a graph is given by Figure 4.1. Now consider a particle moving
from node to node in this manner: If at any time the particle resides at node i,
then it will next move to node j with probability Pij where

Pij = wij
∑

j wij

and where wij is 0 if (i, j ) is not an arc. For instance, for the graph of Figure 4.1,
P12 = 3/(3 + 1 + 2) = 1

2 .
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Figure 4.1. A connected graph with arc weights.

The time reversibility equations

πiPij = πjPji

reduce to

πi

wij
∑

j wij

= πj

wji
∑

i wji

or, equivalently, since wij = wji

πi
∑

j wij

= πj
∑

i wji

which is equivalent to

πi
∑

j wij

= c

or

πi = c
∑

j

wij

or, since 1 =∑
i πi

πi =
∑

j wij
∑

i

∑
j wij

Because the πis given by this equation satisfy the time reversibility equations, it
follows that the process is time reversible with these limiting probabilities.

For the graph of Figure 4.1 we have that

π1 = 6
32 , π2 = 3

32 , π3 = 6
32 , π4 = 5

32 , π5 = 12
32 �
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If we try to solve Equation (4.22) for an arbitrary Markov chain with states
0,1, . . . ,M , it will usually turn out that no solution exists. For example, from
Equation (4.22),

xiPij = xjPji,

xkPkj = xjPjk

implying (if PijPjk > 0) that

xi

xk

= PjiPkj

PijPjk

which in general need not equal Pki/Pik . Thus, we see that a necessary condition
for time reversibility is that

PikPkjPji = PijPjkPki for all i, j, k (4.25)

which is equivalent to the statement that, starting in state i, the path i → k → j →
i has the same probability as the reversed path i → j → k → i. To understand
the necessity of this, note that time reversibility implies that the rate at which a
sequence of transitions from i to k to j to i occurs must equal the rate of ones
from i to j to k to i (why?), and so we must have

πiPikPkjPji = πiPijPjkPki

implying Equation (4.25) when πi > 0.
In fact, we can show the following.

Theorem 4.2 An ergodic Markov chain for which Pij = 0 whenever Pji = 0
is time reversible if and only if starting in state i, any path back to i has the same
probability as the reversed path. That is, if

Pi,i1Pi1,i2 · · ·Pik,i = Pi,ikPik,ik−1 · · ·Pi1,i (4.26)

for all states i, i1, . . . , ik .

Proof We have already proven necessity. To prove sufficiency, fix states i and j

and rewrite (4.26) as

Pi,i1Pi1,i2 · · ·Pik,jPji = PijPj,ik · · ·Pi1,i

Summing the preceding over all states i1, . . . , ik yields

P k+1
ij Pji = PijP

k+1
ji

Letting k → ∞ yields

πjPji = Pijπi

which proves the theorem. �
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Example 4.33 Suppose we are given a set of n elements, numbered 1 through
n, which are to be arranged in some ordered list. At each unit of time a request is
made to retrieve one of these elements, element i being requested (independently
of the past) with probability Pi . After being requested, the element then is put back
but not necessarily in the same position. In fact, let us suppose that the element
requested is moved one closer to the front of the list; for instance, if the present
list ordering is 1, 3, 4, 2, 5 and element 2 is requested, then the new ordering
becomes 1, 3, 2, 4, 5. We are interested in the long-run average position of the
element requested.

For any given probability vector P = (P1, . . . ,Pn), the preceding can be mod-
eled as a Markov chain with n! states, with the state at any time being the list
order at that time. We shall show that this Markov chain is time reversible and
then use this to show that the average position of the element requested when
this one-closer rule is in effect is less than when the rule of always moving the
requested element to the front of the line is used. The time reversibility of the
resulting Markov chain when the one-closer reordering rule is in effect easily fol-
lows from Theorem 4.2. For instance, suppose n = 3 and consider the following
path from state (1, 2, 3) to itself:

(1,2,3) → (2,1,3) → (2,3,1) → (3,2,1)

→ (3,1,2) → (1,3,2) → (1,2,3)

The product of the transition probabilities in the forward direction is

P2P3P3P1P1P2 = P 2
1 P 2

2 P 2
3

whereas in the reverse direction, it is

P3P3P2P2P1P1 = P 2
1 P 2

2 P 2
3

Because the general result follows in much the same manner, the Markov chain is
indeed time reversible. [For a formal argument note that if fi denotes the number
of times element i moves forward in the path, then as the path goes from a fixed
state back to itself, it follows that element i will also move backward fi times.
Therefore, since the backward moves of element i are precisely the times that it
moves forward in the reverse path, it follows that the product of the transition
probabilities for both the path and its reversal will equal

∏

i

P
fi+ri
i

where ri is equal to the number of times that element i is in the first position and
the path (or the reverse path) does not change states.]
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For any permutation i1, i2, . . . , in of 1,2, . . . , n, let π(i1, i2, . . . , in) denote the
limiting probability under the one-closer rule. By time reversibility we have

Pij+1π(i1, . . . , ij , ij+1, . . . , in) = Pij π(i1, . . . , ij+1, ij , . . . , in) (4.27)

for all permutations.
Now the average position of the element requested can be expressed (as in

Section 3.6.1) as

Average position =
∑

i

PiE[Position of element i]

=
∑

i

Pi

[

1 +
∑

j �=i

P {element j precedes element i}
]

= 1 +
∑

i

∑

j �=i

PiP {ej precedes ei}

= 1 +
∑

i<j

[PiP {ej precedes ei} + PjP {ei precedes ej }]

= 1 +
∑

i<j

[PiP {ej precedes ei} + Pj (1 − P {ej precedes ei})]

= 1 +
∑∑

i<j

(Pi − Pj )P {ej precedes ei} +
∑∑

i<j

Pj

Hence, to minimize the average position of the element requested, we would want
to make P {ej precedes ei} as large as possible when Pj > Pi and as small as pos-
sible when Pi > Pj . Now under the front-of-the-line rule we showed in Section
3.6.1 that

P {ej precedes ei} = Pj

Pj + Pi

(since under the front-of-the-line rule element j will precede element i if and only
if the last request for either i or j was for j ).

Therefore, to show that the one-closer rule is better than the front-of-the-line
rule, it suffices to show that under the one-closer rule

P {ej precedes ei} >
Pj

Pj + Pi

when Pj > Pi

Now consider any state where element i precedes element j , say,
(. . . , i, i1, . . . , ik, j, . . .). By successive transpositions using Equation (4.27),
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we have

π(. . . , i, i1, . . . , ik, j, . . .) =
(

Pi

Pj

)k+1

π(. . . , j, i1, . . . , ik, i, . . .) (4.28)

For instance,

π(1,2,3) = P2

P3
π(1,3,2) = P2

P3

P1

P3
π(3,1,2)

= P2

P3

P1

P3

P1

P2
π(3,2,1) =

(
P1

P3

)2

π(3,2,1)

Now when Pj > Pi , Equation (4.28) implies that

π(. . . , i, i1, . . . , ik, j, . . .) <
Pi

Pj

π(. . . , j, i1, . . . , ik, i, . . .)

Letting α(i,j) = P {ei precedes ej }, we see by summing over all states for which
i precedes j and by using the preceding that

α(i, j) <
Pi

Pj

α(j, i)

which, since α(i, j) = 1 − α(j, i), yields

α(j, i) >
Pj

Pj + Pi

Hence, the average position of the element requested is indeed smaller under the
one-closer rule than under the front-of-the-line rule. �

The concept of the reversed chain is useful even when the process is not time
reversible. To illustrate this, we start with the following proposition whose proof
is left as an exercise.

Proposition 4.6 Consider an irreducible Markov chain with transition prob-
abilities Pij . If we can find positive numbers πi, i � 0, summing to one, and a
transition probability matrix Q = [Qij ] such that

πiPij = πjQji (4.29)

then the Qij are the transition probabilities of the reversed chain and the πi are
the stationary probabilities both for the original and reversed chain.

