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This document contains solutions to selected problems in

Peter J. Brockwell and Richard A. Davis, Introduction to Time Series and Fore-
casting, 2nd Edition, Springer New York, 2002.

We provide solutions to most of the problems in the book that are not computer
exercises. That is, you will not need a computer to solve these problems. We en-
courage students to come up with suggestions to improve the solutions and to report
any misprints that may be found.
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Notation: We will use the following notation.

• The indicator function

1A(h) =
{

1 if h ∈ A,
0 if h /∈ A.

• Dirac’s delta function

δ(t) =
{

+∞ if t = 0,
0 if t 6= 0,

and
∫ ∞

−∞
f(t)δ(t)dt = f(0).



Chapter 1

Problem 1.1. a) First note that

E[(Y − c)2] = E[Y 2 − 2Y c + c2] = E[Y 2]− 2cE[Y ] + c2

= E[Y 2]− 2cµ + c2.

Find the extreme point by differentiating,

d

dc
(E[Y 2]− 2cµ + c2) = −2µ + 2c = 0 ⇒ c = µ.

Since, d2

dc2 (E[Y 2]− 2cµ + c2) = 2 > 0 this is a min-point.
b) We have

E[(Y − f(X))2 | X] = E[Y 2 − 2Y f(X) + f2(X) | X]

= E[Y 2 | X]− 2f(X)E[Y | X] + f2(X),

which is minimized by f(X) = E[Y | X] (take c = f(X) and µ = E[Y | X] in a).
c) We have

E[(Y − f(X))2] = E
[
E[(Y − f(X))2 | X]

]
,

so the result follows from b).

Problem 1.4. a) For the mean we have

µX(t) = E[a + bZt + cZt−2] = a,

and for the autocovariance

γX(t + h, t) = Cov(Xt+h, Xt) = Cov(a + bZt+h + cZt+h−2, a + bZt + cZt−2)

= b2 Cov(Zt+h, Zt) + bc Cov(Zt+h, Zt−2)

+ cbCov(Zt+h−2, Zt) + c2 Cov(Zt+h−2, Zt−2)

= σ2b21{0}(h) + σ2bc1{−2}(h) + σ2cb1{2}(h) + σ2c21{0}(h)

=





(b2 + c2)σ2 if h = 0,
bcσ2 if |h| = 2,
0 otherwise.

Since µX(t) and γX(t+h, t) do not depend on t, {Xt : t ∈ Z} is (weakly) stationary.
b) For the mean we have

µX(t) = E[Z1] cos(ct) + E[Z2] sin(ct) = 0,

and for the autocovariance

γX(t + h, t) = Cov(Xt+h, Xt)
= Cov(Z1 cos(c(t + h)) + Z2 sin(c(t + h)), Z1 cos(ct) + Z2 sin(ct))
= cos(c(t + h)) cos(ct) Cov(Z1, Z1) + cos(c(t + h)) sin(ct) Cov(Z1, Z2)

+ sin(c(t + h)) cos(ct)Cov(Z1, Z2) + sin(c(t + h)) sin(ct) Cov(Z2, Z2)

= σ2(cos(c(t + h)) cos(ct) + sin(c(t + h)) sin(ct))

= σ2 cos(ch)

where the last equality follows since cos(α − β) = cos α cos β + sin α sin β. Since
µX(t) and γX(t + h, t) do not depend on t, {Xt : t ∈ Z} is (weakly) stationary.
c) For the mean we have

µX(t) = E[Zt] cos(ct) + E[Zt−1] sin(ct) = 0,
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and for the autocovariance

γX(t + h, t) = Cov(Xt+h, Xt)
= Cov(Zt+h cos(c(t + h)) + Zt+h−1 sin(c(t + h)), Zt cos(ct) + Zt−1 sin(ct))
= cos(c(t + h)) cos(ct)Cov(Zt+h, Zt) + cos(c(t + h)) sin(ct)Cov(Zt+h, Zt−1)

+ sin(c(t + h)) cos(ct) Cov(Zt+h−1, Zt)
+ sin(c(t + h)) sin(ct)Cov(Zt+h−1, Zt−1)

= σ2 cos2(ct)1{0}(h) + σ2 cos(c(t− 1)) sin(ct)1{−1}(h)

+ σ2 sin(c(t + 1)) cos(ct)1{1}(h) + σ2 sin2(ct)1{0}(h)

=





σ2 cos2(ct) + σ2 sin2(ct) = σ2 if h = 0,
σ2 cos(c(t− 1)) sin(ct) if h = −1,
σ2 cos(ct) sin(c(t + 1)) if h = 1,

We have that {Xt : t ∈ Z} is (weakly) stationary for c = ±kπ, k ∈ Z, since then
γX(t + h, t) = σ21{0}(h). For c 6= ±kπ, k ∈ Z, {Xt : t ∈ Z} is not (weakly)
stationary since γX(t + h, t) depends on t.
d) For the mean we have

µX(t) = E[a + bZ0] = a,

and for the autocovariance

γX(t + h, t) = Cov(Xt+h, Xt) = Cov(a + bZ0, a + bZ0) = b2 Cov(Z0, Z0) = σ2b2.

Since µX(t) and γX(t+h, t) do not depend on t, {Xt : t ∈ Z} is (weakly) stationary.
e) If c = kπ, k ∈ Z then Xt = (−1)ktZ0 which implies that Xt is weakly stationary
when c = kπ. For c 6= kπ we have

µX(t) = E[Z0] cos(ct) = 0,

and for the autocovariance

γX(t + h, t) = Cov(Xt+h, Xt) = Cov(Z0 cos(c(t + h)), Z0 cos(ct))

= cos(c(t + h)) cos(ct)Cov(Z0, Z0) = cos(c(t + h)) cos(ct)σ2.

The process {Xt : t ∈ Z} is (weakly) stationary when c = ±kπ, k ∈ Z and not
(weakly) stationary when c 6= ±kπ, k ∈ Z, see 1.4. c).
f) For the mean we have

µX(t) = E[ZtZt−1] = 0,

and

γX(t + h, t) = Cov(Xt+h, Xt) = Cov(Zt+hZt+h−1, ZtZt−1)

= E[Zt+hZt+h−1ZtZt−1] =
{

σ4 if h = 0,
0 otherwise.

Since µX(t) and γX(t+h, t) do not depend on t, {Xt : t ∈ Z} is (weakly) stationary.

Problem 1.5. a) We have

γX(t + h, t) = Cov(Xt+h, Xt) = Cov(Zt+h + θZt+h−2, Zt + θZt−2)
= Cov(Zt+h, Zt) + θ Cov(Zt+h, Zt−2) + θ Cov(Zt+h−2, Zt)

+ θ2 Cov(Zt+h−2, Zt−2)

= 1{0}(h) + θ1{−2}(h) + θ1{2}(h) + θ21{0}(h)

=
{

1 + θ2 if h = 0,
θ if |h| = 2. =

{
1.64 if h = 0,
0.8 if |h| = 2.
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Hence the ACVF depends only on h and we write γX(h) = γX(t + h, h). The ACF
is then

ρ(h) =
γX(h)
γX(0)

=
{

1 if h = 0,
0.8/1.64 ≈ 0.49 if |h| = 2.

b) We have

Var
(

1
4
(X1 + X2 + X3 + X4)

)
=

1
16

Var(X1 + X2 + X3 + X4)

=
1
16

(
Var(X1) + Var(X2) + Var(X3) + Var(X4) + 2 Cov(X1, X3)

+ 2 Cov(X2, X4)
)

=
1
16

(
4γX(0) + 4γX(2)

)
=

1
4
(
γX(0) + γX(2)

)
=

1.64 + 0.8
4

= 0.61.

c) θ = −0.8 implies γX(h) = −0.8 for |h| = 2 so

Var
(

1
4
(X1 + X2 + X3 + X4)

)
=

1.64− 0.8
4

= 0.21.

Because of the negative covariance at lag 2 the variance in c) is considerably smaller.

Problem 1.8. a) First we show that {Xt : t ∈ Z} is WN (0, 1). For t even we have
E[Xt] = E[Zt] = 0 and for t odd

E[Xt] = E
[
Z2

t−1 − 1√
2

]
=

1√
2
E[Z2

t−1 − 1] = 0.

Next we compute the ACVF. If t is even we have γX(t, t) = E[Z2
t ] = 1 and if t is

odd

γX(t, t) = E

[(
Z2

t−1 − 1√
2

)2
]

=
1
2
E[Z4

t−1 − 2Z2
t−1 + 1] =

1
2
(3− 2 + 1) = 1.

If t is even we have

γX(t + 1, t) = E
[
Z2

t − 1√
2

Zt

]
=

1√
2
E[Z3

t − Zt] = 0,

and if t is odd

γX(t + 1, t) = E
[
Zt+1

Z2
t−1 − 1√

2

]
= E[Zt+1]E

[
Z2

t−1 − 1√
2

]
= 0.

