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Problem 1

a)

It is seen that
Xn+1 = min{Xn, Yn+1}

Hence, when Xn is given, the statistics of Xn+1 does not depend on Xk for k < n which
implies that {Xn}

∞

n=1 is a Markov chain. The transition probability matrix P = (Pij),
where Pij = P (Xn+1 = j |Xn = i) for i, j = 0, 1, 2, . . ., (does not depend on n) is given as
follows:

P00 = 1 ; P0j = 0 , j > 1

while for i ≥ 1 ,

Pij =







pj , 0 < j < i

1 −
∑i−1

j=0 pj , j = i

0 , j > i

b)

Let fi = The probability of ever returning to state i. i is a recurrent state if fi = 1. i is a
transient state if fi < 1.

We now use the following results:

fi = 1 ⇔
∞

∑

m=1

Pm
ii = ∞ , fi < 1 ⇔

∞
∑

m=1

Pm
ii < ∞ ,

where Pm
ij = P (Xn+m = j |Xn = i).

Since P00 = 1, it follows that Pm
00 = 1 for m = 1, 2, . . .. Hence,

∑

∞

m=1 Pm
00 = ∞, so {0}

is recurrent.

Also, since Pij = 0 for j > i, it follows that Pm
ii = (Pii)

m = (1 −
∑i−1

j=0 pj)
m for

i ≥ 1 (since then the only way of returning to i is that the chain remains in i). Therefore,
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∑

∞

m=1 Pm
ii =

∑

∞

m=1(1−
∑i−1

j=0 pj)
m < ∞ since (1−

∑i−1
j=0 pj) < 1, so the states {1, 2, 3, . . .}

are transient.
Since P00 = 1, {0} is an aperiodic state. Also, since P00 = 1, the average return time

must be 1, so {0} is positively recurrent. {0} is therefore ergodic.

If the Markov chain {Xn}
∞

n=1 has a limiting distribution πππ = (π0, π1, . . .), it must satisfy
the equations πππ = πππP, that is,

π0 = π0 + p0

∞
∑

i=1

πi

and, for i = 1, 2, . . .,

πi = πi (1 −
i−1
∑

j=0

pj) + pi

∞
∑

j=i+1

πj

The first equation leads to p0
∑

∞

i=1 πi = 0, or equivalently,
∑

∞

i=1 πi = 0. This immedi-
ately gives π1 = π2 = . . . = 0. From the normalization condition

∑

∞

i=0 πi = 1, it is obtained
that π0 = 1. It is now easy to verify that πππ = (1, 0, 0, . . .) indeed satisfies πππ = πππP. It is
therefore a limiting distribution.

Alternatively: Eventually, the chain will leave all transient states and end up in {0}
as the only recurrent state. This implies that the only possible limiting distribution is
πππ = (1, 0, 0, . . .), which is easily verified to satisfy πππ = πππP.

Problem 2

a)

If information about X(t) for time t ≤ s is given, then the distribution of X(t) for t > s
conditional on this information will depend only on the value of X(s). That is, X(t) is a
Markov process. It has state space Ω = {0, 1, . . . , n}.

Obviously, for j > i = 0, 1, . . . , n − 1 and any h > 0:

P (X(t + h) = j|X(t) = i) = 0 ⇒ qij = 0

For i = 1, 2, . . . , n and h > 0:

P (X(t + h) = i − 1|X(t) = i) = P
(

Detecting one error during(t, t + h)
)

=

(

i

1

)

(θh + o(h))(1 − θh − o(h))i−1 = iθh + o(h) ,
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Hence,

qi,i−1 = lim
h→0

P (X(t + h) = i − 1|X(t) = i)

h
= iθ ,

For j < i − 1, i = 2, . . . , n and h > 0:

P (X(t + h) = j|X(t) = i) = P
(

Detecting i - j errors during(t, t + h)
)

=

(

i

i − j

)

(θh + o(h))i−j(1 − θh − o(h))j = o(h) ,

since i − j ≥ 2. Hence,

qij = lim
h→0

P (X(t + h) = j|X(t) = i)

h
= 0 ,

And indeed, the process becomes a pure death process with parameters µi = i θ, for i =
0, 1, . . . , n.

b)

The time T(i) until the first ’death’ in state i is exponentially distributed with parameter
µi = i θ. Hence, the expected time until the first error is detected is E[T(n)] = 1/(nθ).

The expected time until all errors have been detected is then

E[T(1) + T(2) + . . . + T(n)] =
n

∑

i=1

1

i θ
.

c)

The process Xk(t) is just a special case of the process X(t) discussed in a) with n = 1.
Hence, Xk(t) is a Markov process with state space {0, 1}.

The transition rates in this case are then q10 = θ and q01 = 0.

For a particular k, the time Tk until the error is detected is exponentially distributed
with parameter θ. Hence,

P (Xk(t) = 1) = P (Tk > t) = e−θt , t ≥ 0

d)

Clearly,
X(t) = X1(t) + X2(t) + . . . + Xn(t)
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For each fixed t, the random variables Xk(t), k = 1, , . . . , n becomes a set of independent,
identically distributed Bernoulli variables with probability of ’success’ p = e−θt. Hence,
X(t) is binomially distributed, and

Pni(t) =

(

n

i

)

pi(1 − p)n−i =

(

n

i

)

e−iθt
(

1 − e−θt
)n−i

Note: p = 1 for t = 0.

e)

If the number of errors X(0) is Poisson distributed with parameter λ, we can write

X(t) = X1(t) + X2(t) + . . . + XX(0)(t) ,

Then, according to d),

P
(

X(t) = 0) =
∞

∑

n=0

P (X(t) = 0 |X(0) = n
)

P
(

X(0) = n
)

=

=
∞

∑

n=0

(

1 − e−θt
)n λn

n!
e−λ = e−λ

∞
∑

n=0

(

λ(1 − e−θt)
)n

n!

= e−λ eλ(1−e−θt) = e−e−θt

.

Problem 3

a)

See the textbook.
b)

From the information given we have an M/M/1-system, and it follows that (h > 0),

Pi,i+1(h) = P (X(t + h) = i + 1|X(t) = i) =
λ

i + 1
h + o(h) , i ≥ 0

Pi,i−1(h) = P (X(t + h) = i − 1|X(t) = i) = µh + o(h) , i ≥ 1

Pii(h) = P (X(t + h) = i|X(t) = i) = 1 −
λ

i + 1
h − µh + o(h) , i ≥ 1
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P00(h) = P (X(t + h) = 0|X(t) = 0) = 1 − λh + o(h) ,

while

Pij(h) = P (X(t + h) = j|X(t) = i) = o(h) , |j − i| > 1.

Hence, X(t) is a birth and death process with birth rates λi = λ/(i+1), for i = 0, 1, . . .,
and death rates µ0 = 0, µi = µ, i = 1, 2, . . ..

c)

The stationary distribution is given as

Pi = θi P0 , i = 1, 2, . . .

where

P0 =
1

1 +
∑

∞

i=1 θi

, i = 1, 2, . . .

and

θi =
λ0 · · ·λi−1

µ1 · · ·µi

=
1

i!

(λ

µ

)i

, i = 1, 2, . . .

This leads to the result:

Pi =
1

i!

(λ

µ

)i

e−
λ
µ , i = 0, 1, 2, . . . .

That is, the limiting distribution is a Poisson distribution with parameter λ/µ.

The proportion of time that the system is vacant in the long run is P0 = e
−

λ
µ .
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