The importance of the preceding proposition is that, by thinking backward, we
can sometimes guess at the nature of the reversed chain and then use the set of
equations (4.29) to obtain both the stationary probabilities and the Qij .
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Example 4.34 A single bulb is necessary to light a given room. When the
bulb in use fails, it is replaced by a new one at the beginning of the next day. Let
Xn equal i if the bulb in use at the beginning of day n is in its ith day of use (that
is, if its present age is i). For instance, if a bulb fails on day n−1, then a new bulb
will be put in use at the beginning of day n and so Xn = 1. If we suppose that each
bulb, independently, fails on its ith day of use with probability pi, i � 1, then it is
easy to see that {Xn,n � 1} is a Markov chain whose transition probabilities are
as follows:

Pi,1 = P { bulb, on its ith day of use, fails}
= P {life of bulb = i|life of bulb � i}

= P {L = i}
P {L � i}

where L, a random variable representing the lifetime of a bulb, is such that
P {L = i} = pi . Also,

Pi,i+1 = 1 − Pi,1

Suppose now that this chain has been in operation for a long (in theory, an in-
finite) time and consider the sequence of states going backward in time. Since, in
the forward direction, the state is always increasing by 1 until it reaches the age
at which the item fails, it is easy to see that the reverse chain will always decrease
by 1 until it reaches 1 and then it will jump to a random value representing the
lifetime of the (in real time) previous bulb. Thus, it seems that the reverse chain
should have transition probabilities given by

Qi,i−1 = 1, i > 1

Q1,i = pi, i � 1

To check this, and at the same time determine the stationary probabilities, we
must see if we can find, with the Qi,j as previously given, positive numbers {πi}
such that

πiPi,j = πjQj,i

To begin, let j = 1 and consider the resulting equations:

πiPi,1 = π1Q1,i

This is equivalent to

πi

P {L = i}
P {L � i} = π1P {L = i}
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or

πi = π1P {L � i}
Summing over all i yields

1 =
∞∑

i=1

πi = π1

∞∑

i=1

P {L � i} = π1E[L]

and so, for the preceding Qij to represent the reverse transition probabilities, it is
necessary for the stationary probabilities to be

πi = P {L � i}
E[L] , i � 1

To finish the proof that the reverse transition probabilities and stationary proba-
bilities are as given, all that remains is to show that they satisfy

πiPi,i+1 = πi+1Qi+1,i

which is equivalent to

P {L � i}
E[L]

(

1 − P {L = i}
P {L � i}

)

= P {L � i + 1}
E[L]

and which is true since P {L � i} − P {L = i} = P {L � i + 1}. �

4.9. Markov Chain Monte Carlo Methods

Let X be a discrete random vector whose set of possible values is xj , j � 1. Let
the probability mass function of X be given by P {X = xj }, j � 1, and suppose
that we are interested in calculating

θ = E[h(X)] =
∞∑

j=1

h(xj )P {X = xj }

for some specified function h. In situations where it is computationally difficult
to evaluate the function h(xj ), j � 1, we often turn to simulation to approximate
θ . The usual approach, called Monte Carlo simulation, is to use random numbers
to generate a partial sequence of independent and identically distributed random
vectors X1,X2, . . . ,Xn having the mass function P {X = xj }, j � 1 (see Chap-
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ter 11 for a discussion as to how this can be accomplished). Since the strong law
of large numbers yields

lim
n→∞

n∑

i=1

h(Xi )

n
= θ (4.30)

it follows that we can estimate θ by letting n be large and using the average of the
values of h(Xi ), i = 1, . . . , n as the estimator.

It often, however, turns out that it is difficult to generate a random vector having
the specified probability mass function, particularly if X is a vector of dependent
random variables. In addition, its probability mass function is sometimes given in
the form P {X = xj } = Cbj , j � 1, where the bj are specified, but C must be com-
puted, and in many applications it is not computationally feasible to sum the bj so
as to determine C. Fortunately, however, there is another way of using simulation
to estimate θ in these situations. It works by generating a sequence, not of inde-
pendent random vectors, but of the successive states of a vector-valued Markov
chain X1,X2, . . . whose stationary probabilities are P {X = xj }, j � 1. If this can
be accomplished, then it would follow from Proposition 4.3 that Equation (4.30)
remains valid, implying that we can then use

∑n
i=1 h(Xi )/n as an estimator of θ .

We now show how to generate a Markov chain with arbitrary stationary prob-
abilities that may only be specified up to a multiplicative constant. Let b(j),
j = 1,2, . . . be positive numbers whose sum B = ∑∞

j=1 b(j) is finite. The fol-
lowing, known as the Hastings–Metropolis algorithm, can be used to generate a
time reversible Markov chain whose stationary probabilities are

π(j) = b(j)/B, j = 1,2, . . .

To begin, let Q be any specified irreducible Markov transition probability matrix
on the integers, with q(i, j) representing the row i column j element of Q. Now
define a Markov chain {Xn,n � 0} as follows. When Xn = i, generate a random
variable Y such that P {Y = j} = q(i, j), j = 1,2, . . . . If Y = j , then set Xn+1
equal to j with probability α(i, j), and set it equal to i with probability 1−α(i, j).
Under these conditions, it is easy to see that the sequence of states constitutes a
Markov chain with transition probabilities Pi,j given by

Pi,j = q(i, j)α(i, j), if j �= i

Pi,i = q(i, i) +
∑

k �=i

q(i, k)(1 − α(i, k))

This Markov chain will be time reversible and have stationary probabilities π(j)

if

π(i)Pi,j = π(j)Pj,i for j �= i
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which is equivalent to

π(i)q(i, j)α(i, j) = π(j)q(j, i)α(j, i) (4.31)

But if we take πj = b(j)/B and set

α(i, j) = min

(
π(j)q(j, i)

π(i)q(i, j)
,1

)

(4.32)

then Equation (4.31) is easily seen to be satisfied. For if

α(i, j) = π(j)q(j, i)

π(i)q(i, j)

then α(j, i) = 1 and Equation (4.31) follows, and if α(i,j) = 1 then

α(j, i) = π(i)q(i, j)

π(j)q(j, i)

and again Equation (4.31) holds, thus showing that the Markov chain is time re-
versible with stationary probabilities π(j). Also, since π(j) = b(j)/B , we see
from (4.32) that

α(i, j) = min

(
b(j)q(j, i)

b(i)q(i, j)
,1

)

which shows that the value of B is not needed to define the Markov chain, because
the values b(j) suffice. Also, it is almost always the case that π(j), j � 1 will not
only be stationary probabilities but will also be limiting probabilities. (Indeed, a
sufficient condition is that Pi,i > 0 for some i.)

Example 4.35 Suppose that we want to generate a uniformly distributed ele-
ment in S , the set of all permutations (x1, . . . , xn) of the numbers (1, . . . , n) for
which

∑n
j=1jxj > a for a given constant a. To utilize the Hastings–Metropolis

algorithm we need to define an irreducible Markov transition probability matrix
on the state space S . To accomplish this, we first define a concept of “neighbor-
ing” elements of S , and then construct a graph whose vertex set is S . We start
by putting an arc between each pair of neighboring elements in S , where any two
permutations in S are said to be neighbors if one results from an interchange of
two of the positions of the other. That is, (1, 2, 3, 4) and (1, 2, 4, 3) are neighbors
whereas (1, 2, 3, 4) and (1, 3, 4, 2) are not. Now, define the q transition probabil-
ity function as follows. With N(s) defined as the set of neighbors of s, and |N(s)|
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equal to the number of elements in the set N(s), let

q(s, t) = 1

|N(s)| if t ∈ N(s)

That is, the candidate next state from s is equally likely to be any of its neigh-
bors. Since the desired limiting probabilities of the Markov chain are π(s) = C, it
follows that π(s) = π(t), and so

α(s, t) = min(|N(s)|/|N(t)|,1)

That is, if the present state of the Markov chain is s then one of its neighbors is
randomly chosen, say, t. If t is a state with fewer neighbors than s (in graph theory
language, if the degree of vertex t is less than that of vertex s), then the next state
is t. If not, a uniform (0,1) random number U is generated and the next state is t if
U < |(N(s)|/|N(t)| and is s otherwise. The limiting probabilities of this Markov
chain are π(s) = 1/|S |, where |S | is the (unknown) number of permutations
in S . �

The most widely used version of the Hastings–Metropolis algorithm is the
Gibbs sampler. Let X = (X1, . . . ,Xn) be a discrete random vector with proba-
bility mass function p(x) that is only specified up to a multiplicative constant,
and suppose that we want to generate a random vector whose distribution is that
of X. That is, we want to generate a random vector having mass function

p(x) = Cg(x)

where g(x) is known, but C is not. Utilization of the Gibbs sampler assumes that
for any i and values xj , j �= i, we can generate a random variable X having the
probability mass function

P {X = x} = P {Xi = x|Xj = xj , j �= i}

It operates by using the Hasting–Metropolis algorithm on a Markov chain with
states x = (x1, . . . , xn), and with transition probabilities defined as follows.
Whenever the present state is x, a coordinate that is equally likely to be any of
1, . . . , n is chosen. If coordinate i is chosen, then a random variable X with prob-
ability mass function P {X = x} = P {Xi = x|Xj = xj , j �= i} is generated. If
X = x, then the state y = (x1, . . . xi−1, x, xi+1, . . . , xn), is considered as the can-
didate next state. In other words, with x and y as given, the Gibbs sampler uses
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the Hastings–Metropolis algorithm with

q(x,y) = 1

n
P {Xi = x|Xj = xj , j �= i} = p(y)

nP {Xj = xj , j �= i}
Because we want the limiting mass function to be p, we see from Equation (4.32)
that the vector y is then accepted as the new state with probability

α(x,y) = min

(
p(y)q(y,x)

p(x)q(x,y)
,1

)

= min

(
p(y)p(x)

p(x)p(y)
,1

)

= 1

Hence, when utilizing the Gibbs sampler, the candidate state is always accepted
as the next state of the chain.

