TMA4265 Stochastic
Processes

Norges teknisk-naturvitenskapelige universitet

Institutt for matematiske fag Lgsningsforslag - Eksamen December 2010

Problem 1
a)

It is seen that
Xnt1 = min{Xn, Yn—i—l}

Hence, when X, is given, the statistics of X, 11 does not depend on Xj, for k < n which
implies that {X,}22; is a Markov chain. The transition probability matrix P = (Pj;),
where Pjj = P(X,41 =j| X, =) for 4,5 =0,1,2,..., (does not depend on n) is given as
follows:

Py =1; Poj:(), 7>1

while for ¢ > 1,

pi, 0<j<i
i—1
PZ]: 1_23:0]9]7 J 1
0, j7>1

b)

Let f; = The probability of ever returning to state ¢. ¢ is a recurrent state if f; =1. 7 is a
transient state if f; < 1.
We now use the following results:

e.) oo
fi=le ) PP=oo, fi<le Y PI<oc,
m=1 m=1

where P1' = P(Xptm = j| Xpn = 4).

Since Pyy = 1, it follows that Pjj = 1 for m = 1,2,.... Hence, > °_, PJi = oo, so {0}
is recurrent.

Also, since Pj; = 0 for j > 4, it follows that P* = (P;)™ = (1 — Zé;%)pj)m for
i > 1 (since then the only way of returning to 7 is that the chain remains in 7). Therefore,
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Yoo P =3 (1— Zé;% p;)™ < oo since (1— Zé‘;lo p;) < 1, so the states {1,2,3,...}
are transient.

Since Pyy = 1, {0} is an aperiodic state. Also, since Pyy = 1, the average return time
must be 1, so {0} is positively recurrent. {0} is therefore ergodic.

If the Markov chain { X, }>° ; has a limiting distribution 7 = (o, 71, . . .), it must satisfy
the equations m = P, that is,

[e.e]
70 = 7o + Po Z U
i=1
and, fori=1,2,...,
i—1 00
T, = TG (1 — ij> + pi Z T
j=0 j=itl
The first equation leads to pg > ooy m = 0, or equivalently, >-°°; 7; = 0. This immedi-
ately gives m; = w9 = ... = 0. From the normalization condition Z?io m; = 1, it is obtained

that 7o = 1. It is now easy to verify that 7 = (1,0,0,...) indeed satisfies 7 = 7P. It is
therefore a limiting distribution.

Alternatively: Eventually, the chain will leave all transient states and end up in {0}
as the only recurrent state. This implies that the only possible limiting distribution is
m = (1,0,0,...), which is easily verified to satisfy 7 = wP.

Problem 2
a)

If information about X (t) for time ¢ < s is given, then the distribution of X (¢) for ¢t > s
conditional on this information will depend only on the value of X (s). That is, X (¢) is a
Markov process. It has state space Q = {0,1,...,n}.

Obviously, for j >¢=20,1,...,n—1 and any h > O:

P(X(t+h) = jIX() =) =0 =g =0

Fort=1,2,...,nand h > O:
P(X(t+ h) =i—1]|X(t) = i) = P(Detecting one error during(t,t + h))

_ G) (Oh + o(h))(1 — O — o(h))'~* = ih + o(h),
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Hence,

— 0,

o P(X(t+h) =i - X (1) =)
qii—1 = }Lli)% A

Forj<i—1,9=2,...,nand h > 0:
P(X(t+ h) = j|X(t) = i) = P(Detecting i - j errors during(t, ¢ + h))
= (.1 )on-+ oty a1 = o o)) = o),

since ¢ — 7 > 2. Hence,

. P(X(t+h)=j]X(t) =i
5 = Jim (X( )hJ! ®=9_,

And indeed, the process becomes a pure death process with parameters u; = i6, for ¢ =
0,1,...,n.

b)

The time 7(;) until the first ’death’ in state ¢ is exponentially distributed with parameter
pi = i6. Hence, the expected time until the first error is detected is E[T{,] = 1/(nf).

The expected time until all errors have been detected is then

n

=1

i
i0
c)

The process Xj(t) is just a special case of the process X (t) discussed in a) with n = 1.
Hence, Xj(t) is a Markov process with state space {0,1}.

The transition rates in this case are then ¢19 = 6 and gg1 = 0.

For a particular k, the time T} until the error is detected is exponentially distributed
with parameter 6. Hence,

PXp(t)=1)=P(Tp, >t)=e% t>0

d)

Clearly,
X(t) = Xl(t) + Xg(t) +...+ Xn(t)
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For each fixed ¢, the random variables X (t), k = 1,,...,n becomes a set of independent,
identically distributed Bernoulli variables with probability of ’success’ p = e~%. Hence,
X (t) is binomially distributed, and

bt = (D (Ve

7

Note: p =1 for t = 0.

e)

If the number of errors X (0) is Poisson distributed with parameter A, we can write
X(t) = X1 (t) + Xo(t) + ...+ Xx o)1),

Then, according to d),

o0

— ZP(X(t) =0]X(0) =n) P(X(0) =n) =

> ()\(1 — e_et))n

A"
n! n!

n=0

—0t _,—0t
*€>\€)\(1e ):ee )

Problem 3
a)

See the textbook.
b)

From the information given we have an M/M /1-system, and it follows that (h > 0),

Piivi(h) =P(X(t+h)=i+1|X(t) =1i) = ilh—i—o(h) 1>0

P i1(h)=P(X(t+h)=i—1|X(t)=1i)=ph+o(h), i >1

Pu(h) = P(X(t+h) = i|X(t) = i) = 1 — ilh ph+o(h), i>1
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Py(h) =P(X(t+h)=0/X(t)=0)=1—An+o(h),
while
Pij(h)=P(X(t+h)=4|X(t)=1)=o0(h), |7—1]>1.

Hence, X (t) is a birth and death process with birth rates \; = A/(i+1), for i = 0,1,. ..,
and death rates po =0, u; =p, i1 =1,2,....

c)
The stationary distribution is given as
P=0;FP, i=1,2,...

where

1
Pp=——— i=102 ...
'R 6
and Ao A 1A\
PR . 1
ei:u:f(f),i:m,...

This leads to the result:

1 /72\¢ _a
Pi:f<f>ze FLi=0,1,2,....
i\

That is, the limiting distribution is a Poisson distribution with parameter A/p.

The proportion of time that the system is vacant in the long run is Py =¢e » .
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