

English

SOLUTION SKETCH FOR

TMA4285 TIME SERIES MODELS 11. December 2008 Time: 09:00–13:00

Problem 1

- a) The ACF $\rho(k) = \rho_k$ for the given AR(1) process is given as $\rho_k = (-\phi)^k$ for k = 0, 1, 2, ...From the figures one may therefore read off the values of ϕ : 1) $\phi = -0.9$, 2) $\phi = -0.4$, 3) $\phi = 0.8$, 4) $\phi = 0.5$
- b) The plot of Y_t versus Y_{t-1} displays a significant negative correlation, while the plot of Y_t versus Y_{t-2} indicates a weak positive correlation (draw a vertical and horizontal line through the origin and study each of the quadrants). No such trend can be detected in the plot of Y_t versus Y_{t-3} . This indicates that the data is generated by an MA(2) model.
- c) The recorded time series displays both increasing variability (variance), trend and seasonality. Therefore, in order to stabilize the variability, a transformation of the data is suggested. This could be done by the Cox-Box transformation, a log transformation is a typical choice. After an appropriate transformation, the trend is removed by differencing. Here one differencing would seem sufficient. Finally, the seasonal component may be removed by s-differencing, where s denotes the identified seasonal period. The residual process after these operations can then be studied for a possible ARMA model fit.

Problem 2

a) For X_t to be an ARMA(2,1) process it has to be stationary, and the AR and MA polynomials cannot have common roots. Stationarity is guaranteed by $\phi(z) \neq 0$ for |z| = 1 ($z \in \mathbf{C}$ = the complex numbers). That is, the roots of the AR polynomial $\phi(z) = 1 - z + \phi^2 z^2$ cannot lie on the unit circle. For $\phi = 0$, obviously $\phi(z) = 0$ for z = 1.

Page 1 of 5

Hence, a necessary condition for X_t to be stationary is that $\phi \neq 0$. For $\phi \neq 0$, i.e. $\phi^2 > 0$, the roots of $\phi(z)$ are obtained as,

$$z^{\pm} = \frac{1 \mp \sqrt{1 - 4\phi^2}}{2\phi^2} = \frac{2}{1 \pm \sqrt{1 - 4\phi^2}}$$

Can $|z^{\pm}| = 1$ for some value of $\phi \neq 0$? It is seen that z^{\pm} are real for $0 < \phi^2 \leq 1/4$, and that $|z^{\pm}| > 1$. For $\phi^2 > 1/4$, there will be two complex conjugate roots $z^{\pm} = 2/(1\pm i\sqrt{4\phi^2 - 1})$ ($i = \sqrt{-1}$). It follows that $|z^{\pm}| = 1$ if $4 = 1 + (4\phi^2 - 1) = 4\phi^2$, which is satisfied for $\phi = \pm 1$. Conclusion: X_t is stationary for $\phi \notin \{0, \pm 1\}$

The requirement of no common roots need only be checked when $0 < \phi^2 \le 1/4$. The root of the MA polynomial is $z = -1/\theta$. Hence, there will be no common roots when

$$\theta \neq \frac{-1 \pm \sqrt{1 - 4\phi^2}}{2}, \text{ for } 0 < \phi^2 \le 1/4,$$

else θ is arbitrary.

b) For X_t to be causal, $|z^{\pm}| > 1$. According to a) we only need to investigate the parameter range $\phi^2 > 1/4$. In this range, it follows that $|z^{\pm}| > 1$ if and only if $\phi^2 < 1$. Hence, X_t is causal if and only if $0 < \phi^2 < 1$.

 X_t is invertible if and only if $1 + \theta z \neq 0$ for $|z| \leq 1$, that is, for $|1/\theta| > 1$. Hence, X_t is invertible if and only if $|\theta| < 1$.