Example 4.36 Suppose that we want to generate n uniformly distributed
points in the circle of radius 1 centered at the origin, conditional on the event
that no two points are within a distance d of each other, when the probability of
this conditioning event is small. This can be accomplished by using the Gibbs
sampler as follows. Start with any n points x1, . . . ,xn in the circle that have the
property that no two of them are within d of the other; then generate the value
of I , equally likely to be any of the values 1, . . . , n. Then continually generate a
random point in the circle until you obtain one that is not within d of any of the
other n − 1 points excluding xI . At this point, replace xI by the generated point
and then repeat the operation. After a large number of iterations of this algorithm,
the set of n points will approximately have the desired distribution. �

Example 4.37 Let Xi, i = 1, . . . , n, be independent exponential random vari-
ables with respective rates λi, i = 1, . . . , n. Let S =∑n

i=1 Xi , and suppose that we
want to generate the random vector X = (X1, . . . ,Xn), conditional on the event
that S > c for some large positive constant c. That is, we want to generate the
value of a random vector whose density function is

f (x1, . . . , xn) = 1

P {S > c}
n∏

i=1

λie
−λixi , xi � 0,

n∑

i=1

xi > c

This is easily accomplished by starting with an initial vector x = (x1, . . . , xn)

satisfying xi > 0, i = 1, . . . , n,
∑n

i=1 xi > c. Then generate a random variable I

that is equally likely to be any of 1, . . . , n. Next, generate an exponential random
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variable X with rate λI conditional on the event that X + ∑
j �=I xj > c. This

latter step, which calls for generating the value of an exponential random variable
given that it exceeds c −∑

j �=I xj , is easily accomplished by using the fact that
an exponential conditioned to be greater than a positive constant is distributed
as the constant plus the exponential. Consequently, to obtain X, first generate an
exponential random variable Y with rate λI , and then set

X = Y +
(

c −
∑

j �=I

xj

)+

The value of xI should then be reset as X and a new iteration of the algorithm
begun. �

Remark As can be seen by Examples 4.36 and 4.37, although the theory for
the Gibbs sampler was represented under the assumption that the distribution to
be generated was discrete, it also holds when this distribution is continuous.

4.10. Markov Decision Processes

Consider a process that is observed at discrete time points to be in any one of
M possible states, which we number by 1,2, . . . ,M . After observing the state of
the process, an action must be chosen, and we let A, assumed finite, denote the
set of all possible actions.

If the process is in state i at time n and action a is chosen, then the next state
of the system is determined according to the transition probabilities Pij (a). If we
let Xn denote the state of the process at time n and an the action chosen at time
n, then the preceding is equivalent to stating that

P {Xn+1 = j |X0, a0,X1, a1, . . . ,Xn = i, an = a} = Pij (a)

Thus, the transition probabilities are functions only of the present state and the
subsequent action.

By a policy, we mean a rule for choosing actions. We shall restrict ourselves
to policies which are of the form that the action they prescribe at any time de-
pends only on the state of the process at that time (and not on any informa-
tion concerning prior states and actions). However, we shall allow the policy
to be “randomized” in that its instructions may be to choose actions accord-
ing to a probability distribution. In other words, a policy β is a set of numbers
β = {βi(a), a ∈ A, i = 1, . . . ,M} with the interpretation that if the process is in
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state i, then action a is to be chosen with probability βi(a). Of course, we need
have that

0 � βi(a) � 1, for all i, a

∑

a

βi(a) = 1, for all i

Under any given policy β , the sequence of states {Xn, n = 0,1, . . .} constitutes
a Markov chain with transition probabilities Pij (β) given by

Pij (β) = Pβ{Xn+1 = j |Xn = i}∗

=
∑

a

Pij (a)βi(a)

where the last equality follows by conditioning on the action chosen when in
state i. Let us suppose that for every choice of a policy β , the resultant Markov
chain {Xn, n = 0,1, . . .} is ergodic.

For any policy β , let πia denote the limiting (or steady-state) probability that
the process will be in state i and action a will be chosen if policy β is employed.
That is,

πia = lim
n→∞Pβ{Xn = i, an = a}

The vector π = (πia) must satisfy

(i) πia � 0 for all i, a,
(ii)

∑
i

∑
a πia = 1,

(iii)
∑

a πja =∑
i

∑
a πiaPij (a) for all j (4.33)

Equations (i) and (ii) are obvious, and Equation (iii) which is an analogue of
Equation (4.7) follows as the left-hand side equals the steady-state probability
of being in state j and the right-hand side is the same probability computed by
conditioning on the state and action chosen one stage earlier.

Thus for any policy β , there is a vector π = (πia) which satisfies (i)–(iii) and
with the interpretation that πia is equal to the steady-state probability of being
in state i and choosing action a when policy β is employed. Moreover, it turns
out that the reverse is also true. Namely, for any vector π = (πia) which satisfies
(i)–(iii), there exists a policy β such that if β is used, then the steady-state proba-
bility of being in i and choosing action a equals πia . To verify this last statement,

∗We use the notation Pβ to signify that the probability is conditional on the fact that policy β is
used.
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suppose that π = (πia) is a vector which satisfies (i)–(iii). Then, let the policy
β = (βi(a)) be

βi(a) = P {β chooses a|state is i}
= πia
∑

a πia

Now let Pia denote the limiting probability of being in i and choosing a when
policy β is employed. We need to show that Pia = πia . To do so, first note that
{Pia, i = 1, . . . ,M , a ∈ A} are the limiting probabilities of the two-dimensional
Markov chain {(Xn, an), n � 0}. Hence, by the fundamental Theorem 4.1, they
are the unique solution of

(i′) Pia � 0,
(ii′)

∑
i

∑
a Pia = 1,

(iii′) Pja =∑
i

∑
a′ Pia′Pij (a

′)βj (a)

where (iii′) follows since

P {Xn+1 = j, an+1 = a|Xn = i, an = a′} = Pij (a
′)βj (a)

Since

βj (a) = πja
∑

a πja

we see that (Pia) is the unique solution of

Pia � 0,

∑

i

∑

a

Pia = 1,

Pja =
∑

i

∑

a′
Pia′Pij (a

′)
πja

∑
a πja

Hence, to show that Pia = πia , we need show that

πia � 0,

∑

i

∑

a

πia = 1,

πja =
∑

i

∑

a′
πia′Pij (a

′)
πja

∑
a πja
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The top two equations follow from (i) and (ii) of Equation (4.33), and the third,
which is equivalent to

∑

a

πja =
∑

i

∑

a′
πia′Pij (a

′)

follows from condition (iii) of Equation (4.33).
Thus we have shown that a vector β = (πia) will satisfy (i), (ii), and (iii) of

Equation (4.33) if and only if there exists a policy β such that πia is equal to the
steady-state probability of being in state i and choosing action a when β is used.
In fact, the policy β is defined by β i (a) = πia/

∑
a πia .

The preceding is quite important in the determination of “optimal” policies.
For instance, suppose that a reward R(i, a) is earned whenever action a is chosen
in state i. Since R(Xi, ai) would then represent the reward earned at time i, the
expected average reward per unit time under policy β can be expressed as

expected average reward under β = lim
n→∞Eβ

[∑n
i=1R(Xi, ai)

n

]

Now, if πia denotes the steady-state probability of being in state i and choosing
action a, it follows that the limiting expected reward at time n equals

lim
n→∞E[R(Xn,an)] =

∑

i

∑

a

πiaR(i, a)

which implies that

expected average reward under β =
∑

i

∑

a

πiaR(i, a)

Hence, the problem of determining the policy that maximizes the expected aver-
age reward is

maximize
π=(πia)

∑

i

∑

a

πiaR(i, a)

subject to πia � 0, for all i, a,

∑

i

∑

a

πia = 1,

∑

a

πja =
∑

i

∑

a

πiaPij (a), for all j (4.34)

However, the preceding maximization problem is a special case of what is known
as a linear program and can be solved by a standard linear programming algorithm
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known as the simplex algorithm.∗ If β∗ = (π∗
ia) maximizes the preceding, then the

optimal policy will be given by β∗ where

β∗
i (a) = π∗

ia∑
a π∗

ia

Remarks (i) It can be shown that there is a π∗ maximizing Equation (4.34)
that has the property that for each i, π∗

ia is zero for all but one value of a, which
implies that the optimal policy is nonrandomized. That is, the action it prescribes
when in state i is a deterministic function of i.

(ii) The linear programming formulation also often works when there are re-
strictions placed on the class of allowable policies. For instance, suppose there is
a restriction on the fraction of time the process spends in some state, say, state
1. Specifically, suppose that we are allowed to consider only policies having the
property that their use results in the process being in state 1 less than 100α percent
of time. To determine the optimal policy subject to this requirement, we add to the
linear programming problem the additional constraint

∑

a

π1a � α

since
∑

a π1a represents the proportion of time that the process is in state 1.

