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This document contains solutions to selected problems in

Peter J. Brockwell and Richard A. Davis, Introduction to Time Series and Fore-
casting, 2nd Edition, Springer New York, 2002.

We provide solutions to most of the problems in the book that are not computer
exercises. That is, you will not need a computer to solve these problems. We en-
courage students to come up with suggestions to improve the solutions and to report
any misprints that may be found.
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Notation: We will use the following notation.

e The indicator function

1 ifheA,
1A(h)—{ 0 ifhg A

e Dirac’s delta function

6(1&):{ fe i;g and / FOS()dE = £(0).

— 00



Chapter 1

Problem 1.1. a) First note that
E[(Y —¢)?] = E[Y? —2Yc+ ¢?] = E[Y?] — 2cE[Y] + ¢?
=E[Y?] — 2cu + .
Find the extreme point by differentiating,

d
%(]E[YQ]—2CN+C2) =24+2c=0 =c=p.

Since, j—;(E[YQ] — 2cp + ¢?) = 2 > 0 this is a min-point.
b) We have
E[(Y - f(X))* | X] = E[Y? - 2Y f(X) + f2(X) | X]
—E[Y? | X] - 2/ (XY | X] + f3(X),
which is minimized by f(X) = E[Y | X] (take ¢ = f(X) and p =E[Y | X] in a).

¢) We have
E[(Y — f(X))?] =E[E[(Y - f(X))* | X]],

so the result follows from b).

Problem 1.4. a) For the mean we have
ux(t) =E[a+bZ: + cZi—9] = a,
and for the autocovariance

X (t + h, t) = COV(Xt+h, Xt) = COV((I + bZt+h + CZH,]—L,Q, a—+ bZt + CZt,Q)
=b? Cov(Ziyn, Zt) + be Cov(Zypn, Zi—o)
+ cb COV(Zt+h72, Zt) + 02 COV(Zt+h,2, Zt,Q)
= 0'2b21{0}(h) + 02bcl{_2}(h) + O'ZCb].{Q}(h) + 0'2021{0}(h)
(b2 + c*)o? if h =0,
=< beo? if |h| =2,
0 otherwise.

Since px (t) and yx (t+h,t) do not depend on ¢, {X; : t € Z} is (weakly) stationary.
b) For the mean we have

ux (t) = E[Z;] cos(ct) + E[Z3] sin(ct) = 0,
and for the autocovariance
Yx (t + h,t) = Cov(Xern, X¢)
= Cov(Zy cos(c(t + h)) + Zysin(c(t + h)), Z1 cos(ct) + Z3 sin(ct))
= cos(c(t + h)) cos(ct) Cov(Z1, Z1) + cos(c(t + h)) sin(ct) Cov(Z1, Z2)
+ sin(e(t + h)) cos(ct) Cov(Z1, Za) + sin(c(t + h)) sin(ct) Cov(Za, Z3)
o?(cos(c(t + h)) cos(ct) + sin(c(t + h)) sin(ct))

= o2 cos(ch)

where the last equality follows since cos(a — ) = cosacos S + sinasin 3. Since
pux (t) and yx (t + h,t) do not depend on ¢, {X; : ¢t € Z} is (weakly) stationary.
¢) For the mean we have

pux (t) = E[Zi] cos(ct) + E[Zs—1] sin(ct) = 0,



and for the autocovariance
Yx (t + h,t) = Cov(Xitn, Xt)
= Cov(Ziypn cos(c(t + h)) + Ziyp—1sin(ce(t + h)), Z; cos(ct) + Zz—q sin(ct))
= cos(c(t + h)) cos(ct) Cov(Zytn, Zt) + cos(c(t + h)) sin(ct) Cov(Ztn, Zi—1)
+ sin(e(t + h)) cos(ct) Cov(Ziyph—1, Zt)
+ sin(c(t + h)) sin(ct) Cov(Zian—_1, Zt—1)
= 0” cos®(ct) 1oy (h) + o cos(c(t — 1)) sin(ct)1{_1y (h)
+ o?sin(c(t 4 1)) cos(ct) 11y (k) + o sin®(ct) 1oy ()
o2 cos?(ct) + o2 sin*(ct) = 02 if h=0,
=< o?cos(c(t — 1)) sin(ct) if h =—1,
o2 cos(ct) sin(c(t + 1)) ifh=1,

We have that {X; : t € Z} is (weakly) stationary for ¢ = +km, k € Z, since then
Yx(t + h,t) = 0*1y0y(h). For ¢ # +km, k € Z, {X; : t € Z} is not (weakly)
stationary since vx (t + h,t) depends on t.

d) For the mean we have

ux (t) = Ela 4+ bZp] = a,
and for the autocovariance
vx (t + h,t) = Cov(Xiyn, X¢) = Cov(a + bZy,a + bZy) = b* Cov(Zy, Zy) = o°b°.