Clearly γX(t + h, t) = 0 for |h| ≥ 2. Hence

γX(t + h, h) =
{

1 if h = 0,
0 otherwise.

Thus {Xt : t ∈ Z} is WN (0, 1). If t is odd Xt and Xt−1 is obviously dependent so
{Xt : t ∈ Z} is not IID (0, 1).
b) If n is odd

E[Xn+1 | X1, . . . , Xn] = E[Zn+1 | Z0, Z2, Z4 . . . , Zn−1] = E[Zn+1] = 0.

If n is even

E[Xn+1 | X1, . . . , Xn] = E
[
Z2

n − 1√
2

| Z0, Z2, Z4, . . . , Zn

]
=

Z2
n − 1√

2
=

X2
n − 1√

2
.

This again shows that {Xt : t ∈ Z} is not IID (0, 1).
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Problem 1.11. a) Since aj = (2q + 1)−1, −q ≤ j ≤ q, we have

q∑

j=−q

ajmt−j =
1

2q + 1

q∑

j=−q

(c0 + c1 (t− j))

=
1

2q + 1


c0 (2q + 1) + c1

q∑

j=−q

(t− j)


 = c0 +

c1

2q + 1


t (2q + 1)−

q∑

j=−q

j




= c0 + c1t− c1

2q + 1




q∑

j=1

j +
q∑

j=1

−j




= c0 + c1t = mt

b) We have

E [At] = E




q∑

j=−q

ajZt−j


 =

q∑

j=−q

ajE [Zt−j ] = 0 and

Var (At) = Var




q∑

j=−q

ajZt−j


 =

q∑

j=−q

a2
j Var (Zt−j) =

1
(2q + 1)2

q∑

j=−q

σ2 =
σ2

2q + 1

We see that the variance Var(At) is small for large q. Hence, the process At will be
close to its mean (which is zero) for large q.

Problem 1.15. a) Put

Zt = ∇∇12Xt = (1−B)(1−B12)Xt = (1−B)(Xt −Xt−12)
= Xt −Xt−12 −Xt−1 + Xt−13

= a + bt + st + Yt − a− b(t− 12)− st−12 − Yt−12 − a− b(t− 1)− st−1 − Yt−1

+ a + b(t− 13) + st−13 + Yt−13

= Yt − Yt−1 − Yt−12 + Yt−13.

We have µZ(t) = E[Zt] = 0 and

γZ(t + h, t) = Cov (Zt+h, Zt)
= Cov (Yt+h − Yt+h−1 − Yt+h−12 + Yt+h−13, Yt − Yt−1 − Yt−12 + Yt−13)
= γY (h)− γY (h + 1)− γY (h + 12) + γY (h + 13)− γY (h− 1) + γY (h)

+ γY (h + 11)− γY (h + 12)− γY (h− 12) + γY (h− 11)
+ γY (h)− γY (h + 1) + γY (h− 13)− γY (h− 12)− γY (h− 1) + γY (h)

= 4γY (h)− 2γY (h + 1)− 2γY (h− 1) + γY (h + 11) + γY (h− 11)
− 2γY (h + 12)− 2γY (h− 12) + γY (h + 13) + γY (h− 13).

Since µZ(t) and γZ(t+h, t) do not depend on t, {Zt : t ∈ Z} is (weakly) stationary.
b) We have Xt = (a + bt)st + Yt. Hence,

Zt = ∇2
12Xt = (1−B12)(1−B12)Xt = (1−B12)(Xt −Xt−12)

= Xt −Xt−12 −Xt−12 + Xt−24 = Xt − 2Xt−12 + Xt−24

= (a + bt)st + Yt − 2(a + b(t− 12)st−12 + Yt−12) + (a + b(t− 24))st−24 + Yt−24

= a(st − 2st−12 + st−24) + b(tst − 2(t− 12)st−12 + (t− 24)st−24)
+ Yt − 2Yt−12 + Yt−24

= Yt − 2Yt−12 + Yt−24.
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Now we have µZ(t) = E[Zt] = 0 and

γZ(t + h, t) = Cov (Zt+h, Zt)
= Cov (Yt+h − 2Yt+h−12 + Yt+h−24, Yt − 2Yt−12 + Yt−24)
= γY (h)− 2γY (h + 12) + γY (h + 24)− 2γY (h− 12) + 4γY (h)
− 2γY (h + 12) + γY (h− 24)− 2γY (h− 12) + γY (h)

= 6γY (h)− 4γY (h + 12)− 4γY (h− 12) + γY (h + 24) + γY (h− 24).

Since µZ(t) and γZ(t+h, t) do not depend on t, {Zt : t ∈ Z} is (weakly) stationary.
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Chapter 2

Problem 2.1. We find the best linear predictor X̂n+h = aXn + b of Xn+h by
finding a and b such that E[Xn+h − X̂n+h] = 0 and E[(Xn+h − X̂n+h)Xn] = 0. We
have

E[Xn+h − X̂n+h] = E[Xn+h − aXn − b] = E[Xn+h]− aE[Xn]− b = µ (1− a)− b

and

E[(Xn+h − X̂n+h)Xn] = E[(Xn+h − aXn − b)Xn]

= E[Xn+hXn]− aE[X2
n]− bE[Xn]

= E[Xn+hXn]− E[Xn+h]E[Xn] + E[Xn+h]E[Xn]

− a
(
E[X2

n]− E[Xn]2 + E[Xn]2
)− bE[Xn]

= Cov(Xn+h, Xn) + µ2 − a
(
Cov(Xn, Xn) + µ2

)− bµ

= γ(h) + µ2 − a
(
γ(0) + µ2

)− bµ,

which implies that

b = µ (1− a) , a =
γ(h) + µ2 − bµ

γ(0) + µ2
.

Solving this system of equations we get a = γ(h)/γ(0) = ρ(h) and b = µ(1− ρ(h))
i.e. X̂n+h = ρ(h)Xn + µ(1− ρ(h)).

Problem 2.4. a) Put Xt = (−1)tZ where Z is random variable with E[Z] = 0 and
Var(Z) = 1. Then

γX(t + h, t) = Cov((−1)t+hZ, (−1)tZ) = (−1)2t+h Cov(Z, Z) = (−1)h = cos(πh).

b) Recall problem 1.4 b) where Xt = Z1 cos(ct) + Z2 sin(ct) implies that γX(h) =
cos(ch). If we let Z1, Z2, Z3, Z4,W be independent random variables with zero mean
and unit variance and put

Xt = Z1 cos
(π

2
t
)

+ Z2 sin
(π

2
t
)

+ Z3 cos
(π

4
t
)

+ Z4 sin
(π

4
t
)

+ W.

Then we see that γX(h) = κ(h).
c) Let {Zt : t ∈ Z} be WN

(
0, σ2

)
and put Xt = Zt + θZt−1. Then E[Xt] = 0 and

γX(t + h, t) = Cov(Zt+h + θZt+h−1, Zt + θZt−1)
= Cov(Zt+h, Zt) + θ Cov(Zt+h, Zt−1) + θ Cov(Zt+h−1, Zt)

+ θ2 Cov(Zt+h−1, Zt−1)

=





σ2(1 + θ2) if h = 0,
σ2θ if |h| = 1,
0 otherwise.

If we let σ2 = 1/(1+θ2) and choose θ such that σ2θ = 0.4, then we get γX(h) = κ(h).
Hence, we choose θ so that θ/(1 + θ2) = 0.4, which implies that θ = 1/2 or θ = 2.

Problem 2.8. Assume that there exists a stationary solution {Xt : t ∈ Z} to

Xt = φXt−1 + Zt, t = 0,±1, . . .
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where {Zt : t ∈ Z} ∼ WN
(
0, σ2

)
and |φ1| = 1. Use the recursions

Xt = φXt−1 + Zt = φ2Xt−2 + φZt−1 + Zt = . . . = φn+1Xt−(n+1) +
n∑

i=0

φiZt−i,

which yields that

Xt − φn+1Xt−(n+1) =
n∑

i=0

φiZt−i.

We have that

Var

(
n∑

i=0

φiZt−i

)
=

n∑

i=0

φ2i Var (Zt−i) =
n∑

i=0

σ2 = (n + 1) σ2.

On the other side we have that

Var
(
Xt − φn+1Xt−(n+1)

)
= 2γ(0)− 2φn+1γ(n + 1) ≤ 2γ(0) + 2γ(n + 1) ≤ 4γ(0).

This mean that (n + 1) σ2 ≤ 4γ(0), ∀n. Letting n → ∞ implies that γ(0) = ∞,
which is a contradiction, i.e. there exists no stationary solution.