4.11. Hidden Markov Chains

Let {Xn, n = 1,2, . . .} be a Markov chain with transition probabilities Pi,j and
initial state probabilities pi = P {X1 = i}, i � 0. Suppose that there is a finite set
S of signals, and that a signal from S is emitted each time the Markov chain
enters a state. Further, suppose that when the Markov chain enters state j then,
independently of previous Markov chain states and signals, the signal emitted is s

with probability p(s|j),
∑

s∈S p(s|j) = 1. That is, if Sn represents the nth signal
emitted, then

P {S1 = s|X1 = j} = p(s|j),

P {Sn = s|X1, S1, . . . ,Xn−1, Sn−1,Xn = j} = p(s|j)

A model of the preceding type in which the sequence of signals S1, S2, . . . is
observed, while the sequence of underlying Markov chain states X1,X2, . . . is
unobserved, is called a hidden Markov chain model.

∗It is called a linear program since the objective function
∑

i

∑
a R(i, a)πia and the constraints are

all linear functions of the πia . For a heuristic analysis of the simplex algorithm, see 4.5.2.
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Example 4.38 Consider a production process that in each period is either
in a good state (state 1) or in a poor state (state 2). If the process is in state 1
during a period then, independent of the past, with probability 0.9 it will be in
state 1 during the next period and with probability 0.1 it will be in state 2. Once in
state 2, it remains in that state forever. Suppose that a single item is produced each
period and that each item produced when the process is in state 1 is of acceptable
quality with probability 0.99, while each item produced when the process is in
state 2 is of acceptable quality with probability 0.96.

If the status, either acceptable or unacceptable, of each successive item is ob-
served, while the process states are unobservable, then the preceding is a hidden
Markov chain model. The signal is the status of the item produced, and has value
either a or u, depending on whether the item is acceptable or unacceptable. The
signal probabilities are

p(u|1) = 0.01, p(a|1) = 0.99,

p(u|2) = 0.04, p(a|2) = 0.96

while the transition probabilities of the underlying Markov chain are

P1,1 = 0.9 = 1 − P1,2, P2,2 = 1 �

Although {Sn,n � 1} is not a Markov chain, it should be noted that, conditional
on the current state Xn, the sequence Sn,Xn+1, Sn+1, . . . of future signals and
states is independent of the sequence X1, S1, . . . ,Xn−1, Sn−1 of past states and
signals.

Let Sn = (S1, . . . , Sn) be the random vector of the first n signals. For a fixed
sequence of signals s1, . . . , sn, let sk = (s1, . . . , sk), k � n. To begin, let us deter-
mine the conditional probability of the Markov chain state at time n given that
Sn = sn. To obtain this probability, let

Fn(j) = P {Sn = sn,Xn = j}

and note that

P {Xn = j |Sn = sn} = P {Sn = sn,Xn = j}
P {Sn = sn}

= Fn(j)
∑

i Fn(i)
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Now,

Fn(j) = P {Sn−1 = sn−1, Sn = sn,Xn = j}
=
∑

i

P {Sn−1 = sn−1,Xn−1 = i,Xn = j, Sn = sn}

=
∑

i

Fn−1(i)P {Xn = j, Sn = sn|Sn−1 = sn−1,Xn−1 = i}

=
∑

i

Fn−1(i)P {Xn = j, Sn = sn|Xn−1 = i}

=
∑

i

Fn−1(i)Pi,jp(sn|j)

= p(sn|j)
∑

i

Fn−1(i)Pi,j (4.35)

where the preceding used that

P {Xn = j, Sn = sn|Xn−1 = i}
= P {Xn = j |Xn−1 = i} × P {Sn = sn|Xn = j,Xn−1 = i}
= Pi,jP {Sn = sn|Xn = j}
= Pi,jp(sn|j)

Starting with

F1(i) = P {X1 = i, S1 = s1} = pip(s1|i)

we can use Equation (4.35) to recursively determine the functions F2(i),

F3(i), . . . , up to Fn(i).

Example 4.39 Suppose in Example 4.38 that P {X1 = 1} = 0.8. Given that
the successive conditions of the first 3 items produced are a,u, a,

(i) what is the probability that the process was in its good state when the third
item was produced;

(ii) what is the probability that X4 is 1;

(iii) what is the probability that the next item produced is acceptable?



4.11. Hidden Markov Chains 259

Solution: With s3 = (a,u, a), we have

F1(1) = (0.8)(0.99) = 0.792,

F1(2) = (0.2)(0.96) = 0.192

F2(1) = 0.01[0.792(0.9) + 0.192(0)] = 0.007128,

F2(2) = 0.04[0.792(0.1) + (0.192)(1)] = 0.010848

F3(1) = 0.99[(0.007128)(0.9)] ≈ 0.006351,

F3(2) = 0.96[(0.007128)(0.1) + 0.010848] ≈ 0.011098

Therefore, the answer to part (i) is

P {X3 = 1|s3} ≈ 0.006351

0.006351 + 0.011098
≈ 0.364

To compute P {X4 = 1|s3}, condition on X3 to obtain

P {X4 = 1|s3} = P {X4 = 1|X3 = 1, s3}P {X3 = 1|s3}
+ P {X4 = 1|X3 = 2, s3}P {X3 = 2|s3}

= P {X4 = 1|X3 = 1, s3}(0.364) + P {X4 = 1|X3 = 2, s3}(0.636)

= 0.364P1,1 + 0.636P2,1

= 0.3276

To compute P {S4 = a|s3}, condition on X4

P {S4 = a|s3} = P {S4 = a|X4 = 1, s3}P {X4 = 1|s3}
+ P {S4 = a|X4 = 2, s3}P {X4 = 2|s3}

= P {S4 = a|X4 = 1}(0.3276) + P {S4 = a|X4 = 2}(1 − 0.3276)

= (0.99)(0.3276) + (0.96)(0.6724) = 0.9698 �
To compute P {Sn = sn}, use the identity P {Sn = sn} =∑

i Fn(i) along with the
recursion (4.35). If there are N states of the Markov chain, this requires computing
nN quantities Fn(i), with each computation requiring a summation over N terms.
This can be compared with a computation of P {Sn = sn} based on conditioning
on the first n states of the Markov chain to obtain

P {Sn = sn} =
∑

i1,...,in

P {Sn = sn|X1 = i1, . . . ,Xn = in}P {X1 = i1, . . . ,Xn = in}

=
∑

i1,...,in

p(s1|i1) · · ·p(sn|in)pi1Pi1,i2Pi2,i3 · · ·Pin−1,in
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The use of the preceding identity to compute P {Sn = sn} would thus require a
summation over Nn terms, with each term being a product of 2n values, indicating
that it is not competitive with the previous approach.

The computation of P {Sn = sn} by recursively determining the functions Fk(i)

is known as the forward approach. There also is a backward approach, which is
based on the quantities Bk(i), defined by

Bk(i) = P {Sk+1 = sk+1, . . . , Sn = sn|Xk = i}

A recursive formula for Bk(i) can be obtained by conditioning on Xk+1.

Bk(i) =
∑

j

P {Sk+1 = sk+1, . . . , Sn = sn|Xk = i,Xk+1 = j}P {Xk+1 = j |Xk = i}

=
∑

j

P {Sk+1 = sk+1, . . . , Sn = sn|Xk+1 = j}Pi,j

=
∑

j

P {Sk+1 = sk+1|Xk+1 = j}

× P {Sk+2 = sk+2, . . . , Sn = sn|Sk+1 = sk+1,Xk+1 = j}Pi,j

=
∑

j

p(sk+1|j)P {Sk+2 = sk+2, . . . , Sn = sn|Xk+1 = j}Pi,j

=
∑

j

p(sk+1|j)Bk+1(j)Pi,j (4.36)

Starting with

Bn−1(i) = P {Sn = sn|Xn−1 = i}
=
∑

j

Pi,jp(sn|j)

we would then use Equation (4.36) to determine the function Bn−2(i), then
Bn−3(i), and so on, down to B1(i). This would then yield P {Sn = sn} via

P {Sn = sn} =
∑

i

P {S1 = s1, . . . , Sn = sn|X1 = i}pi

=
∑

i

P {S1 = s1|X1 = i}P {S2 = s2, . . . , Sn = sn|S1 = s1,X1 = i}pi
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=
∑

i

p(s1|i)P {S2 = s2, . . . , Sn = sn|X1 = i}pi

=
∑

i

p(s1|i)B1(i)pi

Another approach to obtaining P {Sn = sn} is to combine both the forward and
backward approaches. Suppose that for some k we have computed both functions
Fk(j) and Bk(j). Because

P {Sn = sn, Xk = j} = P {Sk = sk, Xk = j}
× P {Sk+1 = sk+1, . . . , Sn = sn|Sk = sk, Xk = j}

= P {Sk = sk, Xk = j}P {Sk+1 = sk+1, . . . , Sn = sn|Xk = j}
= Fk(j)Bk(j)

we see that

P {Sn = sn} =
∑

j

Fk(j)Bk(j)

The beauty of using the preceding identity to determine P {Sn = sn} is that we
may simultaneously compute the sequence of forward functions, starting with
F1, as well as the sequence of backward functions, starting at Bn−1. The parallel
computations can then be stopped once we have computed both Fk and Bk for
some k.

