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EXAM IN COURSE TMA4265 STOCHASTIC PROCESSES
Tuesday, December 13, 2011

Time: 9:00–13:00

Permitted aid items:

• Yellow A-5 sheet with your own handwritten notes (stamped by the Department of
Mathematical Sciences)

• Tabeller og formler i statistikk, Tapir Forlag

• K. Rottmann: Matematisk formelsamling

• Calculator HP30S

The results from the exam are due by January 13, 2012.

Problem 1 - ON/OFF System

Consider a system that alternates between the two states 0 (OFF) and 1 (ON), and assume
that it is checked at discrete timepoints 1, 2, . . .. If the system is OFF at one timepoint,
the probability that it has switched to ON at the next timepoint is p; and if it is ON, the
probability that it has switched to OFF is q. Here 0 ≤ p, q ≤ 1.
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a) Describe the system as a Markov chain Xn, n = 0, 1, 2, . . ., and establish the transition
probability matrix P. Show that for m = 1, 2, . . .,

Pm =
1

p+ q

[

q p
q p

]

+
(1− p− q)m

p+ q

[

p −p
−q q

]

by showing that PT = TΛ, where T consists of eigenvectors of P and Λ is a diagonal
matrix with the eigenvalues of P on the diagonal.

b) Let Yn denote any Markov chain with stationary transition probabilities and transition

probability matrix P. Show that them-step transition probability matrix P(m) =
(

P
(m)
ij

)

,

where P
(m)
ij = Prob

(

Yn+m = j|Yn = i
)

, is determined by P(m) = Pm, m = 1, 2, . . ..

c) Discuss the properties of the ON/OFF system as depending on the values of p and q.

For which values of p and q does the Markov chain have limiting probabilities? If so,
determine these probabilities.

d) Explain the concept of a stationary distribution. Write down the equation the stationary
distribution must satisfy for the ON/OFF system, and solve it.

What is the connection between the limiting probabilities and a stationary distribution?

Problem 2 - Gas Production Platform

On a production platform for gas in the North Sea, the gas is compressed/condensed before it
is transported to the mainland through pipelines. Assume that three identical compressors are
installed on the platform for this purpose, but that at most two of them can be in operation
at the same time. The following rules concerning repair and replacement applies:

• When a operating compressor fails, it is immediately repaired if another compressor is
not already under repair. Note that this implies that at most one compressor can be
under repair.

• Compressors that fail while another is repaired are put in a waiting queue.

• As soon as a compressor is repaired, it is put into production if two are not already in
work. In this case the repaired compressor does not enter production until one of the
operating compressors fail.

• When the repair of a compressor is finished, the repair work of one of the compressors
in the waiting queue is immediately started if the waiting queue is not empty.
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The compressors are monitored continuously from time t = 0. Let X(t) denote the number of
compressors that at time t are either under repair or in the waiting queue for repair. We shall
now model X(t), t ≥ 0, as a birth and death process with the following birth and death rates:
λ0 = λ1 = 2α, λ2 = α, λj = 0 for j ≥ 3, and µ0 = 0, µ1 = µ2 = µ3 = β, µj = 0 for j ≥ 4.

a) Explain briefly the main assumptions underlying the adopted model, which have not
already been stated.

Also, explain how these assumptions lead to the given transition rates.

b) Let Pij(t) = Prob
(

X(t) = j |X(0) = i
)

. Establish Kolmogorov’s forward equations for
Pij(t) for i, j = 0, 1, 2, 3 and t ≥ 0.

c) Determine the stationary distribution π =
(

π0, π1, π2, π3

)

of the process.

For a general birth and death process with birth rates λn and death rates µn, let Ti denote the
time to reach state i+1 starting in state i. It has been shown in the textbook that E[T0] =

1
λ0

,
and for i ≥ 1,

E[Ti] =
1

λi

+
µi

λi

E[Ti−1] .

The compressor system is said to be functioning at time t if at least one compressor is working,
that is, if X(t) ≤ 2. Let T denote the point in time when the system ceases to function for
the first time after t = 0, that is, T = min{t ≥ 0|X(t) = 3}.

d) Establish and justify a system of equations to determine mi = E[T |X(0) = i] for
i = 0, 1, 2. Calculate m0,m1,m2 from these equations.

e) The compressor system has at the time we start our monitoring (t = 0) already been in
work for a long time so that stationary conditions can be assumed. Find in this case the
expected value of T when it is given that the system is functioning at (our) t = 0. Give
your answer in terms of the πi and mi. You are not requested to substitute values for
these.

