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Exercise 1.1

a)

Let S(c) = E[(Y — ¢)?]. Then

This gives

S(c) = BE(Y?) —2cE(Y) 4 ¢*

ds
— = 2F(Y 2c=10
de ()—I— c

for ¢ = E(Y), which leads to a global minimum since 5 9> 0 for all c.

b)

E[(Y - f(X))*|X] =
E[(Y - B(Y|X))*|X] +
E[(Y - B(Y|X))%|X] +
E[(Y — E(Y|X))*|X] +

dez —

E[(Y - B(Y|X) + E(Y|X) — £(X))*|X] =

2B((Y - E(Y|X))(E(Y]X) — £(X))|X] + E[(E(Y]X) - £(X))*|X]
2(B(Y]X) — (X)) E[(Y - E(Y|X))|X] + E[(E(Y]X) - £(X))*|X]
E[(E(Y|X) - f(X))*|X] = E[(Y — E(Y|X))?|X]

because E(Y|X) is a function of X and E(g(X)Y|X) = g(X)E(Y|X) for any function g¢

such that E(g(X)Y) exists.
It follows that

E[(Y - E(Y]X))?|X] < E[(Y — f(X))?X]

for any function f. Hence E[(Y — f(X))2|X] is minimized when f(X) = E(Y|X).
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¢)
Since
Bl(Y-E(Y|X))*) = B(E[(y~E(Y|X))*|X]) < B(EI(Y-(X))*X]) = BI(Y ~/(X))’]

it follows immediately that the random variable f(X) that minimizes E[(Y — f(X ))2] is
f(X) = E(Y]X).

Exercise 1.2

a)

Let X = (X3, Xo,...,X,,). Then

E[(Xn41 — £(X))?*1X] = Bl(Xnt1 — B(Xn41]X) + E(Xp41]X) — £(X))*|X] =
E[(Xps1 — E(Xp311X))*|X] + 2B[(Xns1 — BE(Xni1]X)) (BE(Xni1]X) — f(X))|X]
+ E[(B(Xn1]X) — f(X))*|X] =
E[(Xni1 = B(Xn41]X)) | X] + 2(B(Xp 11| X) = f(X) E[(Xns1 = B(Xp11] X)) |X]

+ B[(E(Xps1|X) — (X))’ X] =

E[(Xn41 — B(Xn31|1X))*|X] + Bl(E(Xn41|X) — £(X))*|X] = E[(Xp41 — E(Xns1]X))*|X]

because E(X,+1|X) is a function of X and E(g(X)Xp4+1|X) = ¢(X)E(X,+1|X) for any
function g such that E(g(X)X,+1) exists.
It follows that

Bl(Xn11 = E(Xa1 1X))°1X] < B[(Xo = f(X)"1X]
for any function f. Hence E[(Xn+1—E(Xn+1|X))2|X] is minimized when f(X) = E(Xp4+1|X).
b)
Since

El(Xn41— E(Xn+1\X))2} = E(E[(Xn+1 — E(X“H‘X))Q‘XD

< B(E[(Xns1 — F(X)?X]) = Bl(Xas1 - F(X))?
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it follows immediately that the random variable f(X) that minimizes E[(X,41 — f(X ))2]
is again f(X) = E(X,41|X).

c)
By b) the minimum mean-squared error predictor of X,,;; in terms of X = (X1, Xo,..., X,,)

when X; ~ II1D(u,0?) is
E(Xn41]X) = E(Xn41) = p

d)

Suppose that Y ;" | o; X; is an unbiased estimator for y, that is, > . ; &y = 1. Then

ZaZX —p)? ZalX ~X)*+2E(( Z%X ~X) (X —p)+E[(X—p)?] > E[(X—p)?]
i=1 i=1

since the second term is zero: B[(Y 0, a; X; — X) (X p)]=Cov(}1 i Xi — X, X) =
Cov(37y aiXy, Yoy 5 Xi) — Cov(iy 31X, iy 3 Xi) = 20y Sho® = i, 12‘7 = 0.