4.11.1. Predicting the States

Suppose the first n observed signals are sn = (s1, . . . , sn), and that given this data
we want to predict the first n states of the Markov chain. The best predictor de-
pends on what we are trying to accomplish. If our objective is to maximize the
expected number of states that are correctly predicted, then for each k = 1, . . . , n

we need to compute P {Xk = j |Sn = sn} and then let the value of j that maximizes
this quantity be the predictor of Xk . (That is, we take the mode of the conditional
probability mass function of Xk, given the sequence of signals, as the predictor of
Xk.) To do so, we must first compute this conditional probability mass function,
which is accomplished as follows. For k � n

P {Xk = j |Sn = sn} = P {Sn = sn,Xk = j}
P {Sn = sn}

= Fk(j)Bk(j)
∑

j Fk(j)Bk(j)

Thus, given that Sn = sn, the optimal predictor of Xk is the value of j that maxi-
mizes Fk(j)Bk(j).
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A different variant of the prediction problem arises when we regard the se-
quence of states as a single entity. In this situation, our objective is to choose that
sequence of states whose conditional probability, given the sequence of signals, is
maximal. For instance, in signal processing, while X1, . . . ,Xn might be the actual
message sent, S1, . . . , Sn would be what is received, and so the objective would
be to predict the actual message in its entirety.

Letting Xk = (X1, . . . ,Xk) be the vector of the first k states, the problem
of interest is to find the sequence of states i1, . . . , in that maximizes P {Xn =
(i1, . . . , in)|Sn = sn}. Because

P {Xn = (i1, . . . , in)|Sn = sn} = P {Xn = (i1, . . . , in),Sn = sn}
P {Sn = ss}

this is equivalent to finding the sequence of states i1, . . . , in that maximizes
P {Xn = (i1, . . . , in), Sn = sn}.

To solve the preceding problem let, for k � n,

Vk(j) = max
i1,...,ik−1

P {Xk−1 = (i1, . . . , ik−1),Xk = j,Sk = sk}

To recursively solve for Vk(j), use that

Vk(j) = max
i

max
i1,...,ik−2

P {Xk−2 = (i1, . . . , ik−2),Xk−1 = i,Xk = j,Sk = sk}

= max
i

max
i1,...,ik−2

P {Xk−2 = (i1, . . . , ik−2),Xk−1 = i,Sk−1 = sk−1,

Xk = j, Sk = sk}

= max
i

max
i1,...,ik−2

P {Xk−2 = (i1, . . . , ik−2),Xk−1 = i,Sk−1 = sk−1}

× P {Xk = j, Sk = sk|Xk−2 = (i1, . . . , ik−2),Xk−1 = i,Sk−1 = sk−1}
= max

i
max

i1,...,ik−2
P {Xk−2 = (i1, . . . , ik−2),Xk−1 = i,Sk−1 = sk−1}

× P {Xk = j, Sk = sk|Xk−1 = i}
= max

i
P {Xk = j, Sk = sk|Xk−1 = i}

× max
i1,...,ik−2

P {Xk−2 = (i1, . . . , ik−2),Xk−1 = i,Sk−1 = sk−1}

= max
i

Pi,jp(sk|j)Vk−1(i)

= p(sk|j)max
i

Pi,jVk−1(i) (4.37)
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Starting with

V1(j) = P {X1 = j, S1 = s1} = pjp(s1|j)

we now use the recursive identity (4.37) to determine V2(j) for each j ; then V3(j)

for each j ; and so on, up to Vn(j) for each j .
To obtain the maximizing sequence of states, we work in the reverse direction.

Let jn be the value (or any of the values if there are more than one) of j that
maximizes Vn(j). Thus jn is the final state of a maximizing state sequence. Also,
for k < n, let ik(j) be a value of i that maximizes Pi,jVk(i). Then

max
i1,...,in

P {Xn = (i1, . . . , in),Sn = sn}

= max
j

Vn(j)

= Vn(jn)

= max
i1,...,in−1

P {Xn = (i1, . . . , in−1, jn),Sn = sn}

= p(sn|jn)max
i

Pi,jnVn−1(i)

= p(sn|jn)Pin−1(jn),jnVn−1(in−1(jn))

Thus, in−1(jn) is the next to last state of the maximizing sequence. Continu-
ing in this manner, the second from the last state of the maximizing sequence
is in−2(in−1(jn)), and so on.

The preceding approach to finding the most likely sequence of states given a
prescribed sequence of signals is known as the Viterbi Algorithm.

Exercises

*1. Three white and three black balls are distributed in two urns in such a way
that each contains three balls. We say that the system is in state i, i = 0,1,2,3,
if the first urn contains i white balls. At each step, we draw one ball from each
urn and place the ball drawn from the first urn into the second, and conversely
with the ball from the second urn. Let Xn denote the state of the system after the
nth step. Explain why {Xn,n = 0,1,2, . . .} is a Markov chain and calculate its
transition probability matrix.

2. Suppose that whether or not it rains today depends on previous weather con-
ditions through the last three days. Show how this system may be analyzed by
using a Markov chain. How many states are needed?
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3. In Exercise 2, suppose that if it has rained for the past three days, then it
will rain today with probability 0.8; if it did not rain for any of the past three days,
then it will rain today with probability 0.2; and in any other case the weather today
will, with probability 0.6, be the same as the weather yesterday. Determine P for
this Markov chain.

*4. Consider a process {Xn,n = 0,1, . . .} which takes on the values 0, 1, or 2.
Suppose

P {Xn+1 = j |Xn = i,Xn−1 = in−1, . . . ,X0 = i0}

=
{

P I
ij , when n is even

P II
ij , when n is odd

where
∑2

j=0 P I
ij = ∑2

j=0P
II
ij = 1, i = 0,1,2. Is {Xn,n � 0} a Markov chain?

If not, then show how, by enlarging the state space, we may transform it into a
Markov chain.

5. A Markov chain {Xn,n � 0} with states 0,1,2, has the transition probability
matrix

⎡

⎢
⎣

1
2

1
3

1
6

0 1
3

2
3

1
2 0 1

2

⎤

⎥
⎦

If P {X0 = 0} = P {X0 = 1} = 1
4 , find E[X3].

6. Let the transition probability matrix of a two-state Markov chain be given, as
in Example 4.2, by

P =
∥
∥
∥
∥

p 1 − p

1 − p p

∥
∥
∥
∥

Show by mathematical induction that

P(n) =
∥
∥
∥
∥
∥

1
2 + 1

2 (2p − 1)n 1
2 − 1

2 (2p − 1)n

1
2 − 1

2 (2p − 1)n 1
2 + 1

2 (2p − 1)n

∥
∥
∥
∥
∥

7. In Example 4.4 suppose that it has rained neither yesterday nor the day before
yesterday. What is the probability that it will rain tomorrow?

8. Suppose that coin 1 has probability 0.7 of coming up heads, and coin 2 has
probability 0.6 of coming up heads. If the coin flipped today comes up heads, then
we select coin 1 to flip tomorrow, and if it comes up tails, then we select coin 2 to
flip tomorrow. If the coin initially flipped is equally likely to be coin 1 or coin 2,
then what is the probability that the coin flipped on the third day after the initial
flip is coin 1?
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9. Suppose in Exercise 8 that the coin flipped on Monday comes up heads. What
is the probability that the coin flipped on Friday of the same week also comes up
heads?

10. In Example 4.3, Gary is currently in a cheerful mood. What is the probability
that he is not in a glum mood on any of the following three days?

11. In Example 4.3, Gary was in a glum mood four days ago. Given that he
hasn’t felt cheerful in a week, what is the probability he is feeling glum today?

12. For a Markov chain {Xn,n � 0} with transition probabilities Pi,j , consider
the conditional probability that Xn = m given that the chain started at time 0 in
state i and has not yet entered state r by time n, where r is a specified state not
equal to either i or m. We are interested in whether this conditional probability
is equal to the n stage transition probability of a Markov chain whose state space
does not include state r and whose transition probabilities are

Qi,j = Pi,j

1 − Pi,r

, i, j �= r

Either prove the equality

P {Xn = m|X0 = i,Xk �= r, k = 1, . . . , n} = Qn
i,m

or construct a counterexample.

13. Let P be the transition probability matrix of a Markov chain. Argue that if
for some positive integer r , Pr has all positive entries, then so does Pn, for all
integers n � r .

