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Exercise 3.11
The PACF at lag 2, φ22, of the given MA(1) process is determined from the BLPP2X3 of
X3 in terms of X2 and X1 by the relation

P2X3 = φ21X2 + φ22X1

where Zt ∼WN(0, σ2).
The value of φ22 was calculated in Exercise 2.21(a). It was found that

φ22 = a2 =
−θ2

(1 + θ2)2 − θ2
=

−θ2

1 + θ2 + θ4

Exercise 4.1
∫ π

−π
ei(k−h)λ =

∫ π

−π

[
cos(k − h)λ + i sin(k − h)λ

]
dλ

=

{ [
sin(k−h)λ−i cos(k−h)λ

k−h

]π

−π
= 0 for k 6= h∫ π

−π 1 dλ = 2π for k = h

Exercise 4.4
Since

1
2π

∞∑
−∞

eiωhγ(h) =
[
1− 0.5(e−2iω + e2iω)− 0.25(e−3iω + e3iω)

]

=
1
2π

[
1− cos 2ω − 0.5 cos 3ω

]
= − 1

4π
< 0 at ω = 0,
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γ(h) cannot be an autocorrelation function.

Exercise 4.5
For Zt = Xt + Yt, with Xt and Yt uncorrelated and stationary, it follows that E(Zt) =
E(Xt) + E(Yt) = constant, Cov(Zt+h, Zt) = γX(h) + γY (h). Hence, Zt is also stationary,
and we can write

γZ(h) = γX(h) + γY (h) =
∫ π

−π
eiωhdFX(ω) +

∫ π

−π
eiωhdFY (ω)

=
∫ π

−π
eiωhd[FX(ω) + FY (ω)]

Therefore, Zt has the spectral distribution functionFZ(ω) = FX(ω) + FY (ω).

Exercise 4.6
Let Ut = A cos(πt/3) + B sin(πt/3). Then Ut is a stationary process with mean value
zero and covariance function γU (h) = ν2 cos(πh/3) = ν2

2 (e−iπh/3 + eiπh/3). Ut is clearly
uncorrelated with Yt, which is also a stationary process with mean value zero and covariance
function γY (h), which is given as

γY (h) =





7.25σ2 : h = 0
2.5σ2 : h = ±1
0 : |h| > 1

Invoking Exerecise 4.5, we know that the covariance function ofXt is given as γX(h) =
γU (h) + γY (h). The corresponding spectral distribution functionFX(ω) = FU (ω) + FY (ω),
where

FU (ω) =





0 : ω < −π/3
ν2/2 : −π/3 ≤ ω < π/3
ν2 : π/3 ≤ ω

and

FY (ω) =
∫ ω

−π
fY (λ)dλ =

∫ ω

−π

1
2π

1∑

h=−1

γY (h)e−ihλ dλ

=
∫ ω

−π

σ2

2π

(
7.25 + 5 cosλ

)
dλ =

σ2

2π

(
7.25(ω + π) + 5 sinω

)
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Exercise 4.8
The spectral density of Xt is

fX(ω) =
1
2π
|1− 0.99e−i3ω|−2 =

1
2π(1.9801− 1.98 cos 3ω)

This spectral density has sharp peaks at the frequencies ω = 0,±2π/3, which suggests
sample paths that are quite smooth and nearly periodic with period 3. The spectral density
of the �ltered process Yt = 1

3(Xt−1 + Xt + Xt+1) is

fY (ω) =
1
9
|e−iω + 1 + eiω|2fX(ω) =

1
9
(
3 + 4 cosω + 2 cos 2ω

)
fX(ω)

and fX(2π/3) = 10000/(2π), fY (2π/3) = 0. So this �lter e�ectively eliminates the strong
periodic component of the time seriesXt.

The numerical part of this exercise is discussed on the next two pages.
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Exercise 4.8   
 
(a)     By specifying the given AR(3), ITSM calculates the following spectral density (shown 
only for positive frequencies)  
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(b) It is seen that the spectral density has a very sharp peak (at non-zero frequencies) at ω 
= 2π/3 and is zero elsewhere (except at zero). This is a strong indication that the time 
series will exhibit approximately oscillatory behaviour at period 3. 

(c) Simulated time series 
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It is seen that the time series has a period very close to 3. 
 
 
 
 
 
 



(e) 
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A plot of the smoothed time series Yt = 1/3 ( Xt-1 + Xt + Xt+1) . The estimates spectral density 
is shown below. It is clearly seen that the spectral peak at ω = 2π/3 has been removed.  
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