Problem 2.11. We have that {Xt : t ∈ Z} is an AR(1) process with mean µ so
{Xt : t ∈ Z} satisfies

Xt − µ = φ(Xt−1 − µ) + Zt, {Zt : t ∈ Z} ∼ WN
(
0, σ2

)
,

with φ = 0.6 and σ2 = 2. Since {Xt : t ∈ Z} is AR(1) we have that γX(h) = φ|h|σ2

1−φ2 .
We estimate µ by Xn = 1

n

∑n
k=1 Xk. For large values of n Xn is approximately

normally distributed with mean µ and variance 1
n

∑
|h|<∞ γ(h) (see Section 2.4 in

Brockwell and Davis). In our case the variance is

1
n

(
1 + 2

∞∑

h=1

φh

)
σ2

1− φ2
=

1
n

(
1 + 2

(
1

1− φ
− 1

))
σ2

1− φ2

=
1
n

(
2

1− φ
− 1

)
σ2

1− φ2
=

1
n

(
1 + φ

1− φ

)
σ2

1− φ2
=

σ2

n(1− φ)2
.

Hence, Xn is approximately N(µ, σ2

n(1−φ)2 ). A 95% confidence interval is given by
I = (xn − λ0.025

σ√
n(1−φ)

, xn + λ0.025
σ√

n(1−φ)
). Putting in the numeric values gives

I = 0.271± 0.69. Since 0 ∈ I the hypothesis that µ = 0 can not be rejected.

Problem 2.15. Let X̂n+1 = PnXn+1 = a0 + a1Xn + · · ·+ anX1. We may assume
that µX(t) = 0. Otherwise we can consider Yt = Xt − µ. Let S(a0, a1, . . . , an) =
E[(Xn+1 − X̂n+1)2] and minimize this w.r.t. a0, a1, . . . , an.

S(a0, a1, . . . , an) = E[(Xn+1 − X̂n+1)2]

= E[(Xn+1 − a0 − a1Xn − · · · − anX1)2]

= a2
0 − 2a0E[Xn+1 − a1Xn − · · · − anX1]

+ E[(Xn+1 − a1Xn − · · · − anX1)2]

= a2
0 + E[(Xn+1 − a1Xn − · · · − anX1)2].

Differentiation with respect to ai gives

∂S

∂a0
= 2a0,

∂S

∂ai
= −2E[((Xn+1 − a1Xn − · · · − anX1)Xn+1−i], i = 1, . . . , n.
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Putting the partial derivatives equal to zero we get that S(a0, a1, . . . , an) is mini-
mized if

a0 = 0

E[(Xn+1 − X̂n+1)Xk] = 0, for each k = 1, . . . , n.

Plugging in the expression for Xn+1 we get that for k = 1, . . . , n.

0 = E[(Xn+1 − X̂n+1)Xk]
= E[(φ1Xn + · · ·+ φpXn−p+1 + Zn+1 − a1Xn − · · · − anX1)Xk].

This is clearly satisfied if we let
{

ai = φi, if 1 ≤ i ≤ p
ai = 0, if i > p

Since there is best linear predictor is unique this is the one. The mean square error
is

E[(Xn+1 − X̂n+1)2] = E[Z2
n+1] = σ2.
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Chapter 3

Problem 3.1. We write the ARMA processes as φ(B)Xt = θ(B)Zt. The process
{Xt : t ∈ Z} is causal if and only if φ(z) 6= 0 for each |z| ≤ 1 and invertible if and
only if θ(z) 6= 0 for each |z| ≤ 1.

a) φ(z) = 1 + 0.2z − 0.48z2 = 0 is solved by z1 = 5/3 and z2 = −5/4.

Hence {Xt : t ∈ Z} is causal.
θ(z) = 1. Hence {Xt : t ∈ Z} is invertible.

b) φ(z) = 1 + 1.9z + 0.88z2 = 0 is solved by z1 = −10/11 and z2 = −5/4.

Hence {Xt : t ∈ Z} is not causal.

θ(z) = 1 + 0.2z + 0.7z2 = 0 is solved by z1 = −(1− i
√

69)/7

and z2 = −(1 + i
√

69)/7. Since |z1| = |z2| =
√

70/7 > 1, {Xt : t ∈ Z}
is invertible.

c) φ(z) = 1 + 0.6z = 0 is solved by z = −5/3. Hence {Xt : t ∈ Z} is causal.
θ(z) = 1 + 1.2z = 0 is solved by z = −5/6. Hence {Xt : t ∈ Z} is not invertible.

d) φ(z) = 1 + 1.8z + 0.81z2 = 0 is solved by z1 = z2 = −10/9.

Hence {Xt : t ∈ Z} is causal.
θ(z) = 1. Hence {Xt : t ∈ Z} is invertible.

e) φ(z) = 1 + 1.6z = 0 is solved by z = −5/8. Hence {Xt : t ∈ Z} is not causal.

θ(z) = 1− 0.4z + 0.04z2 = 0 is solved by z1 = z2 = 5.

Hence {Xt : t ∈ Z} is invertible.

Problem 3.4. We have Xt = 0.8Xt−2 + Zt, where {Zt : t ∈ Z} ∼ WN
(
0, σ2

)
. To

obtain the Yule-Walker equations we multiply each side by Xt−k and take expected
value. Then we get

E[XtXt−k] = 0.8E[Xt−2Xt−k] + E[ZtXt−k],

which gives us

γ(0) = 0.8γ(2) + σ2

γ(k) = 0.8γ(k − 2), k ≥ 1.

We use that γ(k) = γ(−k). Thus, we need to solve

γ(0)− 0.8γ(2) = σ2

γ(1)− 0.8γ(1) = 0
γ(2)− 0.8γ(0) = 0

First we see that γ(1) = 0 and therefore γ(h) = 0 if h is odd. Next we solve for
γ(0) and we get γ(0) = σ2(1− 0.82)−1. It follows that γ(2k) = γ(0)0.8k and hence
the ACF is

ρ(h) =





1 h = 0,
0.8h, h = 2k, k = ±1,±2, . . .
0 otherwise.

The PACF can be computed as α(0) = 1, α(h) = φhh where φhh comes from that
the best linear predictor of Xh+1 has the form

X̂h+1 =
h∑

i=1

φhiXh+1−i.
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For an AR(2) process we have X̂h+1 = φ1Xh + φ2Xh−1 where we can identify
α(0) = 1, α(1) = 0, α(2) = 0.8 and α(h) = 0 for h ≥ 3.

Problem 3.6. The ACVF for {Xt : t ∈ Z} is

γX(t + h, t) = Cov(Xt+h, Xt) = Cov(Zt+h + θZt+h−1, Zt + θZt−1)

= γZ(h) + θγZ(h + 1) + θγZ(h− 1) + θ2γZ(h)

=
{

σ2(1 + θ2), h = 0
σ2θ, |h| = 1.

On the other hand, the ACVF for {Yt : t ∈ Z} is

γY (t + h, t) = Cov(Yt+h, Yt) = Cov(Z̃t+h + θ−1Z̃t+h−1, Z̃t + θ−1Z̃t−1)

= γZ̃(h) + θ−1γZ̃(h + 1) + θ−1γZ̃(h− 1) + θ−2γZ̃(h)

=
{

σ2θ2(1 + θ−2) = σ2(1 + θ2), h = 0
σ2θ2θ−1 = σ2θ, |h| = 1.

Hence they are equal.

Problem 3.7. First we show that {Wt : t ∈ Z} is WN
(
0, σ2

w

)
.

E[Wt] = E



∞∑

j=0

(−θ)−jXt−j


 =

∞∑

j=0

(−θ)−jE[Xt−j ] = 0,

since E[Xt−j ] = 0 for each j. Next we compute the ACVF of {Wt : t ∈ Z} for
h ≥ 0.