Since px (t) and yx (t+h,t) do not depend on ¢, {X; : t € Z} is (weakly) stationary.
e) If c = km, k € Z then X, = (—1)*Z, which implies that X, is weakly stationary
when ¢ = kw. For ¢ # km we have

ux (t) = E[Zy] cos(ct) = 0,
and for the autocovariance
vx (t + h,t) = Cov(Xyin, Xt) = Cov(Zg cos(c(t + h)), Zo cos(ct))
= cos(c(t + h)) cos(ct) Cov(Zy, Zy) = cos(c(t + h)) cos(ct)o?.
The process {X; : t € Z} is (weakly) stationary when ¢ = tkw, k € Z and not

(weakly) stationary when ¢ # tkm, k € Z, see 1.4. ¢).
f) For the mean we have

ux () =E[Z;Z;—1] =0,
and
vx({t+ h,t) = Cov(Xiqn, Xi) = Cov(ZyynZiyh—1, ZeZy—1)
=B Zin s 27 = e
Since px (t) and yx (t+h,t) do not depend on ¢, {X; : t € Z} is (weakly) stationary.
Problem 1.5. a) We have
vx (t + h,t) = Cov(Xiqn, Xt) = Cov(Zpyn + 0Zs1h—2, 21 + 0Z;_3)
= Cov(Ziih, Zt) + 0 Cov(Zign, Zi—2) + 0 Cov(Zish—2, Zt)
+ 02 Cov(Ziin_2,Zi )
= 101 (h) + 01 oy (h) + 0123 (h) + 6110y (R)

[ 1+46% ifh=0, [ 164 ifh=0,
16 if |n| = 2. 0.8 if || =2.



Hence the ACVF depends only on h and we write vx (h) = vx (¢t + h, h). The ACF
is then

(h) x(h) [ 1 if h =0,
P =200) ~ | 0.8/1.64~0.49 if [h] = 2.

b) We have

1 1
Var (4(X1 + Xo + X3+ X4)) = EV&T(Xl + X0+ X3+ X4)

1

- = (Var(Xl) + Var(Xs) + Var(Xs) + Var(Xy4) + 2 Cov(X1, X3)

+ ZCOV(XQ,X4))

) 1 1.64 + 0.8
= 15 (17x(0) + 49x(2)) = 7 (4x(0) +7x(2)) = ———— =061
¢) 8 = —0.8 implies yx(h) = —0.8 for |h| = 2 so
1 1.64—038
Var (4()(1 + Xo 4+ X3+ X4)) =—7p —02L

Because of the negative covariance at lag 2 the variance in c) is considerably smaller.

Problem 1.8. a) First we show that {X; : ¢ € Z} is WN (0,1). For ¢ even we have

E[X,] = E[Z;] = 0 and for ¢ odd

72— 1] 1
V2 ol V2

Next we compute the ACVF. If ¢ is even we have yx(t,t) = E[Z?] = 1 and if ¢ is

odd

E[X, =E { E[Z2, -1]=0.

’}/)((t,t) =E

z2 -1 2 1 4 9 1
et S =_-E[Z; ,—-2Z7 ,+1]==(3—2+1)=1.
< \/5 ) 2 [ t—1 t—1 ] 2(3 + )

If ¢ is even we have

Z2 -1 1,
1x(t+1,t)=E NG Zy ZEE[Z:&*ZJ:O?

and if ¢ is odd
zZ2 . -1 z2 . -1
t+1,t)=E|Z H}:]EZ E[H}:O.
¥x ( ) |:t+1 NG [Z141] NG

Clearly vx (¢ + h,t) = 0 for |h| > 2. Hence

1 ifh=0,

1x(t+hh) = { 0 otherwise.

Thus {X; : t € Z} is WN (0,1). If ¢t is odd X; and X;_; is obviously dependent so
{X, :t€Z}is not 1ID (0, 1).
b) If n is odd

E[Xns1 | X1, Xo) =Bl Zns1 | Z0,Z2, 24 .. Zn-1] = E[Znsa] = 0.

If n is even
Z: -1
V2

This again shows that {X, : ¢ € Z} is not IID (0, 1).

Z2-1 X2-1

E[X,.1 | X1,..., X, =E Zo, Zos Zay oo T | = -
[(Xnt1 | Xu ] | Zo, Z2, Za NG 73




Problem 1.11. a) Since a; = (2¢ +1)7!, —¢ < j < ¢, we have

q q
1 .
> agm ;= mj;q (co+c1(t—J))

Jj=—q
1 kl C1 K
= 2¢+1 t—j) | = t(2¢+1) — '
T ¢ (2q+1)+ e Yo (t=)) o+ | t2a+D) D
Jj=—q Jj=—q
o q q
_ . . o
co+ 1 2q+1 Z]+Z ]
j=1 j=1
=cog+cit=my
b) We have
q q
E[A)=E|> aZj| = > aE[Z_;]=0 and
Jj=—q Jj=—q
q q 1 q o2
Var (A;) = Var a;iZi_i | = a?Var (Z4_;) = ——— o? =
(4r) 2 a7 2 i Var (Zij) (2q + 1)° Z 2q +1

Jj=—q Jj=—q Jj=—q

We see that the variance Var(A;) is small for large ¢q. Hence, the process A; will be
close to its mean (which is zero) for large g.

