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One yellow, stamped A5 sheet with own formulas and notes.

The results of the exam available 10. January 2008

NB: All answers must be justified.

Notation used in this problem set:

• Zt is white noise with variance σ2, that is, Zt ∼ WN(0, σ2).

• B is backshift-operator, such that BjXt ≡ Xt−j, j ∈ Z = {0,±1,±2, . . .}
• ACVF = autocovariance function, ACF = autocorrelation function.

• IID = independent, identically distributed.

• N(0,1) = normally distributed with mean value 0 and variance 1.0.
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Problem 1

You will find the figures for this problem at the end of the problem set.

a) Assume that the time series Xt, t ∈ Z, is an AR(1) process given by Xt + φXt−1 = Zt,
where Zt denotes white noise. In Fig. 1 are shown the ACF for 4 different values of the
parameter φ. Determine these four values in the following order: 1) Upper left hand
figure, 2) Upper right hand figure, 3) Lower left hand figure, and 4) Lower right hand
figure.

b) Assume that the time series Yt, t ∈ Z, is an MA(q) process. In Fig. 2 are shown plots of
Yt versus Yt−k for k = 1, 2, 3. Look very carefully at these plots and try to decide what
the value of q is.

c) Assume that an observed time series Xt representing the demand of electricity over a
period of more than 30 years looks like the one shown in Fig. 3. If you wanted to try
to fit an ARMA model to this time series, suggest the first steps you would take in your
efforts to make such a fit. Explain why.

Problem 2

Assume that the time series Xt is an ARMA(2, 1) process defined by

φ(B) Xt = θ(B) Zt ; t ∈ Z (1)

where the AR polynomial φ(z) = 1− z + φ2 z2, and the MA polynomial θ(z) = 1 + θ z.

a) What are the requirements that the parameters φ and θ must satisfy for Xt to be a
(stationary) ARMA(2, 1) process? Hint: It may help you to show that for φ 6= 0, the
AR polynomial has the roots

z1,2 =
2

1±
√

1− 4φ2
.

b) Which additional requirements must φ and θ satisfy for Xt to be a causal and invertible
time series?

For the remaining part of this exam problem it is assumed that 0 < |φ| < 1 and θ = 0. The
following result is also cited: For an AR(2) process the ACVF can be expressed as γ(h) =
c1z

−h
1 + c2z

−h
2 for h ≥ 0 when z1 6= z2, where φ(zj) = 0 , j = 1, 2; while γ(h) = (c1 + c2h)z−h

1

for h ≥ 0 when z1 = z2.
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c) Depending on the value of φ, γ(h) will display qualitatively different behaviour. Without
determining the constants c1 and c2 explicitly in terms of φ and σ, write down the
expressions for γ(h) as it depends on φ. Make sure that γ(h) is always a real function of
h.

d) Determine the explicit expression for γ(h) for φ2 = 1/2, and show that the ACF is given
as follows,

ρ(h) =
cos

(
π
4
|h|+ b

)

2|h|/2 cos(b)
, h ∈ Z (2)

where tan b = 2/7. (Hint: cos t = (eit + e−it)/2, i =
√−1.)

Problem 3

An ARCH(1) process Xt is given as,

Xt =
√

Ht εt , εt ∼ IID N(0, 1) , (3)

where
Ht = α0 + α1X

2
t−1 , (α0 > 0, α1 > 0). (4)

It is assumed that 0 < α1 < 1. It can then be shown that

Ht = α0

(
1 +

∞∑
j=1

αj
1ε

2
t−1 · . . . · ε2

t−j

)
. (5)

a) Argue why εt and Ht are independent random variables for each t.

Determine the expressions for E[Xt], E[X2
t ].

It turns out that E[X4
t ] does not exist for every α1 satisfying 0 < α1 < 1. Find the

expression for E[X4
t ] and give the values of α1 for its existence. (E[ε4

t ] = 3.)

b) Let the process ηt be defined as follows, assuming that E[X4
t ] < ∞,

ηt = X2
t −Ht = (ε2

t − 1)Ht. (6)

Show that ηt ∼ WN(0, σ2
0), and determine σ2

0.

c) Establish an ARMA(p, q) model for X2
t , and identify p and q.