γW (t + h, t) = E[Wt+hWt] = E



∞∑

j=0

(−θ)−jXt+h−j

∞∑

k=0

(−θ)−kXt−k




=
∞∑

j=0

∞∑

k=0

(−θ)−j(−θ)−kE[Xt+h−jXt−k] =
∞∑

j=0

∞∑

k=0

(−θ)−j(−θ)−kγX(h− j + k)

=
{
γX(r) = σ2(1 + θ2)1{0}(r) + σ2θ1{1}(|r|)

}

=
∞∑

j=0

∞∑

k=0

(−θ)−(j+k)
(
σ2(1 + θ2)1{j−k}(h) + σ2θ1{j−k+1}(h) + σ2θ1{j−k−1}(h)

)

=
∞∑

j=h

(−θ)−(j+j−h)σ2(1 + θ2) +
∞∑

j=h−1,j≥0

(−θ)−(j+j−h+1)σ2θ

+
∞∑

j=h+1

(−θ)−(j+j−h−1)σ2θ

= σ2(1 + θ2)(−θ)−h
∞∑

j=h

(−θ)−2(j−h) + σ2θ(−θ)−(h−1)
∞∑

j=h−1,j≥0

(−θ)−2(j−(h−1))

+ σ2θ(−θ)−(h+1)
∞∑

j=h+1

(−θ)−2(j−(h+1))

= σ2(1 + θ2)(−θ)−h θ2

θ2 − 1
+ σ2θ(−θ)−(h−1) θ2

θ2 − 1
+ σ2θ21{0}(h)

+ σ2θ(−θ)−(h+1) θ2

θ2 − 1

= σ2(−θ)−h θ2

θ2 − 1
(
1 + θ2 − θ2 − 1

)
+ σ2θ21{0}(h)

= σ2θ21{0}(h)

12



Hence, {Wt : t ∈ Z} is WN
(
0, σ2

w

)
with σ2

w = σ2θ2. To continue we have that

Wt =
∞∑

j=0

(−θ)−jXt−j =
∞∑

j=0

πjXt−j ,

with πj = (−θ)−j and
∑∞

j=0 |πj | =
∑∞

j=0 θ−j < ∞ so {Xt : t ∈ Z} is invertible and
solves φ(B)Xt = θ(B)Wt with π(z) =

∑∞
j=0 πjz

j = φ(z)/θ(z). This implies that
we must have

∞∑

j=0

πjz
j =

∞∑

j=0

(
−z

θ

)j

=
1

1 + z/θ
=

φ(z)
θ(z)

.

Hence, φ(z) = 1 and θ(z) = 1 + z/θ, i.e. {Xt : t ∈ Z} satisfies Xt = Wt + θ−1Wt−1.

Problem 3.11. The PACF can be computed as α(0) = 1, α(h) = φhh where φhh

comes from that the best linear predictor of Xh+1 has the form

X̂h+1 =
h∑

i=1

φhiXh+1−i.

In particular α(2) = φ22 in the expression

X̂3 = φ21X2 + φ22X1.

The best linear predictor satisfies

Cov(X3 − X̂3, Xi) = 0, i = 1, 2.

This gives us

Cov(X3 − X̂3, X1) = Cov(X3 − φ21X2 − φ22X1, X1)
= Cov(X3, X1)− φ21 Cov(X2, X1)− φ22 Cov(X1, X1)
= γ(2)− φ21γ(1)− φ22γ(0) = 0

and

Cov(X3 − X̂3, X2) = Cov(X3 − φ21X2 − φ22X1, X2)
= γ(1)− φ21γ(0)− φ22γ(1) = 0.

Since we have an MA(1) process it has ACVF

γ(h) =





σ2(1 + θ2), h = 0,
σ2θ, |h| = 1,
0, otherwise.

Thus, we have to solve the equations

φ21γ(1) + φ22γ(0) = 0
(1− φ22)γ(1)− φ21γ(0) = 0.

Solving this system of equations we find

φ22 = − θ2

θ4 + θ2 + 1
.
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Chapter 4

Problem 4.4. By Corollary 4.1.1 we know that a function γ(h) with
∑
|h|<∞ |γ(h)|

is ACVF for some stationary process if and only if it is an even function and

f(λ) =
1
2π

∞∑

h=−∞
e−ihλγ(h) ≥ 0, for λ ∈ (−π, π].

We have that γ(h) is even, γ(h) = γ(−h) and

f(λ) =
1
2π

3∑

h=−3

e−ihλγ(h)

=
1
2π

(−0.25ei3λ − 0.5ei2λ + 1− 0.5e−i2λ − 0.25e−i3λ
)

=
1
2π

(
1− 0.25(ei3λ + e−i3λ)− 0.5(ei2λ + e−i2λ)

)

=
1
2π

(1− 0.5 cos(3λ)− cos(2λ)) .

Do we have f(λ) ≥ 0 on λ ∈ (−π, π]? The answer is NO, for instance f(0) =
−1/(4π). Hence, γ(h) is NOT an ACVF for a stationary time series.

Problem 4.5. Let Zt = Xt + Yt. First we show that γZ(h) = γX(h) + γY (h).

γZ(t + h, t) = Cov(Zt+h, Zt) = Cov(Xt+h + Yt+h, Xt + Yt)
= Cov(Xt+h, Xt) + Cov(Xt+h, Yt) + Cov(Yt+h, Xt) + Cov(Yt+h, Yt)
= Cov(Xt+h, Xt) + Cov(Yt+h, Yt)
= γX(t + h, t) + γY (t + h, t).

We have that

γZ(h) =
∫

(−π,π]

eihλdFZ(λ)

but we also know that

γZ(h) = γX(h) + γY (h) =
∫

(−π,π]

eihλdFX(λ) +
∫

(−π,π]

eihλdFY (λ)

=
∫

(−π,π]

eihλ (dFX(λ) + dFY (λ))

Hence we have that dFZ(λ) = dFX(λ) + dFY (λ), which implies that

FZ(λ) =
∫

(−π,λ]

dFZ(ν) =
∫

(−π,λ]

(dFX(ν) + dFY (ν)) = FX(λ) + FY (λ).

Problem 4.6. Since {Yt : t ∈ Z} is MA(1)-process we have

γY (h) =





σ2(1 + θ2), h = 0,
σ2θ, |h| = 1,
0, otherwise.

By Problem 2.2 the process St = A cos(πt/3) + B sin(πt/3) has ACVF γS(h) =
ν2 cos(πh/3). Since the processes are uncorrelated, Problem 4.5 gives that γX(h) =
γS(h) + γY (h). Moreover,

ν2 cos(πh/3) =
ν2

2
(eiπh/3 + e−iπh/3) =

∫ π

−π

eiλhdFS(λ),
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where

dFS(λ) =
ν2

2
δ (λ− π/3) dλ +

ν2

2
δ (λ + π/3) dλ

This implies

FS(λ) =





0, λ < −π/3,
ν2/2, −π/3 ≤ λ < π/3,
ν2, λ ≥ π/3.

Furthermore we have that

fY (λ) =
1
2π

∞∑

h=−∞
e−ihλγY (h) =

1
2π

(
eiλγY (−1) + γY (0) + e−iλγY (1)

)

=
1
2π

(
σ2

(
1 + 2.52

)
+ 2.5σ2

(
eiλ + e−iλ

))
=

σ2

2π
(7.25 + 5 cos(λ)).

This implies that

FY (λ) =
∫ λ

−π

fY (ξ)dξ =
∫ λ

−π

σ2

2π
(7.25 + 5 cos(ξ))dξ =

σ2

2π

[
7.25ξ + 5 sin(ξ)

]λ

−π

=
σ2

2π
(7.25(λ + π) + 5 sin(λ)).

Finally we have FX(λ) = FS(λ) + FY (λ).

Problem 4.9. a) We start with γX(0),

γX(0) =
∫ π

−π

ei0λfX(λ)dλ = 100
∫ −π

6 +0.01

−π
6−0.01

dλ + 100
∫ π

6 +0.01

π
6−0.01

dλ = 100 · 0.04 = 4.

For γX(1) we have,

γX(1) =
∫ π

−π

eiλfX(λ)dλ

= 100
∫ −π

6 +0.01

−π
6−0.01

eiλdλ + 100
∫ π

6 +0.01

π
6−0.01

eiλdλ

= 100
[
eiλ

i

]−π
6 +0.01

−π
6−0.01

+ 100
[
eiλ

i

]π
6 +0.01

π
6−0.01

=
100
i

(
ei(−π

6 +0.01) − e−i( π
6 +0.01) + ei( π

6 +0.01) − e−i(−π
6 +0.01)

)

= 200
(
sin

(
−π

6
+ 0.01

)
+ sin

(π

6
+ 0.01

))

= 200
√

3 sin(0.01) ≈ 3.46.

The spectral density fX(λ) is plotted in Figure 4.9(a).

b) Let

Yt = ∇12Xt = Xt −Xt−12 =
∞∑

k=−∞
ψkXt−k,
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with ψ0 = 1, ψ12 = −1 and ψj = 0 otherwise. Then we have the spectral density
fY (λ) = |ψ(e−iλ)|2fX(λ) where

ψ(e−iλ) =
∞∑

k=−∞
ψke−ikλ = 1− e−i12λ.

Hence,

fY (λ) =
∣∣1− e−12iλ

∣∣2 fX(λ) = (1− e−12iλ)(1− e12iλ)fX(λ)
= 2(1− cos(12λ))fX(λ).