14. Specify the classes of the following Markov chains, and determine whether
they are transient or recurrent:

P1 =

∥
∥
∥
∥
∥
∥
∥

0 1
2

1
2

1
2 0 1

2
1
2

1
2 0

∥
∥
∥
∥
∥
∥
∥

, P2 =

∥
∥
∥
∥
∥
∥
∥
∥
∥

0 0 0 1

0 0 0 1
1
2

1
2 0 0

0 0 1 0

∥
∥
∥
∥
∥
∥
∥
∥
∥

,

P3 =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

1
2 0 1

2 0 0
1
4

1
2

1
4 0 0

1
2 0 1

2 0 0

0 0 0 1
2

1
2

0 0 0 1
2

1
2

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

, P4 =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

1
4

3
4 0 0 0

1
2

1
2 0 0 0

0 0 1 0 0

0 0 1
3

2
3 0

1 0 0 0 0

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

15. Prove that if the number of states in a Markov chain is M , and if state j can
be reached from state i, then it can be reached in M steps or less.



266 4 Markov Chains

*16. Show that if state i is recurrent and state i does not communicate with
state j , then Pij = 0. This implies that once a process enters a recurrent class
of states it can never leave that class. For this reason, a recurrent class is often
referred to as a closed class.

17. For the random walk of Example 4.15 use the strong law of large numbers
to give another proof that the Markov chain is transient when p �= 1

2 .

Hint: Note that the state at time n can be written as
∑n

i=1Yi where the Yis
are independent and P {Yi = 1} = p = 1 − P {Yi = −1}. Argue that if p > 1

2 ,
then, by the strong law of large numbers,

∑n
1Yi → ∞ as n → ∞ and hence

the initial state 0 can be visited only finitely often, and hence must be transient.
A similar argument holds when p < 1

2 .

18. Coin 1 comes up heads with probability 0.6 and coin 2 with probability 0.5.
A coin is continually flipped until it comes up tails, at which time that coin is put
aside and we start flipping the other one.

(a) What proportion of flips use coin 1?
(b) If we start the process with coin 1 what is the probability that coin 2 is used
on the fifth flip?

19. For Example 4.4, calculate the proportion of days that it rains.

20. A transition probability matrix P is said to be doubly stochastic if the sum
over each column equals one; that is,

∑

i

Pij = 1, for all j

If such a chain is irreducible and aperiodic and consists of M + 1 states
0,1, . . . ,M , show that the limiting probabilities are given by

πj = 1

M + 1
, j = 0,1, . . . ,M

*21. A DNA nucleotide has any of 4 values. A standard model for a mutational
change of the nucleotide at a specific location is a Markov chain model that sup-
poses that in going from period to period the nucleotide does not change with
probability 1 − 3α, and if it does change then it is equally likely to change to any
of the other 3 values, for some 0 < α < 1

3 .

(a) Show that P n
1,1 = 1

4 + 3
4 (1 − 4α)n.

(b) What is the long run proportion of time the chain is in each state?

22. Let Yn be the sum of n independent rolls of a fair die. Find

lim
n→∞P {Yn is a multiple of 13}



Exercises 267

Hint: Define an appropriate Markov chain and apply the results of Exer-
cise 20.

23. Trials are performed in sequence. If the last two trials were successes, then
the next trial is a success with probability 0.8; otherwise the next trial is a success
with probability 0.5. In the long run, what proportion of trials are successes?

24. Consider three urns, one colored red, one white, and one blue. The red urn
contains 1 red and 4 blue balls; the white urn contains 3 white balls, 2 red balls,
and 2 blue balls; the blue urn contains 4 white balls, 3 red balls, and 2 blue balls.
At the initial stage, a ball is randomly selected from the red urn and then returned
to that urn. At every subsequent stage, a ball is randomly selected from the urn
whose color is the same as that of the ball previously selected and is then returned
to that urn. In the long run, what proportion of the selected balls are red? What
proportion are white? What proportion are blue?

25. Each morning an individual leaves his house and goes for a run. He is
equally likely to leave either from his front or back door. Upon leaving the house,
he chooses a pair of running shoes (or goes running barefoot if there are no shoes
at the door from which he departed). On his return he is equally likely to enter,
and leave his running shoes, either by the front or back door. If he owns a total of
k pairs of running shoes, what proportion of the time does he run barefooted?

26. Consider the following approach to shuffling a deck of n cards. Starting
with any initial ordering of the cards, one of the numbers 1,2, . . . , n is randomly
chosen in such a manner that each one is equally likely to be selected. If number
i is chosen, then we take the card that is in position i and put it on top of the
deck—that is, we put that card in position 1. We then repeatedly perform the
same operation. Show that, in the limit, the deck is perfectly shuffled in the sense
that the resultant ordering is equally likely to be any of the n! possible orderings.

*27. Determine the limiting probabilities πj for the model presented in Exer-
cise 1. Give an intuitive explanation of your answer.

28. For a series of dependent trials the probability of success on any trial is
(k + 1)/(k + 2) where k is equal to the number of successes on the previous two
trials. Compute limn→∞ P {success on the nth trial}.
29. An organization has N employees where N is a large number. Each em-
ployee has one of three possible job classifications and changes classifications
(independently) according to a Markov chain with transition probabilities

⎡

⎣
0.7 0.2 0.1
0.2 0.6 0.2
0.1 0.4 0.5

⎤

⎦

What percentage of employees are in each classification?
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30. Three out of every four trucks on the road are followed by a car, while only
one out of every five cars is followed by a truck. What fraction of vehicles on the
road are trucks?

31. A certain town never has two sunny days in a row. Each day is classified
as being either sunny, cloudy (but dry), or rainy. If it is sunny one day, then it is
equally likely to be either cloudy or rainy the next day. If it is rainy or cloudy one
day, then there is one chance in two that it will be the same the next day, and if it
changes then it is equally likely to be either of the other two possibilities. In the
long run, what proportion of days are sunny? What proportion are cloudy?

*32. Each of two switches is either on or off during a day. On day n, each switch
will independently be on with probability

[1 + number of on switches during day n − 1]/4

For instance, if both switches are on during day n − 1, then each will indepen-
dently be on during day n with probability 3/4. What fraction of days are both
switches on? What fraction are both off?

33. A professor continually gives exams to her students. She can give three pos-
sible types of exams, and her class is graded as either having done well or badly.
Let pi denote the probability that the class does well on a type i exam, and sup-
pose that p1 = 0.3, p2 = 0.6, and p3 = 0.9. If the class does well on an exam,
then the next exam is equally likely to be any of the three types. If the class does
badly, then the next exam is always type 1. What proportion of exams are type
i, i = 1,2,3?

34. A flea moves around the vertices of a triangle in the following manner:
Whenever it is at vertex i it moves to its clockwise neighbor vertex with prob-
ability pi and to the counterclockwise neighbor with probability qi = 1 − pi ,
i = 1,2,3.

(a) Find the proportion of time that the flea is at each of the vertices.
(b) How often does the flea make a counterclockwise move which is then fol-
lowed by five consecutive clockwise moves?

35. Consider a Markov chain with states 0, 1, 2, 3, 4. Suppose P0,4 = 1; and
suppose that when the chain is in state i, i > 0, the next state is equally likely to
be any of the states 0,1, . . . , i − 1. Find the limiting probabilities of this Markov
chain.

36. The state of a process changes daily according to a two-state Markov chain.
If the process is in state i during one day, then it is in state j the follow-
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ing day with probability Pi,j , where

P0,0 = 0.4, P0,1 = 0.6, P1,0 = 0.2, P1,1 = 0.8

Every day a message is sent. If the state of the Markov chain that day is i then
the message sent is “good” with probability pi and is “bad” with probability qi =
1 − pi , i = 0,1

(a) If the process is in state 0 on Monday, what is the probability that a good
message is sent on Tuesday?
(b) If the process is in state 0 on Monday, what is the probability that a good
message is sent on Friday?
(c) In the long run, what proportion of messages are good?
(d) Let Yn equal 1 if a good message is sent on day n and let it equal 2 other-
wise. Is {Yn,n � 1} a Markov chain? If so, give its transition probability matrix.
If not, briefly explain why not.

37. Show that the stationary probabilities for the Markov chain having transition
probabilities Pi,j are also the stationary probabilities for the Markov chain whose
transition probabilities Qi,j are given by

Qi,j = P k
i,j

for any specified positive integer k.

38. Recall that state i is said to be positive recurrent if mi,i < ∞, where mi,i

is the expected number of transitions until the Markov chain, starting in state i,
makes a transition back into that state. Because πi , the long run proportion of time
the Markov chain, starting in state i, spends in state i, satisfies

πi = 1

mi,i

it follows that state i is positive recurrent if and only if πi > 0. Suppose that state
i is positive recurrent and that state i communicates with state j . Show that state
j is also positive recurrent by arguing that there is an integer n such that

πj � πiP
n
i,j > 0

39. Recall that a recurrent state that is not positive recurrent is called null recur-
rent. Use the result of Exercise 38 to prove that null recurrence is a class property.
That is, if state i is null recurrent and state i communicates with state j, show that
state j is also null recurrent.
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40. It follows from the argument made in Exercise 38 that state i is null recurrent
if it is recurrent and πi = 0. Consider the one-dimensional symmetric random
walk of Example 4.15.

(a) Argue that πi = π0 for all i.
(b) Argue that all states are null recurrent.

