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Problem 1

a)

X(t) becomes a birth and death process with birth rates λi = (N − i)λ (i = 0, 1, . . . , N −1)
and death rates µi = iµ (i = 1, 2, . . . , N).

b)

For the limiting distribution to exist, limt→∞ P ′

ij(t) = 0. This provides the following equa-
tions for the limiting distribution

0 = −λNπ0 + µπ1

0 = (N − j + 1)λπj−1 − [(N − j)λ + jµ]πj + (j + 1)µπj + 1 , 1 ≤ j ≤ N − 1

0 = λπN−1 −NµπN

By solving these equations, πj may be expressed in terms of π0. We find that πj =
(

N
j

)

(

λ
µ

)j

π0.

By requiring that
∑N

j=0 πj = 1, and using the result
∑N

j=0

(

N
j

)

xj = (1 + x)N , it is

obtained that π0 =
(

µ/(λ+ µ)
)N

. Finally, this yields the result

πj =

(

N

j

)

( λ

λ+ µ

)j( µ

λ+ µ

)N−j

c)

We may write M(t+ h) = E[X(t + h)] = E
[

E[X(t+ h) |X(t)]
]

.
For small values of h, and neglecting o(h) terms, it is seen that

E[X(t+ h) |X(t) = j] = (j − 1)Pj,j−1(h) + jPjj(h) + (j + 1)Pj,j+1(h)
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= (j − 1)jµh + j
(

1− ((N − j)λ+ jµ)h
)

+ (j + 1)(N − j)λh

= j +Nλh− (λ+ µ)jh

This gives the equation

E[X(t+ h) |X(t)] = X(t) +Nλh− (λ+ µ)X(t)h

Taking expectations, and letting h → 0, then leads to the desired equation:

M ′(t) = Nλ− (λ+ µ)M(t)

To solve this equation, we write

M ′(t) + (λ+ µ)M(t) = Nλ

It is seen that e(λ+µ)t is an integrating factor: To solve this equation, we write

(

M(t)e(λ+µ)t
)

′

= Nλe(λ+µ)t

Integrating, using that M(0) = i, gives

M(t)e(λ+µ)t − i =
Nλ

λ+ µ

(

e(λ+µ)t − 1
)

Hence,

M(t) =
Nλ

λ+ µ
+

(

i− Nλ

λ+ µ

)

e−(λ+µ)t

From this result we deduce the limit

lim
t→∞

M(t) =
Nλ

λ+ µ

Problem 2

a)

Y (t) = N(t − a, t] (t ≥ a) because passengers that arrive in the time interval (t − a, t]
according to the assumptions, have not finished their service at time t. Those passengers
that arrive before time t− a have finished before time t and therefore do not contribute to
Y (t).

The random variable N(t − a, t] is by the definition of a Poisson process, Poisson dis-
tributed with expectation λa. Hence,

Y (t) ∼ Poisson(λa)
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.
For 0 < t < a, the number of passengers at the terminals will be N(0, t], and

Y (t) ∼ Poisson(λt)

since none of the passengers have finished their service at time t.

b)

We need to determine P (Y (s) = 0 ∩ Y (t) = 0)
If t− s < a, there can be no arrivals in (s− a, t]. That is,

P (Y (s) = 0 ∩ Y (t) = 0) = P (N(s− a, t] = 0) = e−λ(t−s+a)

If t− s ≥ a, there can be no arrivals in (s − a, s] as well as no arrivals in (t− a, t], and
the two intervals are disjoint. That is,

P (Y (s) = 0 ∩ Y (t) = 0) = P (N(s− a, s] = 0 ∩N(t− a, t] = 0) = e−λa e−λa = e−2λa

c)
Little’s formula is given as L = λW , where L is the average number of passengers in the
system, and W is the average time a passenger spends at the terminal. For the present
problem, it is clear that W = mA. Hence, L = λmA. This corresponds to the result in
point a), since mA = a and E[Y (t)] = λa (for large t).

d)

Using the hint, we write

P (Y (t) = k) =

∞
∑

n=k

P (Y (t) = k |N(t) = n)P (N(t) = n)

where

P (Y (t) = k |N(t) = n) =

(

n

k

)

pk(1− p)n−k

Here, p is the probability that an arbitrary arrival in the time interval (0, t] still is at the
terminal at time t.

p =

∫ t

0
P (passenger is at terminal at time t | arrival at time u) fU (u) du
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where fU (u) is the probability density of an arbitrary arrival time. This is uniform and it
is given as fU(u) = 1/t for 0 ≤ u ≤ t. This leads to the result

p =

∫ t

0
(1−G(t− u))

1

t
du =

1

t

∫ t

0
(1−G(s)) ds

Going back to the first equation, this may now be written in the following form

P (Y (t) = k) =
∞
∑

n=k

(

n

k

)

pk(1− p)n−k (λt)n

n!
e−λt

=

∞
∑

n=k

n!

k!(n − k)!
pk(1− p)n−k (λt)n

n!
e−λt

=
(λtp)k

k!
e−λt

∞
∑

n=k

(λt(1 − p))n−k

(n − k)!

=
(λtp)k

k!
e−λtp

This shows that Y (t) ∼ Poisson(λtp) = Poisson(λ
∫ t

0 (1−G(s)) ds)

Problem 3

a)

The definition of a standard Brownian motion B(t) is as follows:
1. B(0) = 0
2. B(t) has stationary and independent increments
3. B(t) ∼ N(0, t) (t > 0)

b)

From the definition, we know that B(2) ∼ N(0, 2). Hence, it is obtained that

P (B(2) ≥ 3) = 1− Φ(3/
√
2) = 1− Φ(2.12) = 0.017

Also, we have that

P (B(2) ≥ 3 |B(1) = 1) = P (B(2)−B(1) ≥ 2) = 1− Φ(2) = 0.023.

Here, the first equation is due to the property of independent increments, the second is due
to stationary increments, that is, B(2)−B(1) ∼ B(1).
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c)

We need to determine P (T3 ≤ 2). Based on the hint, we apply the rule of total proba-
bility:

P (B(2) ≥ 3) = P (B(2) ≥ 3 |T3 ≤ 2)P (T3 ≤ 2) + P (B(2) ≥ 3 |T3 > 2)P (T3 > 2)

=
1

2
P (T3 ≤ 2)

Here, P (B(2) ≥ 3 |T3 ≤ 2) = 1/2 because when given that the process has visited state 3
in the time interval [0, 2], then the probability that the process is above 3 at time 2 must
be equal to the probability of being below. Clearly, P (B(2) ≥ 3 |T3 > 2) = 0 Hence, it is
obtained that

P (T3 ≤ 2) = 2P (B(2) ≥ 3) = 2 · 0.017 = 0.034
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