The power transfer function |ψ(e−iλ)|2 is plotted in Figure 4.9(b) and the resulting
spectral density fY (λ) is plotted in Figure 4.9(c).

c) The variance of Yt is γY (0) which is computed by

γY (0) =
∫ π

−π

fY (λ)dλ

= 200
∫ −π

6 +0.01

−π
6−0.01

(1− cos(12λ))dλ + 200
∫ π

6 +0.01

π
6−0.01

(1− cos(12λ))dλ

= 200
([

λ− sin(12λ)
12

]−π
6 +0.01

−π
6−0.01

+
[
λ− sin(12λ)

12

]π
6 +0.01

π
6−0.01

)

= 200
(

0.02− sin(12(−π/6 + 0.01))− sin(12(−π/6− 0.01))
12

+0.02− sin(12(π/6 + 0.01))− sin(12(π/6− 0.01))
12

)

= 200
(

0.04 +
sin(2π − 0.12)− sin(2π + 0.12)

6

)

= 200
(

0.04− 1
3

sin(0.12)
)

= 0.0192.

Problem 4.10. a) Let φ(z) = 1− φz and θ(z) = 1− θz. Then Xt = θ(B)
φ(B)Zt and

fX(λ) =
∣∣∣∣
θ(e−iλ)
φ(e−iλ)

∣∣∣∣
2

fZ(λ) =
∣∣∣∣
θ(e−iλ)
φ(e−iλ)

∣∣∣∣
2

σ2

2π
.

For {Wt : t ∈ Z} we get

fW (λ) =

∣∣∣∣∣
φ̃(e−iλ)
θ̃(e−iλ)

∣∣∣∣∣

2 ∣∣∣∣
θ(e−iλ)
φ(e−iλ)

∣∣∣∣
2

σ2

2π
=

∣∣∣1− 1
φe−iλ

∣∣∣
2 ∣∣1− θe−iλ

∣∣2
∣∣1− 1

θ e−iλ
∣∣2 |1− φe−iλ|2

σ2

2π
.

Now note that we can write
∣∣∣∣1−

1
φ

e−iλ

∣∣∣∣
2

=
1
φ2

∣∣φ− e−iλ
∣∣2 =

∣∣eiλ
∣∣2

φ2

∣∣φ− e−iλ
∣∣2 =

1
φ2

∣∣φeiλ − 1
∣∣2

=
1
φ2

∣∣1− φeiλ
∣∣2 =

1
φ2

∣∣1− φe−iλ
∣∣2 .

Inserting this and the corresponding expression with φ substituted by θ in the
computation above we get

fW (λ) =
1

φ2

∣∣1− φe−iλ
∣∣2 ∣∣1− θe−iλ

∣∣2
1
θ2 |1− θe−iλ|2 |1− φe−iλ|2

σ2

2π
=

θ2

φ2

σ2

2π
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which is constant.
b) Since {Wt : t ∈ Z} has constant spectral density it is white noise and

σ2
w = γW (0) =

∫ π

−π

fW (λ)dλ =
θ2

φ2

σ2

2π
2π =

θ2

φ2
σ2.

c) From definition of {Wt : t ∈ Z} we get that φ̃(B)Xt = θ̃(B)Wt which is a causal
and invertible representation.
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Chapter 5

Problem 5.1. We begin by writing the Yule-Walker equations. {Yt : t ∈ Z}
satisfies

Yt − φ1Yt−1 − φ2Yt−2 = Zt, {Zt : t ∈ Z} ∼ WN(0, σ2).

Multiplying this equation with Yt−k and take expectation gives

γ(k)− φ1γ(k − 1)− φ2γ(k − 2) =
{

σ2 k = 0,
0 k ≥ 1.

We rewrite the first three equations as

φ1γ(k − 1) + φ2γ(k − 2) =
{

γ(k) k = 1, 2,
γ(0)− σ2 k = 0.

Introducing the notation

Γ2 =
(

γ(0) γ(1)
γ(1) γ(0)

)
, γ2 =

(
γ(1)
γ(2)

)
, φ =

(
φ1

φ2

)

we have Γ2φ = γ2 and σ2 − γ(0)− φT γ2. We replace Γ2 by Γ̂2 and γ2 by γ̂2 and
solve to get an estimate φ̂ for φ. That is, we solve

Γ̂2φ̂ = γ̂2 σ̂2 = γ̂(0)− φ̂
T
γ̂2.

Hence

φ̂ = Γ̂
−1

2 γ̂2 =
1

γ̂(0)2 − γ̂(1)2

(
γ̂(0) −γ̂(1)
−γ̂(1) γ̂(0)

)(
γ̂(1)
γ̂(2)

)

=
1

γ̂(0)2 − γ̂(1)2

(
γ̂(0)γ̂(1) −γ̂(1)γ̂(2)
−γ̂(1)2 γ̂(0)γ̂(2)

)
.

We get that

φ̂1 =
(γ̂(0)− γ̂(2))γ̂(1)

γ̂(0)2 − γ̂(1)2
= 1.32

φ̂2 =
γ̂(0)γ̂(2)− γ̂(1)2

γ̂(0)2 − γ̂(1)2
= −0.634

σ̂2 = γ̂(0)− φ̂1γ̂(1)− φ̂2γ̂(2) = 289.18.

We also have that φ̂ ∼ AN(φ, σ2Γ−1
2 /n) and approximately φ̂ ∼ AN(φ, σ̂2Γ̂

−1

2 /n).
Here

σ̂2Γ̂
−1

2 /n =
289.18
100

(
0.0021 −0.0017
−0.0017 0.0021

)
=

(
0.0060 −0.0048
−0.0048 0.0060

)

So we have approximately φ̂1 ∼ N(φ1, 0.0060) and φ̂2 ∼ N(φ2, 0.0060) and the
confidence intervals are

Iφ1 = φ̂1 ± λ0.025

√
0.006 = 1.32± 0.15

Iφ2 = φ̂2 ± λ0.025

√
0.006 = −0.634± 0.15.

19



Problem 5.3. a) {Xt : t ∈ Z} is causal if φ(z) 6= 0 for |z| ≤ 1 so let us check for
which values of φ this can happen. φ(z) = 1 − φz − φ2z2 so putting this equal to
zero implies

z2 +
z

φ
− 1

φ2
= 0 ⇒ z1 = −1−√5

2φ
and z2 = −1 +

√
5

2φ

Furthermore |z1| > 1 if |φ| < (
√

5− 1)/2 = 0.61 and |z2| > 1 if |φ| < (1 +
√

5)/2 =
1.61. Hence, the process is causal if |φ| < 0.61.
b) The Yule-Walker equations are

γ(k)− φγ(k − 1)− φ2γ(k − 2) =
{

σ2 k = 0,
0 k ≥ 1.

Rewriting the first 3 equations and using γ(k) = γ(−k) gives

γ(0)− φγ(1)− φ2γ(2) = σ2

γ(1)− φγ(0)− φ2γ(1) = 0

γ(2)− φγ(1)− φ2γ(0) = 0.

Multiplying the third equation by φ2 and adding the first gives

−φ3γ(1)− φγ(1)− φ4γ(0) + γ(0) = σ2

γ(1)− φγ(0)− φ2γ(1) = 0.

We solve the second equation to obtain

φ = − 1
2ρ(1)

±
√

1
4ρ(1)2

+ 1.

Inserting the estimated values of γ̂(0) and γ̂(1) = γ̂(0)ρ̂(1) gives the solutions
φ̂ = {0.509,−1.965} and we choose the causal solution φ̂ = 0.509. Inserting this
value in the expression for σ2 we get

σ̂2 = −φ̂3γ̂(1)− φ̂γ̂(1)− φ̂4γ̂(0) + γ̂(0) = 2.985.

Problem 5.4. a) Let us construct a test to see if the assumption that {Xt − µ :
t ∈ Z} is WN

(
0, σ2

)
is reasonable. To this end suppose that {Xt − µ : t ∈ Z} is

WN
(
0, σ2

)
. Then, since ρ(k) = 0 for k ≥ 1 we have that ρ̂(k) ∼ AN(0, 1/n). A

95% confidence interval for ρ(k) is then Iρ(k) = ρ̂(k)± λ0.025/
√

200. This gives us

Iρ(1) = 0.427± 0.139
Iρ(2) = 0.475± 0.139
Iρ(3) = 0.169± 0.139.

Clearly 0 /∈ Iρ(k) for any of the observed k = 1, 2, 3 and we conclude that it is not
reasonable to assume that {Xt − µ : t ∈ Z} is white noise.
b) We estimate the mean by µ̂ = x200 = 3.82. The Yule-Walker estimates is given
by

φ̂ = R̂−1
2 ρ̂2, σ̂2 = γ̂(0)(1− ρ̂2

T R̂−1
2 ρ̂2),

where

φ̂ =
(

φ̂1

φ̂2

)
, R̂2 =

(
ρ̂(0) ρ̂(1)
ρ̂(1) ρ̂(0)

)
, ρ̂2 =

(
ρ̂(1)
ρ̂(2)

)
.
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Solving this system gives the estimates φ̂1 = 0.2742, φ̂2 = 0.3579 and σ̂2 = 0.8199.
c) We construct a 95% confidence interval for µ to test if we can reject the hypothesis
that µ = 0. We have that X200 ∼ AN(µ, ν/n) with

ν =
∞∑

h=−∞
γ(h) ≈ γ̂(−3) + γ̂(−2) + γ̂(−1) + γ̂(0) + γ̂(1) + γ̂(2) + γ̂(3) = 3.61.