*41. Let πi denote the long-run proportion of time a given irreducible Markov
chain is in state i.

(a) Explain why πi is also the proportion of transitions that are into state i as
well as being the proportion of transitions that are from state i.
(b) πiPij represents the proportion of transitions that satisfy what property?
(c)

∑
i πiPij represent the proportion of transitions that satisfy what property?

(d) Using the preceding explain why

πj =
∑

i

πiPij

42. Let A be a set of states, and let Ac be the remaining states.

(a) What is the interpretation of

∑

i∈A

∑

j∈Ac

πiPij ?

(b) What is the interpretation of

∑

i∈Ac

∑

j∈A

πiPij ?

(c) Explain the identity

∑

i∈A

∑

j∈Ac

πiPij =
∑

i∈Ac

∑

j∈A

πiPij

43. Each day, one of n possible elements is requested, the ith one with proba-
bility Pi, i � 1,

∑n
1Pi = 1. These elements are at all times arranged in an ordered

list which is revised as follows: The element selected is moved to the front of the
list with the relative positions of all the other elements remaining unchanged. De-
fine the state at any time to be the list ordering at that time and note that there are
n! possible states.

(a) Argue that the preceding is a Markov chain.
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(b) For any state i1, . . . , in (which is a permutation of 1,2, . . . , n), let
π(i1, . . . , in) denote the limiting probability. In order for the state to be
i1, . . . , in, it is necessary for the last request to be for i1, the last non-i1 re-
quest for i2, the last non-i1 or i2 request for i3, and so on. Hence, it appears
intuitive that

π(i1, . . . , in) = Pi1

Pi2

1 − Pi1

Pi3

1 − Pi1 − Pi2

· · · Pin−1

1 − Pi1 − · · · − Pin−2

Verify when n = 3 that the preceding are indeed the limiting probabilities.

44. Suppose that a population consists of a fixed number, say, m, of genes in any
generation. Each gene is one of two possible genetic types. If any generation has
exactly i (of its m) genes being type 1, then the next generation will have j type 1
(and m − j type 2) genes with probability

(
m

j

)(
i

m

)j(
m − i

m

)m−j

, j = 0,1, . . . ,m

Let Xn denote the number of type 1 genes in the nth generation, and assume
that X0 = i.

(a) Find E[Xn].
(b) What is the probability that eventually all the genes will be type 1?

45. Consider an irreducible finite Markov chain with states 0,1, . . . ,N .

(a) Starting in state i, what is the probability the process will ever visit state j?
Explain!
(b) Let xi = P {visit state N before state 0|start in i}. Compute a set of linear
equations which the xi satisfy, i = 0,1, . . . ,N .
(c) If

∑
j jPij = i for i = 1, . . . ,N −1, show that xi = i/N is a solution to the

equations in part (b)

46. An individual possesses r umbrellas which he employs in going from his
home to office, and vice versa. If he is at home (the office) at the beginning (end)
of a day and it is raining, then he will take an umbrella with him to the office
(home), provided there is one to be taken. If it is not raining, then he never takes
an umbrella. Assume that, independent of the past, it rains at the beginning (end)
of a day with probability p.

(i) Define a Markov chain with r + 1 states which will help us to determine
the proportion of time that our man gets wet. (Note: He gets wet if it is
raining, and all umbrellas are at his other location.)
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(ii) Show that the limiting probabilities are given by

πi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q

r + q
, if i = 0

where q = 1 − p
1

r + q
, if i = 1, . . . , r

(iii) What fraction of time does our man get wet?
(iv) When r = 3, what value of p maximizes the fraction of time he gets wet

*47. Let {Xn,n � 0} denote an ergodic Markov chain with limiting probabilities
πi . Define the process {Yn,n � 1} by Yn = (Xn−1,Xn). That is, Yn keeps track
of the last two states of the original chain. Is {Yn,n � 1} a Markov chain? If so,
determine its transition probabilities and find

lim
n→∞P {Yn = (i, j)}

48. Verify the transition probability matrix given in Example 4.20.

49. Let P (1) and P (2) denote transition probability matrices for ergodic Markov
chains having the same state space. Let π1 and π2 denote the stationary (limiting)
probability vectors for the two chains. Consider a process defined as follows:

(i) X0 = 1. A coin is then flipped and if it comes up heads, then the re-
maining states X1, . . . are obtained from the transition probability matrix
P (1) and if tails from the matrix P (2). Is {Xn,n � 0} a Markov chain? If
p = P {coin comes up heads}, what is limn→∞ P(Xn = i)?

(ii) X0 = 1. At each stage the coin is flipped and if it comes up heads, then
the next state is chosen according to P (1) and if tails comes up, then it is
chosen according to P (2). In this case do the successive states constitute
a Markov chain? If so, determine the transition probabilities. Show by
a counterexample that the limiting probabilities are not the same as in
part (i).

50. In Exercise 8, if today’s flip lands heads, what is the expected number of
additional flips needed until the pattern t, t, h, t, h, t, t occurs?

51. In Example 4.3, Gary is in a cheerful mood today. Find the expected number
of days until he has been glum for three consecutive days.

52. A taxi driver provides service in two zones of a city. Fares picked up in
zone A will have destinations in zone A with probability 0.6 or in zone B with
probability 0.4. Fares picked up in zone B will have destinations in zone A with
probability 0.3 or in zone B with probability 0.7. The driver’s expected profit
for a trip entirely in zone A is 6; for a trip entirely in zone B is 8; and for
a trip that involves both zones is 12. Find the taxi driver’s average profit per
trip.
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53. Find the average premium received per policyholder of the insurance com-
pany of Example 4.23 if λ = 1/4 for one-third of its clients, and λ = 1/2 for
two-thirds of its clients.

54. Consider the Ehrenfest urn model in which M molecules are distributed
between two urns, and at each time point one of the molecules is chosen at random
and is then removed from its urn and placed in the other one. Let Xn denote the
number of molecules in urn 1 after the nth switch and let μn = E[Xn]. Show
that

(i) μn+1 = 1 + (1 − 2/M)μn.
(ii) Use (i) to prove that

μn = M

2
+
(

M − 2

M

)n(

E[X0] − M

2

)

55. Consider a population of individuals each of whom possesses two genes
which can be either type A or type a. Suppose that in outward appearance type
A is dominant and type a is recessive. (That is, an individual will have only
the outward characteristics of the recessive gene if its pair is aa.) Suppose that
the population has stabilized, and the percentages of individuals having respec-
tive gene pairs AA, aa, and Aa are p, q , and r . Call an individual dominant
or recessive depending on the outward characteristics it exhibits. Let S11 denote
the probability that an offspring of two dominant parents will be recessive; and
let S10 denote the probability that the offspring of one dominant and one re-
cessive parent will be recessive. Compute S11 and S10 to show that S11 = S2

10.
(The quantities S10 and S11 are known in the genetics literature as Snyder’s ra-
tios.)

56. Suppose that on each play of the game a gambler either wins 1 with prob-
ability p or loses 1 with probability 1 − p. The gambler continues betting until
she or he is either winning n or losing m. What is the probability that the gambler
quits a winner?

57. A particle moves among n + 1 vertices that are situated on a circle in
the following manner. At each step it moves one step either in the clockwise
direction with probability p or the counterclockwise direction with probability
q = 1 − p. Starting at a specified state, call it state 0, let T be the time of the
first return to state 0. Find the probability that all states have been visited by
time T .

Hint: Condition on the initial transition and then use results from the gam-
bler’s ruin problem.
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58. In the gambler’s ruin problem of Section 4.5.1, suppose the gambler’s for-
tune is presently i, and suppose that we know that the gambler’s fortune will
eventually reach N (before it goes to 0). Given this information, show that the
probability he wins the next gamble is

p[1 − (q/p)i+1]
1 − (q/p)i

, if p �= 1
2

i + 1

2i
, if p = 1

2

Hint: The probability we want is

P {Xn+1 = i + 1|Xn = i, lim
m→∞Xm = N}

= P {Xn+1 = i + 1, limm Xm = N |Xn = i}
P {limm Xm = N |Xn = i}

59. For the gambler’s ruin model of Section 4.5.1, let Mi denote the mean num-
ber of games that must be played until the gambler either goes broke or reaches
a fortune of N , given that he starts with i, i = 0,1, . . . ,N . Show that Mi satis-
fies

M0 = MN = 0; Mi = 1 + pMi+1 + qMi−1, i = 1, . . . ,N − 1

60. Solve the equations given in Exercise 59 to obtain

Mi = i(N − i), if p = 1
2

= i

q − p
− N

q − p

1 − (q/p)i

1 − (q/p)N
, if p �= 1

2

61. Suppose in the gambler’s ruin problem that the probability of winning a
bet depends on the gambler’s present fortune. Specifically, suppose that αi is the
probability that the gambler wins a bet when his or her fortune is i. Given that
the gambler’s initial fortune is i, let P(i) denote the probability that the gambler’s
fortune reaches N before 0.

