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EXAM IN COURSE TMA4265 STOCHASTIC PROCESSES
Monday, December 13, 2010

Time: 9:00–13:00

Permitted aids:

• Yellow A-5 sheet with your own handwritten notes (stamped by the Department of
Mathematical Sciences)

• Tabeller og formler i statistikk, Tapir Forlag

• K. Rottmann: Matematisk formelsamling

• Calculator HP30S

The examination results are due January 13, 2011

Problem 1

Let {Yn}
∞
n=1 be a sequence of independent and identically distributed random variables which

assume values among the non-negative integers:

P (Yn = i) = pi , i = 0, 1, 2, . . . ,

where 0 < pi < 1 and
∑∞

i=0 pi = 1.
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Define the sequence of random variables {Xn}
∞
n=1 by the equation,

Xn = min{Y1, Y2, . . . , Yn}

.

a) Show that {Xn}
∞
n=1 is a Markov chain, and determine its transition probability matrix.

b) Explain briefly the following two concepts related to a Markov chain: Recurrent state
and transient state.

Which of the states of Xn are recurrent and which are transient? Does the Markov chain
contain any ergodic states?

Find out if Xn has a limiting distribution. If so, write it down.

Problem 2

In this problem we shall consider a computer program which is assumed to contain n errors or
bugs. (Of course, n is usually unknown.) Before the program is released for use, it is subjected
to extensive and thorough testing. During this process, it is assumed that when an error is
detected it is corrected immediately and without introducing new errors.

Let t = 0 correspond to the time when the testing is started, and let X(t) denote the remaining
number of errors in the program at time t for t ≥ 0. Hence, X(0) = n.

We shall now introduce the following assumptions, which correspond to the assumptions made
in the so-called Jelinski-Moranda model for software reliability.

• An error not detected at time t will be detected and corrected during the time interval
(t, t + h] with probability θh + o(h).

• The errors are detected and corrected independently of each other.

a) Explain briefly why the process X(t) is a Markov process.

Specify the state space of the process and show in detail that the transition rates qij are
given as follows:

qi,i−1 = iθ , for i = 1, 2, . . . , n

qij = 0 , for i = 0, 1, . . . , n ; j 6= i − 1

The process X(t) is thereby a pure death process.
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b) Find the expected time from t = 0 until the first error is detected. Then, find the
expected time until all errors have been detected.

With our usual notation, let Pni(t) = P
(

X(t) = i |X(0) = n
)

. These transition probabilities
can be determined by setting up and solving Kolmogorov’s forward equations. However, the
task now is to show that these probabilities can be determined in a different way.

Imagine that the n errors in the program at time t = 0 are numbered as k = 1, 2, . . . , n. Then,
let

Xk(t) = 1 , if error no. k is present at time t ,

while
Xk(t) = 0 , if error no. k has been detected before time t .

c) Explain why Xk(t) for t ≥ 0 is a Markov process with state space {0, 1}.

Set up the transition rates for Xk(t).

Find P (Xk(t) = 1) for t ≥ 0.

d) Express X(t) in terms of the Xk(t), k = 1, . . . , n, and explain why X(t) for each t (t ≥ 0)
is binomially distributed. Show that

Pni(t) =

(

n

i

)

e−iθt
(

1 − e−θt
)n−i

for i = 0, 1, . . . , n.

e) Assume now that the number of errors X(0) in the computer program at the start of the
testing, is Poisson distributed with parameter λ.

Determine the probability that all errors have been detected before time t.

Problem 3

a) Explain briefly the concept of a queueing system. In particular, what do we understand
by an M/M/k-system and by an M/G/k-system (1 ≤ k ≤ ∞)?

Henceforth we are going to study a simple queueing model for a self-service station. Let X(t)
denote the number of customers in this queueing system at time t. We shall assume that
potential customers arrive at the service station according to a Poisson process with intensity
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parameter λ (> 0). However, it will be assumed that the desire to join the queue decreases as
the queue increases. To model this we put

P (Person arriving at time t joins the queue |X(t) = k) =
1

k + 1

It is assumed that the service time is exponentially distributed with parameter µ (> 0), and
is independent of the arrivals. A person who decides not to join the queue is considered to be
lost for the queueing system.

b) Let
Pij(h) = P (X(t + h) = j|X(t) = i) .