An approximate 95% confidence interval for µ is then

I = xn ± λ0.025

√
ν/n = 3.82± 1.96

√
3.61/200 = 3.82± 0.263.

Since 0 /∈ I we reject the hypothesis that µ = 0.
d) We have that approximately φ̂ ∼ AN(φ, σ̂2Γ̂

−1

2 /n). Inserting the observed values
we get

σ̂2Γ̂
−1

2

n
=

(
0.0050 −0.0021
−0.0021 0.0050

)
,

and hence φ̂1 ∼ AN(φ1, 0.0050) and φ̂2 ∼ AN(φ2, 0.0050). We get the 95% confi-
dence intervals

Iφ1 = φ̂1 ± λ0.025

√
0.005 = 0.274± 0.139

Iφ2 = φ̂2 ± λ0.025

√
0.005 = 0.358± 0.139.

e) If the data were generated from an AR(2) process, then the PACF would be
α(0) = 1, α̂(1) = ρ̂(1) = 0.427, α̂(2) = φ̂2 = 0.358 and α̂(h) = 0 for h ≥ 3.

Problem 5.11. To obtain the maximum likelihood estimator we compute as if the
process were Gaussian. Then the innovations

X1 − X̂1 = X1 ∼ N(0, ν0),

X2 − X̂2 = X2 − φX1 ∼ N(0, ν1),

where ν0 = σ2r0 = E[(X1 − X̂1)2], ν1 = σ2r1 = E[(X2 − X̂2)2]. This implies
ν0 = E[X2

1 ] = γ(0), r0 = 1/(1−φ2) and ν1 = E[(X2−X̂2)2] = γ(0)−2φγ(1)+φ2γ(0)
and hence

r1 =
γ(0)(1 + φ2)− 2φγ(1)

σ2
=

1 + φ2 − 2φ2

1− φ2
= 1.

Here we have used that γ(1) = σ2φ/(1− φ2). Since the distribution of the innova-
tions is normal the density for Xj − X̂j is

fXj−X̂j
=

1√
2πσ2rj−1

exp
(
− x2

2σ2rj−1

)

and the likelihood function is

L(φ, σ2) =
2∏

j=1

fXj−X̂j
=

1√
(2πσ2)2r0r1

exp
{
− 1

2σ2

(
(x1 − x̂1)2

r0
+

(x2 − x̂2)2

r1

)}

=
1√

(2πσ2)2r0r1

exp
{
− 1

2σ2

(
x2

1

r0
+

(x2 − φx1)2

r1

)}
.
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We maximize this by taking logarithm and then differentiate:

log L(φ, σ2) = −1
2

log(4π2σ4r0r1)− 1
2σ2

(x2
1

r0
+

(x2 − φx1)2

r1

)

= −1
2

log(4π2σ4/(1− φ2))− 1
2σ2

(
x2

1(1− φ2) + (x2 − φx1)2
)

= − log(2π)− log(σ2) +
1
2

log(1− φ2)− 1
2σ2

(
x2

1(1− φ2) + (x2 − φx1)2
)
.

Differentiating yields

∂l(φ, σ2)
∂σ2

= − 1
σ2

+
1

2σ4

(
x2

1(1− φ2) + (x2 − φx1)2
)
,

∂l(φ, σ2)
∂φ

=
1
2
· −2φ

1− φ2
+

x1x2

σ2
.

Putting these expressions equal to zero gives σ2 = 1
2

(
x2

1(1−φ2) + (x2−φx1)2
)

and
then after some computations φ = 2x1x2/(x2

1 + x2
2). Inserting the expression for φ

is the equation for σ gives the maximum likelihood estimators

σ̂2 =
(x2

1 − x2
2)

2

2(x2
1 + x2

2)
and φ̂ =

2x1x2

x2
1 + x2

2
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Chapter 6

Problem 6.5. The best linear predictor of Yn+1 in terms of 1, X0, Y1, . . . , Yn i.e.

Ŷn+1 = a0 + cX0 + a1Y1 + · · ·+ anYn,

must satisfy the orthogonality relations

Cov(Yn+1 − Ŷn+1, 1) = 0

Cov(Yn+1 − Ŷn+1, X0) = 0

Cov(Yn+1 − Ŷn+1, Yj) = 0, j = 1, . . . , n.

The second equation can be written as

Cov(Yn+1− Ŷn+1, X0) =E[(Yn+1−a0 + cX0 + a1Y1 + · · ·+ anYn)X0] = cE[X2
0 ] = 0

so we must have c = 0. This does not effect the other equations since E[YjX0] = 0
for each j.

Problem 6.6. Put Yt = ∇Xt. Then {Yt : t ∈ Z} is an AR(2) process. We can
rewrite this as Xt+1 = Yt + Xt−1. Putting t = n + h and using the linearity of the
projection operator Pn gives PnXn+h = PnYn+h + PnXn+h−1. Since {Yt : t ∈ Z} is
AR(2) process we have PnYn+1 = φ1Yn +φ2Yn−1, PnYn+2 = φ1PnYn+1 +φ2Yn and
iterating we find PnYn+h = φ1PnYn+h−1 +φ2PnYn+h−2. Let φ∗(z) = (1− z)φ(z) =
1− φ∗1z − φ∗2z

2 − φ∗3z
3. Then

(1− z)φ(z) = 1− φ1z − φ2z − z + φ1z
2 + φ2z

3,

i.e. φ∗1 = φ1 + 1, φ∗2 = φ2 − φ1 and φ∗3 = −φ2. Then

PnXn+h =
3∑

j=1

φ∗jXn+h−j .

This can be verified by first noting that

PnYn+h = φ1PnYn+h−1 + φ2PnYn+h−2

= φ1(PnXn+h−1 − PnXn+h−2) + φ2(PnXn+h−2 − PnXn+h−3)
= φ1PnXn+h−1 + (φ2 − φ1)PnXn+h−2 − φ2PnXn+h−3.

and then

PnXn+h = PnYn+h + PnXn+h−1

= (φ1 + 1)PnXn+h−1 + (φ2 − φ1)PnXn+h−2 − φ2PnXn+h−3

= φ∗1PnXn+h−1 + φ∗2PnXn+h−2 + φ∗3PnXn+h−3.

Hence, we have

g(h) =
{

φ∗1g(h− 1) + φ∗2g(h− 2) + φ∗3g(h− 3), h ≥ 1,
Xn+h, h ≤ 0.

We may suggest a solution of the form g(h) = a+bξ−h
1 +cξ−h

2 , h > −3 where ξ1 and
ξ2 are the solutions to φ(z) = 0 and g(−2) = Xn−2, g(−1) = Xn−1 and g(0) = Xn.
Let us first find the roots ξ1 and ξ2.

φ(z) = 1− 0.8z + 0.25z2 = 1− 4
5
z +

1
4
z2 = 0 ⇒ z2 − 16

5
z + 4 = 0.
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We get that z = 8/5 ±
√

(8/5)2 − 4 = (8 ± 6i)/5. Then ξ−1
1 = 5/(8 + 6i) = · · · =

0.4− 0.3i and ξ−1
2 = 0.4 + 0.3i. Next we find the constants a, b and c by solving

Xn−2 = g(−2) = a + bξ−2
1 + cξ−2

2 ,

Xn−1 = g(−1) = a + bξ−1
1 + cξ−1

2 ,

Xn = g(0) = a + b + c.

Note that (0.4− 0.3i)2 = 0.07− 0.24i and (0.4 + 0.3i)2 = 0.07 + 0.24i so we get the
equations

Xn−2 = a + b(0.07− 0.24i) + c(0.07 + 0.24i),
Xn−1 = a + b(0.4− 0.3i) + c(0.4 + 0.3i),

Xn = a + b + c.

Let a = a1 + a2i, b = b1 + b2i and c = c1 + c2i. Then we split the equations into a
real part and an imaginary part and get

Xn−2 = a1 + 0.07b1 + 0.24b2 + 0.07c1 − 0.24c2,

Xn−1 = a1 + 0.4b1 + 0.3b2 + 0.4c1 − 0.4c2,

Xn = a1 + b1 + c1,

0 = a2 + 0.07b2 − 0.24b1 + 0.07c2 + 0.24c1,

0 = a2 + 0.4b2 − 0.3b1 + 4c2 + 0.3c1,

0 = a2 + b2 + c2.