- c) For the AR(2) process at hand there will be three cases to consider:
 - 1. For $0 < \phi^2 < 1/4$, and $h \in \mathbf{Z}$,

$$\gamma(h) = c_1 \left(\frac{1+\sqrt{1-4\phi^2}}{2}\right)^{|h|} + c_2 \left(\frac{1-\sqrt{1-4\phi^2}}{2}\right)^{|h|},$$

where c_1 and c_2 are two real constants.

2. For $\phi^2 = 1/4$, and $h \in \mathbf{Z}$,

$$\gamma(h) = (c_1 + c_2|h|)2^{-|h|}$$

where c_1 and c_2 are two real constants.

3. For $1/4 < \phi^2 < 1$, and $h \in \mathbf{Z}$,

$$\gamma(h) = c \left(\frac{1 + i\sqrt{4\phi^2 - 1}}{2}\right)^{|h|} + \overline{c} \left(\frac{1 - i\sqrt{4\phi^2 - 1}}{2}\right)^{|h|},$$

where $c = c_1$ is a complex number in general, and $c_2 = \overline{c}$, which is the complex conjugate of c. This is necessary to make $\gamma(h)$ real. Using polar representation of a complex number, we may write $c = (a/2) e^{ib}$ for suitable real numbers a and b. Also

$$\frac{1 + i\sqrt{4\phi^2 - 1}}{2} = |\phi| e^{i\theta} ,$$

where $\tan \theta = \sqrt{4\phi^2 - 1}$. It is then obtained that

$$\gamma(h) = a|\phi|^{|h|}\cos(\theta|h| + b),$$

d) Using the relation $X_t = X_{t-1} - \frac{1}{2}X_{t-2} + Z_t$, and calculating $E[X_tX_t]$ and $E[X_tX_{t+1}]$, the following two equations are obtained,

$$\gamma(1) = \frac{1}{4}\gamma(0) + \sigma^2$$

and

$$\gamma(2) = \frac{1}{2}\gamma(1) - \gamma(0) + 2\sigma^2 = -\frac{7}{8}\gamma(0) + \frac{5}{2}\sigma^2$$

From the previous point we know that

$$\gamma(h) = c \left(\frac{1+\mathrm{i}}{2}\right)^{|h|} + \overline{c} \left(\frac{1-\mathrm{i}}{2}\right)^{|h|},$$

which leads to the equations

$$c \frac{1+i}{2} + \overline{c} \frac{1-i}{2} = \frac{1}{4}(c+\overline{c}) + \sigma^2,$$

and

$$c\mathbf{i} - \overline{c}\mathbf{i} = -\frac{7}{8}(c+\overline{c}) + \frac{5}{2}\sigma^2.$$

Solving the equations gives the solution

$$c = \frac{4}{13}(7+2i)\sigma^2 = \frac{4}{13}\sqrt{53}e^{i0.278},$$

where $0.278 = \tan^{-1}(2/7)$. Noting that $(1 + i)/2 = (1/\sqrt{2}) e^{i\pi/4}$, it follows that

$$\gamma(h) = \frac{8}{13}\sqrt{53}\,\sigma^2 \left(\frac{1}{2}\right)^{|h|/2} \cos(\frac{\pi}{4}|h| + 0.278)\,,$$

The ACF then becomes

$$\rho(h) = \frac{\cos\left(\frac{\pi}{4}|h| + 0.278\right)}{2^{|h|/2}\cos(0.278)}, \ h \in \mathbf{Z}$$
(1)

Problem 3

a) Since ε_t is IID, it follows that ε_t is independent of ε_s for every s < t. This implies that ε_t is independent of $\varepsilon_{t-1}^2 \cdot \ldots \cdot \varepsilon_{t-j}^2$ for every $j = 1, 2, \ldots$. Except for constants, H(t) consists of a sum of such terms, and therefore ε_t and H_t are independent random variables for each t. Then ε_t and $\sqrt{H_t}$ are also independent random variables for each t. It is then obtained that, $E[X_t] = E[\varepsilon_t] E[\sqrt{H_t}] = 0$,

$$\mathbf{E}[X_t^2] = \mathbf{E}[\varepsilon_t^2 H_t] = \mathbf{E}[\varepsilon_t^2] \mathbf{E}[H_t] = \mathbf{E}[H_t]$$
$$= \alpha_0 \left(1 + \sum_{j=1}^{\infty} \alpha_1^j \mathbf{E}[\varepsilon_{t-1}^2] \cdot \ldots \cdot \mathbf{E}[\varepsilon_{t-j}^2]\right) = \alpha_0 \left(1 + \sum_{j=1}^{\infty} \alpha_1^j\right) = \frac{\alpha_0}{1 - \alpha_1}.$$