Write down Pij(h) for small values of h. Specify in particular the birth and death
parameters for the process X(t).

c) Determine the stationary distribution for X(t). Do you recognize it? What is the
proportion of time that the service unit is vacant (empty) in the long run?
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Formulas for TMA4265 Stochastic Processes :

The law of total probability

Let B1, B2, . . . be pairwise disjoint events with P (∪∞
i=1Bi) = 1. Then

P (A|C) =
∞

∑

i=1

P (A|Bi ∩ C)P (Bi|C),

E[X|C] =
∞

∑

i=1

E[X|Bi ∩ C]P (Bi|C).

Discrete time Markov chains

Chapman-Kolmogorov equations

P
(m+n)
ij =

∞
∑

k=0

P
(m)
ik P

(n)
kj .

For an irreducible and ergodic Markov chain, πj = limn→∞ Pn
ij exist and is given by the equations

πj =
∑

i

πiPij og
∑

i

πi = 1.

For transient states i, j and k, the expected time spent in state j given start in state i, sij , is

sij = δij +
∑

k

Pikskj .

For transient states i and j, the probability of ever returning to state j given start in state i, fij , is

fij = (sij − δij)/sjj .

The Poisson process

The waiting time to the n-th event (the n-th arrival time), Sn, has the probability density

fSn
(t) =

λntn−1

(n − 1)!
e−λt for t ≥ 0.

Given that the number of events N(t) = n, the arrival times S1, S2, . . . , Sn have the joint probability
density

fS1,S2,...,Sn|N(t)(s1, s2, . . . , sn|n) =
n!

tn
for 0 < s1 < s2 < . . . < sn ≤ t.
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Markov processes in continuous time

A (homogeneous) Markov process X(t), 0 ≤ t ≤ ∞, with state space Ω ⊆ Z+ = {0, 1, 2, . . .}, is called
a birth and death process if

Pi,i+1(h) = λih + o(h)

Pi,i−1(h) = µih + o(h)

Pi,i(h) = 1 − (λi + µi)h + o(h)

Pij(h) = o(h) for |j − i| ≥ 2

where Pij(s) = P (X(t + s) = j|X(t) = i), i, j ∈ Z+, λi ≥ 0 are birth rates, µi ≥ 0 are death rates.

The Chapman-Kolmogorov equations

Pij(t + s) =
∞

∑

k=0

Pik(t)Pkj(s).

Limit relations

lim
h→0

1 − Pii(h)

h
= vi , lim

h→0

Pij(h)

h
= qij , i 6= j

Kolmogorov’s forward equations

P ′
ij(t) =

∑

k 6=j

qkjPik(t) − vjPij(t).

Kolmogorov’s backward equations

P ′
ij(t) =

∑

k 6=i

qikPkj(t) − viPij(t).

If Pj = limt→∞ Pij(t) exist, Pj are given by

vjPj =
∑

k 6=j

qkjPk og
∑

j

Pj = 1.

In particular, for birth and death processes

P0 =
1

∑∞
k=0 θk

og Pk = θkP0 for k = 1, 2, . . .

where

θ0 = 1 og θk =
λ0λ1 · . . . · λk−1

µ1µ2 · . . . · µk

for k = 1, 2, . . .
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Queueing theory

For the average number of customers in the system L, in the queue LQ; the average amount of time a
customer spends in the system W , in the queue WQ; the service time S; the average remaining time
(or work) in the system V , and the arrival rate λa, the following relations obtain

L = λaW.

LQ = λaWQ.

V = λaE[SW ∗
Q] + λaE[S2]/2.

Some mathematical series

n
∑

k=0

ak =
1 − an+1

1 − a
,

∞
∑

k=0

kak =
a

(1 − a)2
,

Differential equation

The differential equation f ′(t) + αf(t) = g(t) for t ≥ 0 with initial condition f(0) = a has the
solution

f(t) = ae−αt +

∫ t

0
e−α(t−s)g(s) ds