We can write this as a matrix equation by



1 0 0.07 0.24 0.07 −0.24
1 0 0.4 0.3 0.4 −0.3
1 0 1 0 1 0
0 1 −0.24 0.07 0.24 0.07
0 1 −0.3 0.4 0.3 0.4
0 1 0 1 0 1







a1

a2

b1

b2

c1

c2




=




Xn−2

Xn−1

Xn

0
0
0




,

which has the solution a = 2.22Xn − 1.77Xn−1 + 0.55Xn−2, b = c = −1.1Xn−2 +
0.88Xn−1 + 0.22Xn + (−2.22Xn−2 + 3.44Xn−1 − 1.22Xn)i.
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Chapter 7

Problem 7.1. The problem is not very well formulated; we replace the condition
ρY (h) → 0 as h →∞ by the condition that ρY (h) is strictly decreasing.

The process is stationary if µ̄t = E[(X1,t, X2,t)T ] = (µ1, µ2)T and Γ(t + h, t) does
not depend on t. We may assume that {Yt} has mean zero so that

E[X1,t] = E[Yt] = 0
E[X2,t] = E[Yt−d] = 0,

and the covariance function is

Γ(t + h, t) = E[(X1,t+h, X2,t+h)T (X1,t, X2,t)] =
(

E[Yt+hYt] E[Yt+hYt−d]
E[Yt+h−dYt] E[Yt+h−dYt−d]

)

=
(

γY (h) γY (h + d)
γY (h− d) γY (h)

)
.

Since neither µ̄t or Γ(t + h, t) depend on t, the process is stationary. We assume
that ρY (h) → 0 as h →∞. Then we have that the cross-correlation

ρ12(h) =
γ12(h)√

γ11(0)γ22(0)
=

γY (h + d)
γY (0)

= ρY (h + d).

In particular, ρ12(0) = ρY (d) < 1 whereas ρ12(−d) = ρY (0) = 1.

Problem 7.3. We want to estimate the cross-correlation

ρ12(h) = γ12(h)/
√

γ11(0)γ22(0).

We estimate

Γ(h) =
(

γ11(h) γ12(h)
γ21(h) γ22(h)

)

by

Γ̂(h) =
{

1
n

∑n−h
t=1 (Xt+h − X̄n)(Xt − X̄n)T 0 ≤ h ≤ n− 1

ΓT (−h) −n + 1 ≤ h < 0.

Then we get ρ̂12(h) = γ̂12(h)/
√

γ̂11(0)γ̂22(0). According to Theorem 7.3.1 in Brock-
well and Davis we have, for h 6= k, that

( √
nρ̂12(h)√
nρ̂21(h)

)
∼ approx. N (0, Λ)

where

Λ11 = Λ22 =
∞∑

j=−∞
ρ11(j)ρ22(j)

Λ12 = Λ21 =
∞∑

j=−∞
ρ11(j)ρ22(j + k − h).

Since {X1,t} and {X2,t} are MA(1) processes we know that their ACF’s are

ρX1(h) =
{

1 h = 0
0.8/(1 + 0.82) h = ±1

ρX2(h) =
{

1 h = 0
−0.6/(1 + 0.62) h = ±1
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Hence
∞∑

j=−∞
ρ11(j)ρ22(j) = ρ11(−1)ρ22(−1) + ρ11(0)ρ22(0) + ρ11(1)ρ22(1)

=
0.8

1 + 0.82
· −0.6
1 + 0.62

+ 1 +
0.8

1 + 0.82
· −0.6
1 + 0.62

≈ 0.57.

For the covariance we see that ρ11(j) 6= 0 if j = −1, 0, 1 and ρ22(j + k − h) 6= 0 if
j + k − h = −1, 0, 1. Hence, the covariance is
∞∑

j=−∞
ρ11(j)ρ22(j + k − h) = ρ11(−1)ρ22(0) + ρ11(0)ρ22(1) ≈ 0.0466, if k − h = 1

∞∑

j=−∞
ρ11(j)ρ22(j + k − h) = ρ11(0)ρ22(−1) + ρ11(1)ρ22(0) ≈ 0.0466, if k − h = −1

∞∑

j=−∞
ρ11(j)ρ22(j + k − h) = ρ11(−1)ρ22(1) ≈ −0.2152, if k − h = 2

∞∑

j=−∞
ρ11(j)ρ22(j + k − h) = ρ11(1)ρ22(−1) ≈ −0.2152, if k − h = −2.

Problem 7.5. We have {Xt : t ∈ Z} is a causal process if det (Φ (z)) 6= 0 for all
|z| ≤ 1, due to Brockwell-Davis page 242. Further more we have that if {Xt : t ∈ Z}
is a causal process, then

Xt =
∞∑

j=0

ΨjZt−j ,

where

Ψj = Θj +
∞∑

k=1

ΦkΨj−k

Θ0 = I

Θj = 0 for j > q

Φj = 0 for j > p

Ψj = 0 for j < 0

and

Γ(h) =
∞∑

j=0

Ψh+jΣΨT
j , h = 0,±1,±2, . . .

(where in this case Σ = I2). We have to establish that {Xt : t ∈ Z} is a causal
process and then derive Γ(h).

det(Φ(z)) = det(I− zΦ1) = det
([

1 0
0 1

]
− z

2

[
1 1
0 1

])

= det
([

1− z
2

z
2

0 1− z
2

])
=

1
4

(2− z)2

Which implies that |z1| = |z2| = 2 > 1 and hence {Xt : t ∈ Z} is a causal process.
We have that Ψj = Θj + Φ1Ψj−1 and

Ψ0 = Θ0 + Φ1Ψ−1 = Θ0 = I

Ψ1 = Θ1 + Φ1Ψ0 = ΦT
1 + Φ1

Ψn+1 = Φ1Ψn for n ≥ 1.
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From the last equation we get that Ψn+1 = Φn
1Ψ1 = Φn

1 (ΦT
1 + Φ1) and from the

definition of Φ1

Φn
1 =

1
2n

[
1 n
0 1

] (
ΦT

1 + Φ1

)2

=
1
4

[
5 4
4 5

]
.

Assume that h ≥ 0, then

Γ(h) =
∞∑

j=0

Ψh+jΨT
j = Ψh +

∞∑

j=1

Ψh+jΨT
j

= Ψh +
∞∑

j=1

Φh+j−1
1

(
ΦT

1 + Φ1

)(
Φj−1

1

(
ΦT

1 + Φ1

))T

= Ψh + Φh
1

∞∑

j=0

Φj
1

(
ΦT

1 + Φ1

)2 (
Φj

1

)T

= Ψh + Φh
1

∞∑

j=0

1
2j

[
1 j
0 1

]
1
4

[
5 4
4 5

]
1
2j

[
1 0
j 1

]

= Ψh + Φh
1

1
4

∞∑

j=0

1
22j

[
5 + 8j + 5j2 4 + 5j

4 + 5j 5

]

= Ψh + Φh
1

[
94/27 17/9
17/9 5/3

]
.

We have that

Ψh =

{
I, h = 0
Φh−1

1

(
ΦT

1 + Φ1

)
, h > 0

which gives that

Γ (0) =
[

1 0
0 1

]
+

[
94/27 17/9
17/9 5/3

]
=

[
121/27 17/9
17/9 8/3

]

and for h > 0

Γ (h) = Φh−1
1

(
ΦT

1 + Φ1

)
+ Φh

1

[
94/27 17/9
17/9 5/3

]

= Φh−1
1

(
1
2

[
2 1
1 2

]
+

1
2

[
1 1
0 1

] [
94/27 17/9
17/9 5/3

])

=
1
2h

[
1 h− 1
0 1

] [
199/27 41/9
26/9 11/3

]
.

27



Chapter 8

Problem 8.7. First we would like to show that

Xt+1 =
[

1 θ
θ 0

] [
Zt+1

Zt

]
(8.1)

is a solution to

Xt+1 =
[

0 1
0 0

]
Xt +

[
1
θ

]
Zt+1. (8.2)

Let

A =
[

0 1
0 0

]
and B =

[
1
θ

]
,

and note that

A2 =
[

0 0
0 0

]
.