e)

Again, suppose that Y . ; @;X; is an unbiased estimator for y, that is, Y ;" a; = 1.
Then

X1 — Z @, X)) = E[(Xps1 — X)) + 2B[(Xnt1 — X) (X - Z @i X;)] + E[(X - Z @ X;)’
> E[(Xnt1 — Y)2]

since the second term is zero: Cov(Xn+1—X, X—Y 11 0, X;) = —Cov(X, X)+Cov(X, Y1 | o4 X;) =
0 as in d).

f)

E(Snt1|S1,...,50) = E(Sn 4+ Xnt1lS1, ..., Sn) = Sn + E(Xpnq1|S1,. ., 5n) = Sn 4 4

since X, 41 is independent of Sy, ..., Sy.
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Exercise 1.3
i)
E(X,) is independent of ¢ since the distribution of X; is independent of ¢ and E(X;) exists.
ii)

Since E[X;14Xi|*> < E[X?_,]E[X?] for all integers ¢,h, and the joint distribution of
Xiyp and Xy is independent of ¢, it follows that E[X;,,X;] exists and is independent of ¢

for every integer h.

Combining i) and ii) it follows that X, is weakly stationary.

Exercise 1.4
a)
E(X};) = a is independent of t.

(B +c*)o? 5 h=

0 i h=41
Cov(Xen Xe) = o2 b= 42
0 ;b >2

which is independent of ¢. That is, X; is stationary.
b)

E(X;) =0 is independent of ¢.

Cov (Xt+h, Xt) =Cov (Z1 cosc(t + h) + Zasinc(t + h), Z cosct + Zy sin ct)

= 0*(cosc(t + h)cosct +sinc(t + h)sinct) = o? cosch

which is independent of ¢. That is, X; is stationary.
c)

E(X:) =0 is independent of ¢.
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Cov(Xt+1, Xt) = o2 cos c(t+ 1) sinct

which is not independent of ¢. That is, X; is not stationary (except in the special case when
¢ is an integer multiple of 27).

d)

E(X:) = a is independent of t.

Cov(Xypn, Xi) = b%0”
which is independent of ¢. That is, X; is stationary.
e)

E(X:) =0 is independent of ¢.

Cov (XHh, Xt) = 0% cosc(t + h) cos ct

which is not independent of ¢. That is, X; is not stationary (except in the special case when
¢ is an integer multiple of 27).

f)

E(X:) =0 is independent of ¢.

ot 7 h=0

Cov(Xitn, Xt) = B[ X0 Xt) = E[ZysnZiyn1Z4Zp 1] = { 0 i |hl>0

which is independent of ¢. That is, X; is stationary, and it is seen that in fact X; ~

WN(0,0%).

Exercise 1.5

a)
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The autocovariance function

146> ; h=0
0 ;i h=412
0 ;  otherwise
The autocorrelation function
1 : h=0
0 . _
= h =42
0 ;  otherwise
For # = 0.8 it is obtained that
1.64 ; h=0
0.8 ;i h=42
;  otherwise
i h=0
0 488 ; h =42
; otherwise

b)
Let X4 = 1(X1+ ...+ X4). Then

4 4
_ 1
Var(Xy) = COU(X4,X4 :1622002} XZ,X
i=1 i=

(1.64+0.8) = 0.61

.-lklr—l

= —(7x(0) +7x(2)) =

.Jkli—l

Var(Xy) = Cov(X4, X4) = ~ (7x(0) +vx(2)) = = (1.64 — 0.8) = 0.21

o
»-lklr—t

The negative lag 2 correlation in c¢) means that positive deviations of X; from zero
tend to be followed two time units later by a compensating negative deviation, resulting in
smaller variability in the sample mean than in b) (and also smaller than if the time series
X; were IID(0, 1.64) in which case Var(X4) = 0.41).
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