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Problem 1

a)

By construction, the probability of going from state i (i = 0, 1) to state j (j = 0, 1) is
fully determined by the initial state i. Hence the process becomes a Markov chain. The
transition probability matrix is given as,

P =

[

1− p p
q 1− q

]

The eigenvalues λ1 and λ2 are obtained by solving the equation det(P−λI) = 0, where
det denotes the determinant and

I =

[

1 0
0 1

]

This leads to the equation (1 − p − λ)(1 − q − λ) − pq = 0, or λ2 − (2 − p − q)λ + (1 −
p − q) = (λ − 1)(λ − (1 − p − q)) = 0. The two eigenvalues are therefor λ1 = 1 and
λ2 = 1 − p − q. Corresponding eigenvectors are found from the equations, Pv1 = v1 and
Pv2 = (1− p− q)v2. The first equation gives e.g. v1 = (1, 1)T , while the second equation
gives e.g. v2 = (p,−q)T . Define the matrix

T =

[

1 p
1 −q

]

Then

PT = TΛ = T

[

1 0
0 1− p− q

]

,

which leads to,
P = TΛT

−1

It then follows that
P

m = TΛ
m
T

−1 , m = 1, 2, . . .
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This leads to the equation,

P
m = T

[

1 0
0 (1− p− q)m

]

T
−1 = T

[

1 0
0 0

]

T
−1 +T

[

0 0
0 (1− p− q)m

]

T
−1

It is found that,

T
−1 =

1

p+ q

[

q p
1 −1

]

,

which, when combined with the previous equation, leads to,

P
m =

1

p+ q

[

q p
q p

]

+
(1− p− q)m

p+ q

[

p −p
−q q

]

b)

This follows by using the Chapman-Kolmogorov equation (see the textbook).

c)

Clearly, for 0 < p, q < 1 or p = 1 and 0 < q < 1 or q = 1 and 0 < p < 1, the Markov
chain is irreducible and ergodic (aperiodic and positively recurrent) and therefore limiting
probabilities exist. In this case limm→∞(1− p− q)m → 0, which implies that

lim
m→∞

P
m =

1

p+ q

[

q p
q p

]

.

That is, the limiting probabilities are given as limm→∞ P
(m)
i0 = q/(p + q) for i = 0, 1 and

limm→∞ P
(m)
i1 = p/(p+ q) for i = 0, 1.

For p = q = 1 the Markov chain is still irreducible and positively recurrent, but periodic
with period 2, and therefore limiting probabilities do not exist. This is easily verified from
the expression for P

m, since limm→∞(1− p− q)m = limm→∞(−1)m, which does not exist.

For p = q = 0 the Markov chain is reducible to two trivial irreducible subchains, which
are both aperiodic and positively recurrent. The limiting probabilities obviously do not

exist since e.g. P
(m)
00 = 1 and P

(m)
10 = 0 for any value of m.

d)

The distribution π is a stationary distribution for the Markov chain Xn if given that the
distribution of X0 is a stationary distribution π, then the distribution of Xn is also π for
any n = 1, 2, . . ..
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The stationary distribution must satisfy the equation πP = π, which for the present
problem assumes the form

(π1, π2)

[

1− p p
q 1− q

]

= (π1, π2) .

The solution must satisfy the equation p π1 = q π2 and π1 + π2 = 1. This gives the
solution π1 = q/(p + q) and π2 = p/(p + q) provided p + q > 0. If p = q = 0, then any
distribution (π1, π2) is a stationary distribution. Hence, a stationary distribution exists for
any 0 ≤ p, q ≤ 1.

It is seen that the limiting distribution when it exists, agrees with the stationary distri-
bution, which is a general result. However, a Markov chain may have a stationary distri-
bution even if the limiting distribution does not exist, as has been demonstrated here.

Problem 2

a)

In a birth and death process the time from each birth to the next is assumed to be exponen-
tially distributed with the birth rate λn as parameter. Specifically, if the population size is
n ∈ Z+ = {0, 1, 2, . . .}, the birth rate parameter is λn, and the distribution of the time until
the next birth happens is exponentially distributed with parameter λn. Similarly for the
deaths: If the population size is n, and the death rate parameter is µn, then the distribution
of the time until the next death happens is exponentially distributed with parameter µn.
This implies that µ0 = 0.

According to the assumptions of the model in this problem, λ2 = α implies that the
operation time of each compressor until failure is exponentially distributed with parameter
α. The birth rates λ0 and λ1 are then determined by the minimum of two operation times,
which is exponentially distributed with parameter 2α. Hence, λ0 = λ1 = 2α

b)

The general Kolmogorov’s forward equations

P ′
ij(t) =

∑

k 6=j

qkjPik(t)− vjPij(t).