Problem 1.15. a) Put

Zy =VV12X; =(1-B)(1-B%)X, =(1-B)(X; - Xi_12)
=X —Xp 12— X4 1+ X3
=a+bt+s+Y;—a—bt—12)—s4_19—Yi_1o—a—bt—1)—s_1 — Y1
+a+b(t—13)+ si—13+ Yi_13
=Y, —Y 1Y 12+ Y 3.

We have uz(t) = E[Z;] = 0 and

vz(t+ h,t) = Cov (Ziyn, Zt)
=Cov (Yign = Yign1 —Yign—12+Yiqn-13. Y = Y1 = Y12+ Yi_13)
=79y (h) = (h+1) =y (h+12) + v (A + 13) — 3y (h — 1) + 7y (h)
+ v (h+11) = vy (h +12) = vy (h = 12) + yy (h — 11)
Ty (h) =y (h+1) + 9y (h—13) =y (h = 12) = vy (h = 1) + v (h)
=4dyy(h) =2y (h+1) =29y (h — 1) + vy (A + 11) + 9y (h — 11)
— 29y (h 4+ 12) — 2vy (h — 12) 4+ vy (h + 13) + 7y (h — 13).

Since pz(t) and vz (t+ h,t) do not depend on t, {Z; : t € Z} is (weakly) stationary.
b) We have X; = (a + bt)s; + Y;. Hence,

Zy =V3,X; = (1 - B%)(1-B%)X, = (1-B%)(X; — X;_12)
=Xy —Xp120 = Xy—10+ Xyou = X3 —2X4_ 10+ X404
= (a+bt)s; + Yy —2(a+b(t —12)s; 12 + Yi_12) + (a + b(t — 24))st—24 + Yi 24
=a(sy — 281—12 + St—24) + b(tsy — 2(t — 12)s4_12 + (t — 24)s1_24)
+Y -2 10+ Y04
=Y, —2Y 12+ Y04



Now we have pz(t) = E[Z:] = 0 and

vz(t+ h,t) = Cov (Ziyn, Zt)
= Cov (Yign —2Yiin—12 + Yign—24,Ys = 2Y; 12+ Yi_24)
=y (h) = 2vy (h+ 12) + vy (h + 24) — 2vy (h — 12) + 4y (h)
— nyy(h + 12) + vy (h —24) — 2vy (h — 12) + ’)/y(h)
= 67y (h) — 4yy (h 4 12) — 4y (h — 12) + 3y (h + 24) + vy (h — 24).

Since pz(t) and vz (¢t + h,t) do not depend on t, {Z; : t € Z} is (weakly) stationary.



Chapter 2

Problem 2.1. We find the best linear predictor Xn+h = aX, + b of X, by

finding @ and b such that E[X,,4n, — Xp4n] =0 and E[(Xyqp — Xptn)Xn] = 0. We
have

E[Xpin — Xnsn] = E[Xpin —aX, — b = E[X,p] —aB[X,] —b=p(1—a) —b
and

E[(Xntn — Xngn) Xn] = E[(Xn4n — aXy — b) X))
= E[X, 11 X,] — aE[X?] — DE[X,,]
= E[Xn+1hXn] — E[Xn4n]E[Xp] + E[ X4 E[X]
—a (]E[szz] - E[XHP =+ E[XHF) - bE[X,J
= Cov(Xpyn, Xp) + 1 —a (COV(Xn,Xn) + ,u2) —bu
=(h) + 1 = a ((0) + p?) — by,

which implies that

y(h) + p* —bp

b=pllma), o= e

Solving this system of equations we get a = y(h)/v(0) = p(h) and b = u(1 — p(h))
ie. Xpin = p(h) X, + 1(1 = p(h)).

Problem 2.4. a) Put X; = (—1)"Z where Z is random variable with E[Z] = 0 and
Var(Z) = 1. Then
vx (t + h,t) = Cov((=1)"""Z, (-1)'Z) = (=1)***" Cov(Z, Z) = (=1)" = cos(wh).

b) Recall problem 1.4 b) where X; = Z; cos(ct) + Zs sin(ct) implies that vx (h) =
cos(ch). If welet Zy, Zy, Z3, Z4, W be independent random variables with zero mean
and unit variance and put

™ . s ™ . ™
X; = Zj cos (515) + Z5sin (§t> + Z3 cos (Zt) + Z4sin (Zt> + W.