Then equation (8.2) can be written as

Xt+1 = AXt + BZt+1 = A (AXt−1 + BZt) + BZt+1 = A2Xt−1 + ABZt + BZt+1

=
[

θ
0

]
Zt +

[
1
θ

]
Zt+1 =

[
θZt + Zt+1

θZt+1

]
=

[
1 θ
θ 0

] [
Zt+1

Zt

]
,

and hence (8.1) is a solution to equation (8.2). Next we prove that (8.1) is a unique
solution to (8.2). Let X′

t+1 be another solution to equation (8.2) and consider the
difference

Xt+1 −X′
t+1 = AXt + BZt+1 −AX′

t −BZt+1 = A (Xt −X′
t)

= A
(
AXt−1 + BZt −AX′

t−1 −BZt

)
= A2

(
Xt−1 −X′

t−1

)
= 0,

since A2 = 0. This implies that Xt+1 = X′
t+1, i.e. (8.1) is a unique solution to

(8.2). Moreover, Xt is stationary since

µX (t) =
[

1 θ
θ 0

] [
E[Zt]
E[Zt−1]

]
=

[
0
0

]

and

ΓX (t + h, t) =
[

γ11(t + h, t) γ12(t + h, t)
γ21(t + h, t) γ22(t + h, t)

]

=
[

Cov(Zt+h + θZt+h−1, Zt + θZt−1) Cov(Zt+h + θZt+h−1, θZt)
Cov(θZt+h, Zt + θZt−1) Cov(θZt+h, θZt)

]

= σ2

[ (
1 + θ2

)
1{0}(h) + θ1{−1,1}(h) θ1{0}(h) + θ21{1}(h)

θ1{0}(h) + θ21{−1}(h) θ21{0}(h)

]
,

i.e. neither of them depend on t. Now we see that

Yt = [1 0]Xt = [1 0]
[

1 θ
θ 0

] [
Zt

Zt−1

]
= [1 θ]

[
Zt

Zt−1

]
= Zt + θZt−1,

which is the MA(1) process.
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Problem 8.9. Let Yt consist of Yt,1 and Yt,2, then we can write

Yt =
[

Yt,1

Yt,1

]
=

[
G1Xt,1 + Wt,1

G2Xt,2 + Wt,2

]
=

[
G1Xt,1

G2Xt,2

]
+

[
Wt,1

Wt,2

]

=
[

G1 0
0 G2

] [
Xt,1

Xt,2

]
+

[
Wt,1

Wt,2

]
.

Set

G =
[

G1 0
0 G2

]
, Xt =

[
Xt,1

Xt,1

]
and Wt =

[
Wt,1

Wt,2

]

then we have Yt = GXt + Wt. Similarly we have that

Xt+1 =
[

Xt+1,1

Xt+1,1

]
=

[
F1Xt,1 + Vt,1

F2Xt,2 + Vt,2

]
=

[
F1Xt,1

F2Xt,2

]
+

[
Vt,1

Vt,2

]

=
[

F1 0
0 F2

] [
Xt,1

Xt,2

]
+

[
Vt,1

Vt,2

]

and set

F =
[

F1 0
0 F2

]
and Vt =

[
Vt,1

Vt,2

]
.

Finally we have the state-space representation

Yt = GXt + Wt

Xt+1 = FXt + Vt.

Problem 8.13. We have to solve

Ω + σ2
v −

Ω2

Ω + σ2
w

= Ω

which is equivalent to

Ω2

Ω + σ2
w

− σ2
v = 0.

Multiplying with Ω + σ2
w we get

Ω2 − Ωσ2
v − σ2

wσ2
v = 0,

which has the solutions

Ω =
1
2
σ2

v ±
√

σ4
v

4
+ σ2

wσ2
v =

σ2
v ±

√
σ4

v + 4σ2
wσ2

v

2
.

Since Ω ≥ 0 we have the positive root which is the solution we wanted.

Problem 8.14. We have that

Ωt+1 = Ωt + σ2
v −

Ω2
t

Ωt + σ2
w

and since σ2
v = Ω2/(Ω + σ2

w) substracting Ω yields

Ωt+1 − Ω = Ωt +
Ω2

Ω + σ2
w

− Ω2
t

Ωt + σ2
w

− Ω

=
Ωt

(
Ωt + σ2

w

)− Ω2
t

Ωt + σ2
w

− Ω
(
Ω + σ2

w

)− Ω2

Ω + σ2
w

=
Ωtσ

2
w

Ωt + σ2
w

− Ωσ2
w

Ω + σ2
w

= σ2
w

(
Ωt

Ωt + σ2
w

− Ω
Ω + σ2

w

)
.
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This implies that

(Ωt+1 − Ω)(Ωt − Ω) = σ2
w

(
Ωt

Ωt + σ2
w

− Ω
Ω + σ2

w

)
(Ωt − Ω).

Now, note that the function f(x) = x/(x + σ2
w) is increasing in x. Indeed, f ′(x) =

σ2
w/(x+σ2

w)2 > 0. Thus we get that for Ωt > Ω both terms are > 0 and for Ωt < Ω
both terms are < 0. Hence, (Ωt+1 − Ω)(Ωt − Ω) ≥ 0.

Problem 8.15. We have the equations for θ:

θσ2 = −σ2
w

σ2(1 + θ2) = 2σ2
w + σ2

v .

From the first equation we get that σ2 = −σ2
w/θ and inserting this in the second

equation gives

2σ2
w + σ2

v = −σ2
w

θ
(1 + θ2),

and multiplying by θ gives the equation

(2σ2
w + σ2

v)θ + σ2
w + σ2

wθ2 = 0.

This can be rewritten as

θ2 + θ
2σ2

w + σ2
v

σ2
w

+ 1 = 0

which has the solution

θ = −2σ2
w + σ2

v

2σ2
w

±
√

(2σ2
w + σ2

v)2

4σ4
w

− 1 = −2σ2
w + σ2

v ±
√

σ4
v + 4σ2

vσ2
w

2σ2
w

.

To get an invertible representation we choose the solution

θ = −2σ2
w + σ2

v −
√

σ4
v + 4σ2

vσ2
w

2σ2
w

.

To show that θ = − σ2
w

σ2
w+Ω , recall the steady-state solution

Ω =
σ2

v +
√

σ4
v + 4σ2

vσ2
w

2
,

which gives

θ = −2σ2
w + σ2

v −
√

σ4
v + 4σ2

vσ2
w

2σ2
w

= −

(
2σ2

w + σ2
v −

√
σ4

v + 4σ2
vσ2

w

) (
2σ2

w + σ2
v +

√
σ4

v + 4σ2
vσ2

w

)

2σ2
w

(
2σ2

w + σ2
v +

√
σ4

v + 4σ2
vσ2

w

)

= −4σ4
w + 4σ2

vσ2
w + σ4

v − σ4
v − 4σ2

vσ2
w

2σ2
w (2σ2

w + 2Ω)
= − 4σ4

w

4σ2
w (σ2

w + Ω)
= − σ2

w

σ2
w + Ω

.
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Chapter 10

Problem 10.5. First a remark on existence of such a process: We assume for
simplicity that p = 1. A necessary and sufficient condition for the existence of a
causal, stationary solution to the ARCH(1) equations with E[Z4

t ] < ∞ is that α2
1 <

1/3. If p > 1 existence of a causal, stationary solution is much more complicated.
Let us now proceed with the solution to the problem.

We have

e2
t

(
1 +

p∑

i=1

αiYt−i

)
= e2

t

(
1 +

p∑

i=1

αi

Z2
t−i

α0

)
=

e2
t

α0

(
α0 +

p∑

i=1

αiZ
2
t−i

)
=

e2
t ht

α0
=

Z2
t

α0
= Yt,

hence Yt = Z2
t /α0 satisfies the given equation. Let us now compute its ACVF. We

assume h ≥ 1, then

E[YtYt−h] = E

[
e2
t

(
1 +

p∑

i=1

αiYt−i

)
Yt−h

]

= E[e2
t ]E

[
Yt−h +

p∑

i=1

αiYt−iYt−h

]

= E[Yt−h] +
p∑

i=1

αiE[Yt−iYt−h].

Since γY (h) = Cov(Yt, Yt−h) = E[YtYt−h]− µ2
Y we get

γY (h) + µ2
Y = µY +

p∑

i=1

αi

(
γY (h− i) + µ2

Y

)

and then

γY (h)−
p∑

i=1

αiγY (h− i) = µY + µ2
Y

(
p∑

i=1

αi − 1

)
.

We can compute µY as

µY = E[Yt] = E

[
e2
t

(
1 +

p∑

i=1

αiYt−i

)]
= 1 +

p∑

i=1

αiE[Yt] = 1 + µY

p∑

i=1

αi.

From this expression we see that µY = 1/(1−∑p
i=1 αi). This means that we have

γY (h)−
p∑

i=1

αiγY (h− i) =
1

1−∑p
i=1 αi

+
∑p

i=1 αi − 1
(1−∑p

i=1 αi)2
= 0.

Dividing by γY (0) we find that the ACF ρY (h) satisfies

ρY (0) = 1,

ρY (h)−
p∑

i=1

αiρY (h− i) = 0, h ≥ 1,

which corresponds to the Yule-Walker equations for the ACF for an AR(p) process

Wt = α1Wt−1 + · · ·+ αpWt−p + Zt.
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