

TMA4285 Tidsrekker og filterteori

Norges teknisk-naturvitenskapelige universitet $% \frac{1}{2}$

Institutt for matematiske fag

Løsningsforslag - Øving 1 august 2004

Exercise 1.1

a)

Let
$$S(c) = E[(Y - c)^2]$$
. Then

$$S(c) = E(Y^2) - 2cE(Y) + c^2$$

This gives

$$\frac{dS}{dc} = -2E(Y) + 2c = 0$$

for c = E(Y), which leads to a global minimum since $\frac{d^2S}{dc^2} = 2 > 0$ for all c.

b)

$$E[(Y - f(X))^{2}|X] = E[(Y - E(Y|X) + E(Y|X) - f(X))^{2}|X] =$$

$$E[(Y - E(Y|X))^{2}|X] + 2E[(Y - E(Y|X))(E(Y|X) - f(X))|X] + E[(E(Y|X) - f(X))^{2}|X] =$$

$$E[(Y - E(Y|X))^{2}|X] + 2(E(Y|X) - f(X))E[(Y - E(Y|X))|X] + E[(E(Y|X) - f(X))^{2}|X] =$$

$$E[(Y - E(Y|X))^{2}|X] + E[(E(Y|X) - f(X))^{2}|X] \ge E[(Y - E(Y|X))^{2}|X]$$

because E(Y|X) is a function of X and E(g(X)Y|X) = g(X)E(Y|X) for any function g such that E(g(X)Y) exists.

It follows that

$$E[(Y - E(Y|X))^{2}|X] \le E[(Y - f(X))^{2}|X]$$

for any function f. Hence $E[(Y - f(X))^2 | X]$ is minimized when f(X) = E(Y | X).

c)

Since

$$E[\left(Y - E(Y|X)\right)^2] = E\left(E[\left(Y - E(Y|X)\right)^2|X]\right) \leq E\left(E[\left(Y - f(X)\right)^2|X]\right) = E[\left(Y - f(X)\right)^2]$$

it follows immediately that the random variable f(X) that minimizes $E[(Y - f(X))^2]$ is f(X) = E(Y|X).

Exercise 1.2

a)

Let
$$X = (X_1, X_2, ..., X_n)$$
. Then

$$E[(X_{n+1} - f(X))^{2}|X] = E[(X_{n+1} - E(X_{n+1}|X) + E(X_{n+1}|X) - f(X))^{2}|X] =$$

$$E[(X_{n+1} - E(X_{n+1}|X))^{2}|X] + 2E[(X_{n+1} - E(X_{n+1}|X))(E(X_{n+1}|X) - f(X))|X]$$

$$+ E[(E(X_{n+1}|X) - f(X))^{2}|X] =$$

$$E[(X_{n+1} - E(X_{n+1}|X))^{2}|X] + 2(E(X_{n+1}|X) - f(X))E[(X_{n+1} - E(X_{n+1}|X))|X]$$

$$+ E[(E(X_{n+1}|X) - f(X))^{2}|X] =$$

$$E[(X_{n+1} - E(X_{n+1}|X))^{2}|X] + E[(E(X_{n+1}|X) - f(X))^{2}|X] \ge E[(X_{n+1} - E(X_{n+1}|X))^{2}|X]$$

because $E(X_{n+1}|X)$ is a function of X and $E(g(X)X_{n+1}|X) = g(X)E(X_{n+1}|X)$ for any function g such that $E(g(X)X_{n+1})$ exists.

It follows that

$$E[(X_{n+1} - E(X_{n+1}|X))^2|X] \le E[(X_{n+1} - f(X))^2|X]$$

for any function f. Hence $E[(X_{n+1}-E(X_{n+1}|X))^2|X]$ is minimized when $f(X)=E(X_{n+1}|X)$.

b)

Since

$$E[(X_{n+1} - E(X_{n+1}|X))^{2}] = E(E[(X_{n+1} - E(X_{n+1}|X))^{2}|X])$$

$$\leq E(E[(X_{n+1} - f(X))^{2}|X]) = E[(X_{n+1} - f(X))^{2}]$$

it follows immediately that the random variable f(X) that minimizes $E[(X_{n+1} - f(X))^2]$ is again $f(X) = E(X_{n+1}|X)$.