(a) Derive a formula that relates P(i) to P(i − 1) and P(i + 1).
(b) Using the same approach as in the gambler’s ruin problem, solve the equa-
tion of part (a) for P(i).
(c) Suppose that i balls are initially in urn 1 and N − i are in urn 2, and suppose
that at each stage one of the N balls is randomly chosen, taken from whichever
urn it is in, and placed in the other urn. Find the probability that the first urn
becomes empty before the second.
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*62. In Exercise 21,

(a) what is the expected number of steps the particle takes to return to the
starting position?
(b) what is the probability that all other positions are visited before the particle
returns to its starting state?

63. For the Markov chain with states 1, 2, 3, 4 whose transition probability
matrix P is as specified below find fi3 and si3 for i = 1,2,3.

P =

⎡

⎢
⎢
⎣

0.4 0.2 0.1 0.3
0.1 0.5 0.2 0.2
0.3 0.4 0.2 0.1
0 0 0 1

⎤

⎥
⎥
⎦

64. Consider a branching process having μ < 1. Show that if X0 = 1, then
the expected number of individuals that ever exist in this population is given by
1/(1 − μ). What if X0 = n?

65. In a branching process having X0 = 1 and μ > 1, prove that π0 is the small-
est positive number satisfying Equation (4.16).

Hint: Let π be any solution of π =∑∞
j=0 πjPj . Show by mathematical in-

duction that π � P {Xn = 0} for all n, and let n → ∞. In using the induction
argue that

P {Xn = 0} =
∞∑

j=0

(P {Xn−1 = 0})jPj

66. For a branching process, calculate π0 when

(a) P0 = 1
4 ,P2 = 3

4 .

(b) P0 = 1
4 ,P1 = 1

2 ,P2 = 1
4 .

(c) P0 = 1
6 ,P1 = 1

2 ,P3 = 1
3 .

67. At all times, an urn contains N balls—some white balls and some black
balls. At each stage, a coin having probability p,0 < p < 1, of landing heads
is flipped. If heads appears, then a ball is chosen at random from the urn and is
replaced by a white ball; if tails appears, then a ball is chosen from the urn and is
replaced by a black ball. Let Xn denote the number of white balls in the urn after
the nth stage.

(a) Is {Xn,n � 0} a Markov chain? If so, explain why.
(b) What are its classes? What are their periods? Are they transient or recur-
rent?
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(c) Compute the transition probabilities Pij .
(d) Let N = 2. Find the proportion of time in each state.
(e) Based on your answer in part (d) and your intuition, guess the answer for
the limiting probability in the general case.
(f) Prove your guess in part (e) either by showing that Equation (4.7) is satis-
fied or by using the results of Example 4.31.
(g) If p = 1, what is the expected time until there are only white balls in the
urn if initially there are i white and N − i black?

*68. (a) Show that the limiting probabilities of the reversed Markov chain
are the same as for the forward chain by showing that they satisfy the equa-
tions

πj =
∑

i

πiQij

(b) Give an intuitive explanation for the result of part (a).

69. M balls are initially distributed among m urns. At each stage one of the
balls is selected at random, taken from whichever urn it is in, and then placed,
at random, in one of the other M − 1 urns. Consider the Markov chain whose
state at any time is the vector (n1, . . . , nm) where ni denotes the number of
balls in urn i. Guess at the limiting probabilities for this Markov chain and then
verify your guess and show at the same time that the Markov chain is time re-
versible.

70. A total of m white and m black balls are distributed among two urns, with
each urn containing m balls. At each stage, a ball is randomly selected from each
urn and the two selected balls are interchanged. Let Xn denote the number of
black balls in urn 1 after the nth interchange.

(a) Give the transition probabilities of the Markov chain Xn,n � 0.
(b) Without any computations, what do you think are the limiting probabilities
of this chain?
(c) Find the limiting probabilities and show that the stationary chain is time
reversible.

71. It follows from Theorem 4.2 that for a time reversible Markov chain

PijPjkPki = PikPkjPji, for all i, j, k

It turns out that if the state space is finite and Pij > 0 for all i, j , then the preceding
is also a sufficient condition for time reversibility. [That is, in this case, we need
only check Equation (4.26) for paths from i to i that have only two intermediate
states.] Prove this.
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Hint: Fix i and show that the equations

πjPjk = πkPkj

are satisfied by πj = cPij /Pji , where c is chosen so that
∑

j πj = 1.

72. For a time reversible Markov chain, argue that the rate at which transitions
from i to j to k occur must equal the rate at which transitions from k to j to i

occur.

73. Show that the Markov chain of Exercise 31 is time reversible.

74. A group of n processors is arranged in an ordered list. When a job ar-
rives, the first processor in line attempts it; if it is unsuccessful, then the next
in line tries it; if it too is unsuccessful, then the next in line tries it, and so on.
When the job is successfully processed or after all processors have been un-
successful, the job leaves the system. At this point we are allowed to reorder
the processors, and a new job appears. Suppose that we use the one-closer re-
ordering rule, which moves the processor that was successful one closer to the
front of the line by interchanging its position with the one in front of it. If all
processors were unsuccessful (or if the processor in the first position was suc-
cessful), then the ordering remains the same. Suppose that each time processor i

attempts a job then, independently of anything else, it is successful with probabil-
ity pi .

(a) Define an appropriate Markov chain to analyze this model.
(b) Show that this Markov chain is time reversible.
(c) Find the long-run probabilities.

75. A Markov chain is said to be a tree process if

(i) Pij > 0 whenever Pji > 0,
(ii) for every pair of states i and j , i �= j , there is a unique sequence of distinct

states i = i0, i1, . . . , in−1, in = j such that

Pik,ik+1 > 0, k = 0,1, . . . , n − 1

In other words, a Markov chain is a tree process if for every pair of distinct
states i and j there is a unique way for the process to go from i to j without
reentering a state (and this path is the reverse of the unique path from j to i).
Argue that an ergodic tree process is time reversible.

76. On a chessboard compute the expected number of plays it takes a knight,
starting in one of the four corners of the chessboard, to return to its initial position
if we assume that at each play it is equally likely to choose any of its legal moves.
(No other pieces are on the board.)



278 4 Markov Chains

Hint: Make use of Example 4.32.

77. In a Markov decision problem, another criterion often used, different than
the expected average return per unit time, is that of the expected discounted re-
turn. In this criterion we choose a number α,0 < α < 1, and try to choose a policy
so as to maximize E[∑∞

i=0α
iR(Xi, ai)] (that is, rewards at time n are discounted

at rate αn). Suppose that the initial state is chosen according to the probabilities
bi . That is,

P {X0 = i} = bi, i = 1, . . . , n

For a given policy β let yja denote the expected discounted time that the
process is in state j and action a is chosen. That is,

yja = Eβ

[ ∞∑

n=0

αnI{Xn=j,an=a}

]

where for any event A the indicator variable IA is defined by

IA =
{

1, if A occurs

0, otherwise

(a) Show that

∑

a

yja = E

[ ∞∑

n=0

αnI{Xn=j}

]

or, in other words,
∑

a yja is the expected discounted time in state j un-
der β .
(b) Show that

∑

j

∑

a

yja = 1

1 − α
,

∑

a

yja = bj + α
∑

i

∑

a

yiaPij (a)

Hint: For the second equation, use the identity

I{Xn+1=j} =
∑

i

∑

a

I{Xn=i ,an=a}I{Xn+1=j}

Take expectations of the preceding to obtain

E
[
IXn+1=j}

]=
∑

i

∑

a

E
[
I{Xn=i ,an=a}

]
Pij (a)
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(c) Let {yja} be a set of numbers satisfying
∑

j

∑

a

yja = 1

1 − α
,

∑

a

yja = bj + α
∑

i

∑

a

yiaPij (a) (4.38)

Argue that yja can be interpreted as the expected discounted time that the
process is in state j and action a is chosen when the initial state is chosen
according to the probabilities bj and the policy β , given by

βi(a) = yia
∑

a yia

is employed.

Hint: Derive a set of equations for the expected discounted times when
policy β is used and show that they are equivalent to Equation (4.38).

(d) Argue that an optimal policy with respect to the expected discounted return
criterion can be obtained by first solving the linear program

maximize
∑

j

∑

a

yjaR(j, a),

such that
∑

j

∑

a

yja = 1

1 − α
,

∑

a

yja = bj + α
∑

i

∑

a

yiaPij (a),

yja � 0, all j, a;
and then defining the policy β∗ by

β∗
i (a) = y∗

ia∑
a y∗

ia

where the y∗
ja are the solutions of the linear program.

78. For the Markov chain of Exercise 5, suppose that p(s|j) is the proba-
bility that signal s is emitted when the underlying Markov chain state is j ,
j = 0,1,2.

(a) What proportion of emissions are signal s?
(b) What proportion of those times in which signal s is emitted is 0 the
underlying state?

79. In Example 4.39, what is the probability that the first 4 items produced are
all acceptable?
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