TMA4285 Time Series Models Page 4 of 6

2 4 6 8 10 12

−
1
.0

0
.0

1
.0

Lag

ρρ
k

l

l

l

l

l

l

l

l

l

l

l

l

2 4 6 8 10 12

−
1
.0

0
.0

1
.0

Lag

ρρ
k

l

l

l

l
l

l l l l l l l

2 4 6 8 10 12

0
.0

0
.4

0
.8

Lag

ρρ
k

l

l

l

l

l

l

l

l
l

l
l

l

2 4 6 8 10 12

0
.0

0
.4

0
.8

Lag

ρρ
k

l

l

l
l l l l l l l l l

! = ! = 

! = ! = 

Figure 1: ACF for different values of φ
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Figure 3: Demand for electricity.
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TMA4285 TIME SERIES MODELS
11. December 2008
Time: 09:00–13:00

Problem 1

a) The ACF ρ(k) = ρk for the given AR(1) process is given as ρk = (−φ)k for k = 0, 1, 2, . . ..
From the figures one may therefore read off the values of φ: 1) φ = −0.9, 2) φ = −0.4,
3) φ = 0.8, 4) φ = 0.5

b) The plot of Yt versus Yt−1 displays a significant negative correlation, while the plot of
Yt versus Yt−2 indicates a weak positive correlation (draw a vertical and horizontal line
through the origin and study each of the quadrants). No such trend can be detected in
the plot of Yt versus Yt−3. This indicates that the data is generated by an MA(2) model.

c) The recorded time series displays both increasing variability (variance), trend and sea-
sonality. Therefore, in order to stabilize the variability, a transformation of the data is
suggested. This could be done by the Cox-Box transformation, a log transformation is a
typical choice. After an appropriate transformation, the trend is removed by differenc-
ing. Here one differencing would seem sufficient. Finally, the seasonal component may be
removed by s-differencing, where s denotes the identified seasonal period. The residual
process after these operations can then be studied for a possible ARMA model fit.

Problem 2

a) For Xt to be an ARMA(2,1) process it has to be stationary, and the AR and MA
polynomials cannot have common roots. Stationarity is guaranteed by φ(z) 6= 0 for
|z| = 1 (z ∈ C = the complex numbers). That is, the roots of the AR polynomial
φ(z) = 1−z +φ2 z2 cannot lie on the unit circle. For φ = 0, obviously φ(z) = 0 for z = 1.
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Hence, a necessary condition for Xt to be stationary is that φ 6= 0. For φ 6= 0, i.e. φ2 > 0,
the roots of φ(z) are obtained as,

z± =
1∓

√
1− 4φ2

2φ2
=

2

1±
√

1− 4φ2
.

Can |z±| = 1 for some value of φ 6= 0? It is seen that z± are real for 0 < φ2 ≤ 1/4, and that
|z±| > 1. For φ2 > 1/4, there will be two complex conjugate roots z± = 2/(1±i

√
4φ2 − 1)

(i =
√−1). It follows that |z±| = 1 if 4 = 1 + (4φ2 − 1) = 4φ2, which is satisfied for

φ = ±1. Conclusion: Xt is stationary for φ /∈ {0,±1}
The requirement of no common roots need only be checked when 0 < φ2 ≤ 1/4. The root
of the MA polynomial is z = −1/θ. Hence, there will be no common roots when

θ 6= −1±
√

1− 4φ2

2
, for 0 < φ2 ≤ 1/4 ,

else θ is arbitrary.

b) For Xt to be causal, |z±| > 1. According to a) we only need to investigate the parameter
range φ2 > 1/4. In this range, it follows that |z±| > 1 if and only if φ2 < 1. Hence, Xt is
causal if and only if 0 < φ2 < 1.

Xt is invertible if and only if 1 + θz 6= 0 for |z| ≤ 1, that is, for |1/θ| > 1. Hence, Xt is
invertible if and only if |θ| < 1.

c) For the AR(2) process at hand there will be three cases to consider:

1. For 0 < φ2 < 1/4, and h ∈ Z,

γ(h) = c1

(1 +
√

1− 4φ2

2

)|h|
+ c2

(1−
√

1− 4φ2

2

)|h|
,

where c1 and c2 are two real constants.

2. For φ2 = 1/4, and h ∈ Z,
γ(h) = (c1 + c2|h|)2−|h|

where c1 and c2 are two real constants.