Since ε_t is IID, it is seen that X_t is strictly stationary. Hence, moments, when they exist, are independent of t. From the equation $X_t^2 = \varepsilon_t^2(\alpha_0 + \alpha_1 X_{t-1}^2)$, it follows that

$$X_t^4 = \varepsilon_t^4 \left(\alpha_0^2 + 2\alpha_0 \alpha_1 X_{t-1}^2 + \alpha_1^2 X_{t-1}^4 \right),$$

Hence, if $m_4 = \mathbb{E}[X_t^4]$ exists, it must satisfy the equation $(\mathbb{E}[\varepsilon_t^4] = 3)$,

$$m_4 = 3\left(\alpha_0^2 + 2\alpha_0\alpha_1\frac{\alpha_0}{1-\alpha_1} + \alpha_1^2m_4\right),\,$$

This leads to the equation

$$m_4 = \frac{3\,\alpha_0^2(1+\alpha_1)}{(1-\alpha_1)(1-3\alpha_1^2)}\,.$$

This equation can only be satisfied if $0 < \alpha_1^2 < 1/3$, which becomes the condition for finite m_4 .

b) By a similar argument as above, it is seen that η_t is a strictly stationary process. By the assumption that $E[X_t^4] < \infty$, it follows that η_t has finite second order moments. It is therefore a (weakly) stationary process.

$$\mathbf{E}[\eta_t] = \mathbf{E}[X_t^2] - \mathbf{E}[H_t] = 0.$$

and for $h \ge 1$,

$$E[\eta_{t+h} \eta_t] = E[(\varepsilon_{t+h}^2 - 1)(\varepsilon_t^2 - 1) H_{t+h} H_t] = E[(\varepsilon_{t+h}^2 - 1)] E[(\varepsilon_t^2 - 1) H_{t+h} H_t] = 0.$$

since ε_{t+h} is independent of ε_s for every s < t+h, and therefore $\varepsilon_{t+h}^2 - 1$ is independent of $(\varepsilon_t^2 - 1) H_{t+h} H_t$. It follows that η_t is white noise with variance

$$\sigma_0^2 = \mathbf{E}[\eta_t^2] = \mathbf{E}[(\varepsilon_t^2 - 1)^2 H_t^2] = \mathbf{E}[(\varepsilon_t^2 - 1)^2] \mathbf{E}[H_t^2] = \mathbf{E}[\varepsilon_t^4 - 2\varepsilon_t^2 + 1] \frac{\mathbf{E}[X_t^4]}{\mathbf{E}[\varepsilon_t^4]} = \frac{2}{3}m_4 = \frac{2\alpha_0^2(1 + \alpha_1)}{(1 - \alpha_1)(1 - 3\alpha_1^2)}$$

TMA4285 Time Series Models

c) From the definition of η_t , it follows that

$$X_t^2 = H_t + \eta_t = \alpha_0 + \alpha_1 X_{t-1}^2 + \eta_t.$$
 (2)

Introducing the process $Y_t = X_t^2 - \alpha_0/(1 - \alpha_1)$, it is obtained that,

$$Y_t = \alpha_1 Y_{t-1} + \eta_t. \tag{3}$$

Since $0 < \alpha_1 < 1/\sqrt{3}$, it is seen that $\phi(z) = 1 - \alpha_1 z \neq 0$ for $|z| \le 1$. It follows that Y_t becomes a causal AR(1) process, and therefore also X_t^2 (in the non-zero mean form).