For the birth and death process here:

v0 = 2α , v1 = 2α+ β , v2 = α+ β , v3 = β
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and

P01 = 1 , P10 =
β

2α+ β
,

P12 =
2α

2α+ β
, P21 =

β

α+ β
,

P23 =
α

α+ β
, P32 = 1 ,

This leads to,
q01 = q12 = 2α , q10 = q21 = q32 = β , q23 = α ,

Kolmogorov’s forward equations for the present model for i = 0, 1, 2, 3:

j = 0 : P ′
i0(t) = βPi1(t)− 2αPi0(t) ,

j = 1 : P ′
i1(t) = 2αPi0(t) + βPi2(t)− (2α+ β)Pi1(t) ,

j = 2 : P ′
i2(t) = 2αPi1(t) + βPi3(t)− (α+ β)Pi2(t) ,

j = 3 : P ′
i3(t) = αPi2(t)− βPi3(t) ,

c)

The stationary distribution can be obtained from these equations by putting limt→∞ P ′
ij(t) =

0, and limt→∞ Pij(t) = πj . This leads to the equations:

j = 0 : 0 = βπ1 − 2απ0 ,

j = 1 : 0 = 2απ0 + βπ2 − (2α+ β)π1 ,

j = 2 : 0 = 2απ1 + βπ3 − (α+ β)π2 ,

j = 3 : 0 = απ2 − βπ3 ,

By solving these equations, it is obtained that π1 = (2α/β)π0, π2 = (2α/β)π1 =
(2α/β)2 π0, π3 = (α/β)π2 = (α/β) (2α/β)2 π0. The condition

∑3
j=0 πj = 1 then finally

gives the solution:

π0 =
1

γ
, π1 =

2α

βγ
, π2 =

(2α

β

)2 1

γ
, π3 =

(2α

β

)2 α

βγ
,

where

γ = 1 +
2α

β
+
(2α

β

)2 (

1 +
α

β

)

,

d)
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Let ei = E[Ti], then we get the equations m2 = e2, m1 = e1 + e2 and m0 = e0 + e1 + e2,
where

e0 =
1

2α

e1 =
1

2α
+

β

2α
e0 =

1

2α
+

β

(2α)2

e2 =
1

α
+

β

α
e1 =

1

α
+

β

α

( 1

2α
+

β

(2α)2
=

1

α
+

1

α

( β

2α
+
( β

2α

)2)

This results in the following solutions:

m0 =
3

2α
+
( 1

α
+

1

β

)( β

2α
+
( β

2α

)2)

,

m1 =
1

α
+
( 1

α
+

1

β

)( β

2α
+
( β

2α

)2)

,

m2 =
1

α
+

1

α

( β

2α
+
( β

2α

)2)

.

e)

You are asked to calculate E[T |X(0) ≤ 2] assuming that stationary conditions have been
reached. Conditioning on the particular state at t = 0, we find,

E[T |X(0) ≤ 2] =
3

∑

i=0

E[T |X(0) ≤ 2 ∩X(0) = i]P
(

X(0) = i |X(0) ≤ 2
)

=
2

∑

i=0

E[T |X(0) = i]
P
(

X(0) = i
)

P
(

X(0) ≤ 2
) .

=
2

∑

i=0

mi

πi
π0 + π1 + π2

=
m0π0 +m1π1 +m2π2

π0 + π1 + π2
.

Problem 3

a)

From the given formulas, it follows that the stationary distribution Pj , j = 0, 1, 2, . . . is
given as follows:

Pj = θj P0 , j = 1, 2, . . .
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where

P0 =
1

1 +
∑∞

j=1 θj
,

and

θj =
λ0 · · ·λj−1

µ1 · · ·µj

=
αj · q · q2 · . . . · qj−1

µj

=
(α

µ

)j

q
∑j−1

i=1 i =
(α

µ

)j

q
j(j−1)

2 , j = 1, 2, . . .

Hence,

Pj =
(α

µ

)j

q
j(j−1)

2 P0 , j = 1, 2, . . .

It is seen that,

θj =
(α

µ

)j

q
j(j−1)

2 =
(α

µ
q

j−1
2

)j

, j = 1, 2, . . .

For any given α > 0 and µ > 0 there is a j0 such that

α

µ
q

j−1
2 <

α

µ
q

j0−1
2 < 1 ,

for j > j0 since 0 < q < 1. Hence,
∑∞

j=1 θj < ∞ for any choices of α > 0 and µ > 0, which
is the condition for the existence of the stationary distribution.

From the discussion in point a) of Problem 2, it follows that the birth and death process
considered here can be interpreted as an M/M/1 queueing system with exponential arrival
rates λn = α qn (n ≥ 0) and exponential departure rates µn = µ (n ≥ 1).

The particular expression for the arrival rate implies that the more customers in the
system the less likely it is that an arriving customer will enter the queueing system.
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