Then we see that vx (h) = k(h).
c) Let {Z, : t € Z} be WN (0,0?) and put X; = Z; + 6Z,_;. Then E[X,] = 0 and

’YX(t + h, t) = COV(Zt+h + 92t+h71; Zt + Qthl)
= COV(Zt+h7 Zt) + 0 COV(Z,H_}L, Zt_l) + 0 COV(Zt_;'_h_l, Zt)
+ 60> Cov(Zysn-1,Zs-1)

a2(1+6% ifh=0,
=< 0?0 if |h| =1,
0 otherwise.

If we let 02 = 1/(146?) and choose 6 such that 020 = 0.4, then we get vx (h) = k(h).
Hence, we choose 6 so that 6/(1 + 6%) = 0.4, which implies that § = 1/2 or 6 = 2.

Problem 2.8. Assume that there exists a stationary solution {X; : t € Z} to

Xy = X1+ Zp,  t=0,£1,...



where {Z, : t € Z} ~ WN (0,0?) and |¢;| = 1. Use the recursions

Xe=0Xi 1+ Z =" X404+ 021+ Zi= ... ="' Xy (1) + Z ¢ Zy_i,

1=0

which yields that

X ¢n+ Xt n+1 Z¢ZZt i

=0

We have that
ar <Z qﬁiZt_i) =Y ¢"Var(Z,_i) =Y o’ =(n+1)o
i=0 i=0 i=0
On the other side we have that
Var (X; — ¢" ' X (ny1)) = 29(0) — 20" y(n + 1) < 29(0) + 2y(n + 1) < 47(0).

This mean that (n+ 1) o2 < 44(0), Vn. Letting n — oo implies that v(0) = oo,
which is a contradiction, i.e. there exists no stationary solution.

Problem 2.11. We have that {X; : ¢t € Z} is an AR(1) process with mean u so
{X; : t € Z} satisfies

X —p=¢(Xe1 —p) + Zs, {Z,:t€Z} ~WN(0,0%),

with ¢ = 0.6 and 02 = 2. Since {X; : t € Z} is AR(1) we have that yx (h) = ‘?‘h;‘f.

We estimate p by X, = + ZZ 1 X. For large values of n X,, is approximately
normally distributed Wlth mean p and variance = ZI hj<oo V(h) (see Section 2.4 in

Brockwell and Davis). In our case the variance is

1 — ) o> 1 1 o?
n<1+2;¢>1_¢2n<1+2(1_¢—1>)1_¢2

_1(2 N o 1149\ o o
_n(l¢_)1¢2‘n<1¢>1¢2‘n(1¢>2'

Hence, X, is approximately N (u, n(107—2¢)2) A 95% confidence interval is given by

I=(z,— )\O'OQE’m’f’L + )\0.025m). Putting in the numeric values gives
I =0.271 £ 0.69. Since 0 € I the hypothesis that g = 0 can not be rejected.

Problem 2.15. Let Xn+1 =P Xnt1 =a0+a1 X, + -+ a,X;:. We may assume
that px(t) = 0. Otherwise we can consider Y; = X; — u. Let S(ag,a1,...,a,) =

E[(Xp41 — Xn41)?] and minimize this w.r.t. ag, a1, ..., an.
S(ag, a1, ... an) = E[(Xnt1 — Xnt1)?]
=E[(Xpi1 —ao— a1 X, — - —apnX1)?]
= a% —200E[ X1 —a1 Xy, — - — an X4 ]
+E[(Xpt1 — a1 Xy, — - — an X1)?]
= a2 +E[(Xpg1 —a1 X, — - —a, X1)?).
Differentiation with respect to a; gives
%i = 2ay,
aS .
9a. = 2E[((Xp41 — a1 Xpn — - — an X1) Xng1-i)s i=1,...,n.



Putting the partial derivatives equal to zero we get that S(ag,a1,...,a,) is mini-
mized if

CLQ:O

E[(Xnt1 — Xny1)Xik] =0, foreach k=1,...,n.
Plugging in the expression for X, ; we get that for k =1,... n.

0= E[(XnJrl - Xn+1)Xk]
= E[(¢1Xn +-+ prXn—p-i—l + Zn—i—l - aan - anXl)Xk]-

This is clearly satisfied if we let

a; =0, ifi>p

Since there is best linear predictor is unique this is the one. The mean square error
is

E[(Xnt1 — Xn+1)2] = E[Z72z+1] =0’