 \mathbf{c})

By b) the minimum mean-squared error predictor of X_{n+1} in terms of $X=(X_1,X_2,\ldots,X_n)$ when $X_t \sim IID(\mu,\sigma^2)$ is

$$E(X_{n+1}|X) = E(X_{n+1}) = \mu$$

 \mathbf{d}

Suppose that $\sum_{i=1}^{n} \alpha_i X_i$ is an unbiased estimator for μ , that is, $\sum_{i=1}^{n} \alpha_i = 1$. Then

$$E\left[\left(\sum_{i=1}^{n}\alpha_{i}X_{i}-\mu\right)^{2}\right]=E\left[\left(\sum_{i=1}^{n}\alpha_{i}X_{i}-\overline{X}\right)^{2}\right]+2E\left[\left(\sum_{i=1}^{n}\alpha_{i}X_{i}-\overline{X}\right)\left(\overline{X}-\mu\right)\right]+E\left[\left(\overline{X}-\mu\right)^{2}\right]\geq E\left[\left(\overline{X}-\mu\right)^{2}\right]$$

since the second term is zero:
$$E\left[\left(\sum_{i=1}^{n}\alpha_{i}X_{i}-\overline{X}\right)\left(\overline{X}-\mu\right)\right]=Cov\left(\sum_{i=1}^{n}\alpha_{i}X_{i}-\overline{X},\overline{X}\right)=Cov\left(\sum_{i=1}^{n}\alpha_{i}X_{i},\sum_{i=1}^{n}\frac{1}{n}X_{i}\right)-Cov\left(\sum_{i=1}^{n}\frac{1}{n}X_{i},\sum_{i=1}^{n}\frac{1}{n}X_{i}\right)=\sum_{i=1}^{n}\frac{\alpha_{i}}{n}\sigma^{2}-\sum_{i=1}^{n}\frac{1}{n^{2}}\sigma^{2}=0.$$

e)

Again, suppose that $\sum_{i=1}^{n} \alpha_i X_i$ is an unbiased estimator for μ , that is, $\sum_{i=1}^{n} \alpha_i = 1$. Then

$$E[(X_{n+1} - \sum_{i=1}^{n} \alpha_i X_i)^2] = E[(X_{n+1} - \overline{X})^2] + 2E[(X_{n+1} - \overline{X})(\overline{X} - \sum_{i=1}^{n} \alpha_i X_i)] + E[(\overline{X} - \sum_{i=1}^{n} \alpha_i X_i)^2]$$

$$\geq E[(X_{n+1} - \overline{X})^2]$$

since the second term is zero: $Cov(X_{n+1} - \overline{X}, \overline{X} - \sum_{i=1}^{n} \alpha_i X_i) = -Cov(\overline{X}, \overline{X}) + Cov(\overline{X}, \sum_{i=1}^{n} \alpha_i X_i) = 0$ as in d).

f)

$$E(S_{n+1}|S_1,\ldots,S_n) = E(S_n + X_{n+1}|S_1,\ldots,S_n) = S_n + E(X_{n+1}|S_1,\ldots,S_n) = S_n + \mu$$

since X_{n+1} is independent of S_1, \ldots, S_n .

Exercise 1.3

i)

 $E(X_t)$ is independent of t since the distribution of X_t is independent of t and $E(X_t)$ exists.

ii)

Since $E[X_{t+h}X_t]^2 \leq E[X_{t+h}^2]E[X_t^2]$ for all integers t,h, and the joint distribution of X_{t+h} and X_t is independent of t, it follows that $E[X_{t+h}X_t]$ exists and is independent of t for every integer h.

Combining i) and ii) it follows that X_t is weakly stationary.