Problem 3 - A Queueing System

Consider a birth and death process with birth rates λn = α qn, n = 0, 1, 2, . . ., and death rates
µ0 = 0, µn = µ, n = 1, 2, . . ., where α > 0, µ > 0 and 0 < q < 1.
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a) Determine the stationary distribution of this process. Do you need to impose restrictions
on the ratio α/µ for this stationary distribution to exist?

Explain briefly how this process can be interpreted as a queueing process. In particular,
explain the effect of the birth rate λn.
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Formulas for TMA4265 Stochastic Processes :

The law of total probability

Let B1, B2, . . . be pairwise disjoint events with P (∪∞
i=1Bi) = 1. Then

P (A|C) =
∞
∑

i=1

P (A|Bi ∩ C)P (Bi|C),

E[X|C] =
∞
∑

i=1

E[X|Bi ∩ C]P (Bi|C).

Discrete time Markov chains

Chapman-Kolmogorov equations

P
(m+n)
ij =

∞
∑

k=0

P
(m)
ik P

(n)
kj .

For an irreducible and ergodic Markov chain, πj = limn→∞ Pn
ij exist and is given by the equations

πj =
∑

i

πiPij og
∑

i

πi = 1.

For transient states i, j and k, the expected time spent in state j given start in state i, sij , is

sij = δij +
∑

k

Pikskj .

For transient states i and j, the probability of ever returning to state j given start in state i, fij , is

fij = (sij − δij)/sjj .

The Poisson process

The waiting time to the n-th event (the n-th arrival time), Sn, has the probability density

fSn
(t) =

λntn−1

(n− 1)!
e−λt for t ≥ 0.

Given that the number of events N(t) = n, the arrival times S1, S2, . . . , Sn have the joint probability
density

fS1,S2,...,Sn|N(t)(s1, s2, . . . , sn|n) =
n!

tn
for 0 < s1 < s2 < . . . < sn ≤ t.
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Markov processes in continuous time

A (homogeneous) Markov process X(t), 0 ≤ t ≤ ∞, with state space Ω ⊆ Z+ = {0, 1, 2, . . .}, is called
a birth and death process if

Pi,i+1(h) = λih+ o(h)

Pi,i−1(h) = µih+ o(h)

Pi,i(h) = 1− (λi + µi)h+ o(h)

Pij(h) = o(h) for |j − i| ≥ 2

where Pij(s) = P (X(t+ s) = j|X(t) = i), i, j ∈ Z+, λi ≥ 0 are birth rates, µi ≥ 0 are death rates.

The Chapman-Kolmogorov equations

Pij(t+ s) =
∞
∑

k=0

Pik(t)Pkj(s).

Limit relations

lim
h→0

1− Pii(h)

h
= vi , lim

h→0

Pij(h)

h
= qij , i 6= j

Kolmogorov’s forward equations

P ′
ij(t) =

∑

k 6=j

qkjPik(t)− vjPij(t).

Kolmogorov’s backward equations

P ′
ij(t) =

∑

k 6=i

qikPkj(t)− viPij(t).

If Pj = limt→∞ Pij(t) exist, Pj are given by

vjPj =
∑

k 6=j

qkjPk og
∑

j

Pj = 1.

In particular, for birth and death processes

P0 =
1

∑∞
k=0 θk

og Pk = θkP0 for k = 1, 2, . . .

where

θ0 = 1 og θk =
λ0λ1 · . . . · λk−1

µ1µ2 · . . . · µk

for k = 1, 2, . . .
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Queueing theory

For the average number of customers in the system L, in the queue LQ; the average amount of time a
customer spends in the system W , in the queue WQ; the service time S; the average remaining time
(or work) in the system V , and the arrival rate λa, the following relations obtain

L = λaW.

LQ = λaWQ.

V = λaE[SW ∗
Q] + λaE[S2]/2.

Some mathematical series

n
∑

k=0

ak =
1− an+1

1− a
,

∞
∑

k=0

kak =
a

(1− a)2
,

Differential equation

The differential equation f ′(t) + αf(t) = g(t) for t ≥ 0 with initial condition f(0) = a has the
solution

f(t) = ae−αt +

∫ t

0
e−α(t−s)g(s) ds