10



Chapter 3

Problem 3.1. We write the ARMA processes as ¢(B)X; = 0(B)Z;. The process
{X; :t € Z} is causal if and only if ¢(z) # 0 for each |z| < 1 and invertible if and
only if 0(z) # 0 for each |z| < 1.
a) ¢(z) =1 +0.22 — 0.4822 = 0 is solved by z; = 5/3 and 2, = —5/4.
Hence {X; : t € Z} is causal.
0(z) = 1. Hence {X; : t € Z} is invertible.
b) ¢(z) = 1+ 1.92 + 0.882% = 0 is solved by 2; = —10/11 and zo = —5/4.
Hence {X; : t € Z} is not causal.
0(z) =1+0.22 4 0.722 = 0 is solved by z; = —(1 — iv/69)/7
and zp = —(1 4+ 4v/69)/7. Since |z| = |z2| = VT70/7 > 1, {X; : t € Z}
is invertible.
c) p(z) =14 0.6z =0 is solved by z = —5/3. Hence {X; : t € Z} is causal.
0(z) =14 1.2z =0 is solved by z = —5/6. Hence {X; : t € Z} is not invertible.
d) ¢(z) =1+ 1.82 +0.812% = 0 is solved by z; = 25 = —10/9.
Hence {X; : t € Z} is causal.
0(z) = 1. Hence {X; : ¢t € Z} is invertible.
e) ¢(z) =1+ 1.6z = 0 is solved by z = —5/8. Hence {X; : t € Z} is not causal.
0(z) =1 —0.42 +0.042% = 0 is solved by z; = 29 = 5.
Hence {X; : t € Z} is invertible.
Problem 3.4. We have X; = 0.8X;_2 + Z;, where {Z; : t € Z} ~ WN (0,02). To

obtain the Yule-Walker equations we multiply each side by X;_j and take expected
value. Then we get

E[X,X;_] = 0.8E[X;_2X;—_1] + E[Z:X;_1].
which gives us
7(0) = 0.8v(2) + o2
~v(k) = 0.8v(k — 2), kE>1.
We use that (k) = v(—k). Thus, we need to solve
7(0) = 0.8y(2) = o
7(1) = 0.8v(1) =0
7(2) —0.8v(0) =0

and therefore v(h) = 0 if h is odd. Next we solve for

First we see that v(1) = 0
=02(1-0.82)"1. It follows that v(2k) = 7(0)0.8% and hence

~(0) and we get v(0)

the ACF is
1 h =0,
p(h)=1{ 08" h=2k k=+1,+42,...
0 otherwise.

The PACF can be computed as «(0) = 1, a(h) = ¢pp, where ¢pp comes from that
the best linear predictor of X1 has the form

h
Xnt1 =Y bniXnt1i-

i=1

11



For an AR(2) process we have X1 = ¢1X, + ¢2X,_1 where we can identify
a(0) =1, a(1) =0, a(2) = 0.8 and a(h) =0 for h > 3.

Problem 3.6. The ACVF for {X; :t € Z} is
vx (t+ h,t) = Cov(Xiqn, Xt) = Cov(Zpwn, + 0Zin—1,Z1 + 02, _4)
=7z(h) + 0vz(h + 1) + Oyz(h — 1) + 6%z (h)
B { o2(1+6%), h=0
T 0%, |h| = 1.
On the other hand, the ACVF for {Y; : t € Z} is
Yy (t 4 h,t) = Cov(Yign, Vi) = Cov(Zpsn + 0 Zein1,Zs + 071 Z, 1)
=7z(h) + 607 yz(h+ 1)+ 0 vz (h — 1) + 0>y, (h)
B { o20?(1+072)=02(1+6%), h=0
T 020207 = 0%, |h| = 1.
Hence they are equal.
Problem 3.7. First we show that {W; : t € Z} is WN (0,02).

EW] =E [Z(—Q)_th—j] =Y (-0)7E[X, ;] =0,

Jj=0 J=0

since E[X;_;] = 0 for each j. Next we compute the ACVF of {W, : t € Z} for
h > 0.

oo

’7w(t + h, t) = E[WthhWt} =E [Z(_a)_thJrhj i(—@)_kth]

Jj=0

k=0
=3 S O I X i X = 3 3 () (—0) P (h =+ )

0 §=0 k=0
= {x(r) = (1 +0°) 110y (r) + o011y (Ir]) }

= Z Z(—H)_(j+k) (02(1 + 92)1{j—k}(h) + 0'291{j7k+1}(h) + 0291{j—k—1}(h))

7=0 k=0
oo oo
= (=0 UM 14 6%) 4 Y (—0)" U2
j=h j=h—1,j>0
+ Y (=0)" TR
j=h+1
=0?(1+0%)(=0)™" > (=0)7207M 4 6%0(—0)" "N " (—g) 720~ (A1)
j=h j=h—1,5>0
+029(70)7(h+1) Z (70)72(j7(h+1))
j=h+1
_ 2 o 92
=o?(1 4 6%)(-0) h92_1+029(—9) (n 1>ﬁ+ o201y (h)
2 —(h+1) 9*
+0°0(—0) 71

2

02 —1
= 0'2921{0}(/1)