3. For 1/4 < φ2 < 1, and h ∈ Z,

γ(h) = c
(1 + i

√
4φ2 − 1

2

)|h|
+ c

(1− i
√

4φ2 − 1

2

)|h|
,
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where c = c1 is a complex number in general, and c2 = c, which is the complex
conjugate of c. This is necessary to make γ(h) real. Using polar representation of a
complex number, we may write c = (a/2) eib for suitable real numbers a and b. Also

1 + i
√

4φ2 − 1

2
= |φ| eiθ ,

where tan θ =
√

4φ2 − 1. It is then obtained that

γ(h) = a|φ||h| cos(θ|h|+ b) ,

d) Using the relation Xt = Xt−1− 1
2
Xt−2 + Zt, and calculating E[XtXt] and E[XtXt+1], the

following two equations are obtained,

γ(1) =
1

4
γ(0) + σ2

and

γ(2) =
1

2
γ(1)− γ(0) + 2σ2 = −7

8
γ(0) +

5

2
σ2

From the previous point we know that

γ(h) = c
(1 + i

2

)|h|
+ c

(1− i

2

)|h|
,

which leads to the equations

c
1 + i

2
+ c

1− i

2
=

1

4
(c + c) + σ2 ,

and

c i− c i = −7

8
(c + c) +

5

2
σ2 .

Solving the equations gives the solution

c =
4

13
(7 + 2i) σ2 =

4

13

√
53 ei 0.278 ,

where 0.278 = tan−1(2/7). Noting that (1 + i)/2 = (1/
√

2) eiπ/4, it follows that

γ(h) =
8

13

√
53 σ2

(1

2

)|h|/2

cos(
π

4
|h|+ 0.278) ,

The ACF then becomes

ρ(h) =
cos

(
π
4
|h|+ 0.278

)

2|h|/2 cos(0.278)
, h ∈ Z (1)
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Problem 3

a) Since εt is IID, it follows that εt is independent of εs for every s < t. This implies that εt

is independent of ε2
t−1 · . . . · ε2

t−j for every j = 1, 2, . . .. Except for constants, H(t) consists
of a sum of such terms, and therefore εt and Ht are independent random variables for
each t. Then εt and

√
Ht are also independent random variables for each t. It is then

obtained that,
E[Xt] = E[εt] E[

√
Ht] = 0 ,

and

E[X2
t ] = E[ε2

t Ht] = E[ε2
t ] E[Ht] = E[Ht]

= α0

(
1 +

∞∑
j=1

αj
1E[ε2

t−1] · . . . · E[ε2
t−j]

)
= α0

(
1 +

∞∑
j=1

αj
1

)
=

α0

1− α1

.

Since εt is IID, it is seen that Xt is strictly stationary. Hence, moments, when they exist,
are independent of t. From the equation X2

t = ε2
t (α0 + α1X

2
t−1), it follows that

X4
t = ε4

t (α2
0 + 2α0α1X

2
t−1 + α2

1X
4
t−1) ,

Hence, if m4 = E[X4
t ] exists, it must satisfy the equation (E[ε4

t ] = 3),

m4 = 3 (α2
0 + 2α0α1

α0

1− α1

+ α2
1m4) ,

This leads to the equation

m4 =
3 α2

0(1 + α1)

(1− α1)(1− 3α2
1)

.

This equation can only be satisfied if 0 < α2
1 < 1/3, which becomes the condition for

finite m4.

b) By a similar argument as above, it is seen that ηt is a strictly stationary process. By the
assumption that E[X4

t ] < ∞, it follows that ηt has finite second order moments. It is
therefore a (weakly) stationary process.

E[ηt] = E[X2
t ]− E[Ht] = 0 .

and for h ≥ 1,

E[ηt+h ηt] = E[(ε2
t+h − 1)(ε2

t − 1) Ht+hHt] = E[(ε2
t+h − 1)] E[(ε2

t − 1) Ht+hHt] = 0 .

since εt+h is independent of εs for every s < t + h, and therefore ε2
t+h − 1 is independent

of (ε2
t − 1) Ht+hHt. It follows that ηt is white noise with variance

σ2
0 = E[η2

t ] = E[(ε2
t − 1)2 H2

t ] = E[(ε2
t − 1)2] E[H2

t ] =

E[ε4
t − 2ε2

t + 1]
E[X4

t ]

E[ε4
t ]

=
2

3
m4 =

2 α2
0(1 + α1)

(1− α1)(1− 3α2
1)
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c) From the definition of ηt, it follows that

X2
t = Ht + ηt = α0 + α1X

2
t−1 + ηt. (2)

Introducing the process Yt = X2
t − α0/(1− α1), it is obtained that,

Yt = α1Yt−1 + ηt. (3)

Since 0 < α1 < 1/
√

3, it is seen that φ(z) = 1 − α1z 6= 0 for |z| ≤ 1. It follows that Yt

becomes a causal AR(1) process, and therefore also X2
t (in the non-zero mean form).