Exercise 1.4

a)

 $E(X_t) = a$ is independent of t.

$$Cov(X_{t+h}, X_t) = \begin{cases} (b^2 + c^2)\sigma^2 & ; & h = 0\\ 0 & ; & h = \pm 1\\ bc\sigma^2 & ; & h = \pm 2\\ 0 & ; & |h| > 2 \end{cases}$$

which is independent of t. That is, X_t is stationary.

b)

 $E(X_t) = 0$ is independent of t.

$$Cov(X_{t+h}, X_t) = Cov(Z_1 \cos c(t+h) + Z_2 \sin c(t+h), Z_1 \cos ct + Z_2 \sin ct)$$

= $\sigma^2(\cos c(t+h) \cos ct + \sin c(t+h) \sin ct) = \sigma^2 \cos ch$

which is independent of t. That is, X_t is stationary.

 $\mathbf{c})$

 $E(X_t) = 0$ is independent of t.

$$Cov(X_{t+1}, X_t) = \sigma^2 \cos c(t+1) \sin ct$$

which is not independent of t. That is, X_t is not stationary (except in the special case when c is an integer multiple of 2π).

d)

 $E(X_t) = a$ is independent of t.

$$Cov(X_{t+h}, X_t) = b^2 \sigma^2$$

which is independent of t. That is, X_t is stationary.

e)

 $E(X_t) = 0$ is independent of t.

$$Cov(X_{t+h}, X_t) = \sigma^2 \cos c(t+h) \cos ct$$

which is not independent of t. That is, X_t is not stationary (except in the special case when c is an integer multiple of 2π).

f)

 $E(X_t) = 0$ is independent of t.

$$Cov(X_{t+h}, X_t) = E[X_{t+h}X_t] = E[Z_{t+h}Z_{t+h-1}Z_tZ_{t-1}] = \begin{cases} \sigma^4 & ; h = 0\\ 0 & ; |h| > 0 \end{cases}$$

which is independent of t. That is, X_t is stationary, and it is seen that in fact $X_t \sim WN(0, \sigma^4)$.

Exercise 1.5

a)

The autocovariance function

$$\gamma_X(h) = \begin{cases} 1 + \theta^2 & ; & h = 0\\ \theta & ; & h = \pm 2\\ 0 & ; & \text{otherwise} \end{cases}$$

The autocorrelation function

$$\rho_X(h) = \begin{cases} 1 & ; \quad h = 0\\ \frac{\theta}{1+\theta^2} & ; \quad h = \pm 2\\ 0 & ; \quad \text{otherwise} \end{cases}$$

For $\theta = 0.8$ it is obtained that

$$\gamma_X(h) = \begin{cases} 1.64 & ; & h = 0 \\ 0.8 & ; & h = \pm 2 \\ 0 & ; & \text{otherwise} \end{cases}$$

$$\rho_X(h) = \begin{cases} 1 & ; & h = 0 \\ 0.488 & ; & h = \pm 2 \\ 0 & ; & \text{otherwise} \end{cases}$$

b) Let
$$\overline{X}_4 = \frac{1}{4}(X_1 + ... + X_4)$$
. Then

$$Var(\overline{X}_4) = Cov(\overline{X}_4, \overline{X}_4) = \frac{1}{16} \sum_{i=1}^4 \sum_{i=1}^4 Cov(X_i, X_j)$$
$$= \frac{1}{4} (\gamma_X(0) + \gamma_X(2)) = \frac{1}{4} (1.64 + 0.8) = 0.61$$

 \mathbf{c})

$$Var(\overline{X}_4) = Cov(\overline{X}_4, \overline{X}_4) = \frac{1}{4}(\gamma_X(0) + \gamma_X(2)) = \frac{1}{4}(1.64 - 0.8) = 0.21$$

The negative lag 2 correlation in c) means that positive deviations of X_t from zero tend to be followed two time units later by a compensating negative deviation, resulting in smaller variability in the sample mean than in b) (and also smaller than if the time series X_t were IID(0, 1.64) in which case $Var(\overline{X}_4) = 0.41$).