=o2(—f)~" (1+6%—6%—1) + 0?6%1 ) (h)

12



Hence, {W; : t € Z} is WN (0,02) with 02 = 626%. To continue we have that

Wt = Z(_G)_th_j = ZTFth_j,
7=0 7=0

with m; = (—6) 7 and Yo lmil =327, 077 < oo so {X; :t € Z} is invertible and
solves ¢(B)X; = (B)W; with m(z) = 7% 72/ = ¢(2)/6(z). This implies that
we must have

- j_oo zZ\7 _ _ 9(2)
;”ﬂ'z -2 (-5) _le/a_ 0(z)

=0
Hence, ¢(z) = 1 and 0(z) = 1+ 2/0, i.e. {X; : t € Z} satisfies X; = W, + 071 W,_;.

Problem 3.11. The PACF can be computed as o(0) = 1, a(h) = ¢pn where ¢pp,
comes from that the best linear predictor of X1 has the form

h
X1 =D bniXni1i
i=1

In particular a(2) = @92 in the expression

X3 = ¢ Xo + 22 X1
The best linear predictor satisfies

Cov(Xs5— X3, X;) =0, i=1,2.

This gives us

COV(Xs - X37X1) = COV(Xs — 21 X9 — ¢22X1,X1)
= Cov(X3, X1) — ¢21 Cov(Xa, X1) — ¢a2 Cov(X1, X1)
=7(2) = P217(1) — P227(0) = 0

and

Cov(X3 — X37X2) = Cov(X3 — 921 X2 — ¢22X1, X2)
=7(1) — ¢217(0) — p227(1) = 0.

Since we have an MA(1) process it has ACVF

02(1+02)7 h =0,
(k) =4 0%, bl =1,
0, otherwise.

Thus, we have to solve the equations

$217(1) + ¢227(0) =
(1= ¢22)7(1) — ¢217(0) =
Solving this system of equations we find
02

bn= g

13



Chapter 4

Problem 4.4. By Corollary 4.1.1 we know that a function v(h) with 32, - [v(h)]
is ACVF for some stationary process if and only if it is an even function and

oo

1

T or
h=—00

We have that y(h) is even, y(h) = vy(—h) and

3

F) = 3 e (n)

fN) ey (h) >0, for A € (—m,m].

T or
h=—3

1 . . _ _
=5 (—0.25¢* — 0.5e™* +1 — 0.5¢2* — 0.25¢ %)

I

1 . . _ _
=5 (1- 0.25(e3* 4 e7BY) — 0.5(e™* + eﬂz)‘))

1
=50 (1 —0.5c08(3A) — cos(2A)) .

Do we have f(A\) > 0 on A € (—m,nw]? The answer is NO, for instance f(0) =
—1/(4m). Hence, y(h) is NOT an ACVF for a stationary time series.

Problem 4.5. Let Z; = X; + Y;. First we show that vz(h) = vx(h) + vy (h).

vz(t+ h,t) = Cov(Ziin, Zt) = Cov(Xeqn + Yign, Xt + Y2)
= Cov(Xiqn, Xt) + Cov(Xiin, Yi) + Cov(Yiqn, Xi) + Cov(Yiyn, Y2)
= Cov(Xpsn, X¢) + Cov(Yign, Y2)
= yx(t + h,t) + vy (t + h, t).

We have that
vz(h) = / " dFZ(N)
(77""“—]
but we also know that

vz (h) = yx (h) + v (h) = /

(777171—]

e dFx (\) + / e dFy (\)

(77"777]

- / ¢ (AP () + dFy ()
(77‘—771—]
Hence we have that dFz(\) = dFx()\) + dFy (\), which implies that
Fz()\):/ sz(I/):/ (de(V)+dFy(V)):Fx()\)+Fy()\)
(—m,A] (—=m,A]

Problem 4.6. Since {Y; : t € Z} is MA(1)-process we have

o2(1+6%), h=0,
vy (h) =< o020, |h| =1,
0, otherwise.

By Problem 2.2 the process S; = Acos(wt/3) + Bsin(nt/3) has ACVF ~g(h) =
v? cos(mh/3). Since the processes are uncorrelated, Problem 4.5 gives that yx (h) =
vs(h) + vy (k). Moreover,

2 . . - i .
v cos(mh/3) = %(e”h/%e*”h/d): / eMdFg(N),

—T

14



where

2 2
dFs()) = %5 (A —7/3)dX + %5 (A + 7/3) d)

This implies

0, A< —7/3,
Fs(\) =< v?/2, —7w/3<A<m/3,
V2, A>7/3.

Furthermore we have that

o0

1

o7
h=—o00

e~y (h) = 1 (ei)\’yy(fl) + v (0) + efi’\’)’Y(l))

) 2r

1 o 2
= 5 (0* (14+25%) + 2507 (¢ + 7)) = ;’7(7.25 +5cos(\)).

This implies that

A2 2

A
B\ = [ fye)de = %(7.25 + 5 cos(€))dE = % [7.25¢ + 5sin()] "

= g(?.%(A + ) + 5sin(N)).

—T

Finally we have Fx(/\) = Fs()\) + Fy(>\)
Problem 4.9. a) We start with vx(0),

—%£40.01 Z40.01

vx(0) = / e fx (N)d\ = 100/ d\ + 100/ d\=100-0.04 = 4.

-7 —T_0.01 T _0.01

For vx (1) we have,

yx (1) = /7r e fx (N)dA

—T

—5+0.01 z+40.01
=100 / e\ + 100 / e\

—z0.01 z0.01
ix]—+0.01 ix §+0.01

=100 [} + 100 []
tl-z_o0.01 tlz_o.01

100
- 2(;0 (sin (—% + 0.01) +sin (% + 0.01))
= 200v/35in(0.01) ~ 3.46.

(ez‘(—g+o.01) _ e i(EH0.01) | i(F+0.01) _ e—i(—%+0.01))

The spectral density fx(\) is plotted in Figure 4.9(a).

b) Let

YVi=ViXi=X—Xi2= Y X,

k=—o0

15



with 99 =1, 912 = —1 and ¢; = 0 otherwise. Then we have the spectral density
fy(\) = [¢(e7™)]2 fx(N) where

¢(€7iA) — Z wkefik/\ —1— 677;12)\.

k=—o00

Hence,

fr0) = [1— e 22 () = (1 — e 2 (1 — e!2) e (3)
= 2(1 — cos(12X)) fx (V).

The power transfer function |1)(e~**)|? is plotted in Figure 4.9(b) and the resulting
spectral density fy (\) is plotted in Figure 4.9(c).

¢) The variance of Y; is vy (0) which is computed by

v (0) = j fy (A)dA

—Z240.01 z40.01
— 200 / (1 = cos(122))dA + 200 / (1= cos(122))dA

—2_0.01 _0.01
sin(12X)7—6+0.01 sin(12X)76+0.01
=200 ([A B (12 )}gom - P\ B (12 )} g0.01>
sin(12(—7/6 + 0.01)) — sin(12(—7/6 — 0.01))
12
sin(12(w/6 4 0.01)) — sin(12(7/6 — 0.01))
12 )
sin(2m — 0.12) — sin(27 4+ 0.12))
6

= 200 <0.02 —

+0.02 —

=200 (0.04 +

1
= 200 (0.04 -3 sin(0.12)> = 0.0192.

Problem 4.10. a) Let ¢(z) = 1 — ¢z and 6(z) = 1 — fz. Then X, = %21 7, and

&(B)
o™ e P o2
) = G| 10 = |G| 5=
For {W, : t € Z} we get
2
~ 2 . —i — 2
foy = |3 ‘e<e—ﬂ> e e
C o] o] 2 i e a - ge P 2
Now note that we can write
1 a7 1 a2 e TS
1—7677)\ _ (b_efz)\ — _671)\ — ¢ez)\_1
O 1 e e e P

1 a2 1 —in2
:$}17¢€Z| :ﬁ|17¢61|
Inserting this and the corresponding expression with ¢ substituted by 6 in the
computation above we get
il i A I

L1 =01 — ger2 2m  ¢22m

fw(A) =

16
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which is constant.
b) Since {W; : t € Z} has constant spectral density it is white noise and
) ™ 02 02 92

w="7w(0) = fw(N)dA = —

_ 2
o ¢2%27rfga .

¢) From definition of {W; : t € Z} we get that ¢(B)X, = (B)W; which is a causal
and invertible representation.

18



Chapter 5

Problem 5.1. We begin by writing the Yule-Walker equations. {Y; : t € Z}
satisfies

Yy — $1Yeo1 — ¢2Yeo = Zy, {Zy:t € Z} ~ WN(0,0%).
Multiplying this equation with Y;_; and take expectation gives

2 p—
W(k)—@bw(k—l)—d)ﬂ(k_g):{ g llz;?

We rewrite the first three equations as

P1v(k—1) + poy(k —2) = { %) — o2 Z z (1) }

Introducing the notation
e (50 30 ) = (G ) o= (5)

we have T'y¢p = 7, and 02 — (0) — ¢T~,. We replace T's by I's and v, by 4, and
solve to get an estimate ¢ for ¢p. That is, we solve

Hence
SRS 1 7(0)  =4(1) A(1)
=T %2 = 35 50 ( (1) 4(0) ) ( 4(2) )
_ 1 ( (0)4(1)  —4(1)A(2) >
(02 =412 \ —4(1)*  4(0)7(2)
We get that
- (500) —4(2)5(Q)
o1 = T 1.32
- A0)5(2) —4(1)2
b2 = SO —3() 0.634
6% =4(0) — $19(1) — $27(2) = 289.18

We also have that ¢ ~ AN(¢, 02I'; ' /n) and approximately ¢ ~ AN(¢, &Qfgl/n).
Here

&21:‘—1/”_289.18 0.0021  —0.0017 \ 0.0060 —0.0048
2 100 —0.0017  0.0021 ~\ —0.0048  0.0060

So we have approximately ¢; ~ N(¢1,0.0060) and by ~ N (¢2,0.0060) and the
confidence intervals are

Is, = &1 % X0.025V0.006 = 1.32 £ 0.15
Iy, = b2 & Xo.025/0.006 = —0.634 £ 0.15.
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Problem 5.3. a) {X; : t € Z} is causal if ¢(z) # 0 for |z| < 1 so let us check for
which values of ¢ this can happen. ¢(z) = 1 — ¢z — ¢?22 so putting this equal to
zero implies

1 1-5 1+5

9 Z
22+ ———==0=> 2 =— and zo = —
¢ @ 2¢ 29
Furthermore |z | > 1if |¢| < (v/5 —1)/2 = 0.61 and |2a| > 1if |¢| < (1 +V5)/2 =
1.61. Hence, the process is causal if |¢| < 0.61.
b) The Yule-Walker equations are

V(k)¢v(k1)¢27(k2){ %2 Z (1)7

(AVAN|

Rewriting the first 3 equations and using v(k) = v(—k) gives
7(1) = ¢*7(2) = o
v(0) — ¢*y(1) =0
(1) = ¢*4(0) = 0.
Multiplying the third equation by ¢2 and adding the first gives
(1) — (1) — $*4(0) +1(0) = o
(1) = ¢7(0) — ¢*4(1) = 0.

We solve the second equation to obtain

=2

=
|

<

2 =2
> =
L
<

1 1
o= — + + 1
2p(1) 4p(1)?
Inserting the estimated values of 4(0) and (1) = 4(0)p(1) gives the solutions
¢ = {0.509,—1.965} and we choose the causal solution ¢ = 0.509. Inserting this
value in the expression for o2 we get

6° = —¢*4(1) — $3(1) — *4(0) +4(0) = 2.985.

Problem 5.4. a) Let us construct a test to see if the assumption that {X; — p :
t € Z} is WN (0,0?) is reasonable. To this end suppose that {X; — p : t € Z} is
WN (0,0?). Then, since p(k) = 0 for k > 1 we have that p(k) ~ AN(0,1/n). A
95% confidence interval for p(k) is then I,y = p(k) £ Xo.025/v/200. This gives us

L,y = 0.427 £ 0.139
I(2) = 0.475 £ 0.139

I3y = 0.169 £ 0.139.

Clearly 0 ¢ I, for any of the observed k = 1,2,3 and we conclude that it is not
reasonable to assume that {X; — p : t € Z} is white noise.
b) We estimate the mean by fi = Tagp = 3.82. The Yule-Walker estimates is given
by

¢=R;'p, *=90)1-p, Ry'py),

where



Solving this system gives the estimates ¢, = 0.2742, ¢» = 0.3579 and 62 = 0.8199.
¢) We construct a 95% confidence interval for u to test if we can reject the hypothesis
that y = 0. We have that Xo99 ~ AN(u,v/n) with

oo

v=Y_ v(h)=5(=3) +4(=2) + 4(=1) + 5(0) + 4(1) + 4(2) + 4(3) = 3.61.

h=—o00
An approximate 95% confidence interval for y is then
I =%, £ Xoo2s V/n =3.82+1.96 3.61/200 = 3.82 £ 0.263.

Since 0 ¢ I we reject the hypothesis that p = 0.

d) We have that approximately & ~ AN(¢, 62f‘2_1/n). Inserting the observed values
we get

~—1
62T, [ 0.0050  —0.0021
n ~0.0021 0.0050 )

and hence ¢y ~ AN(¢1,0.0050) and ¢z ~ AN(p2,0.0050). We get the 95% confi-
dence intervals

Iy, = b1 £ Ao.025V/0.005 = 0.274 + 0.139

Iy, = b2 % X.0251/0.005 = 0.358 & 0.139.

e) If the data were generated from an AR(2) process, then the PACF would be
a(0) =1, &(1) = p(1) = 0.427, &(2) = do = 0.358 and G(h) = 0 for h > 3.

Problem 5.11. To obtain the maximum likelihood estimator we compute as if the
process were Gaussian. Then the innovations

X1 — X1 = X1 ~ N(0,1p),

Xo — Xz = Xo — X1 ~ N(0,11),
where vy = o2rg = E[(X1 — X1)?], 11 = o%r; = E[(Xy — X5)2]. This implies

vo = E[X}] =7(0), ro = 1/(1—-¢?) and 11 = E[(X2—X3)?] = 7(0) —2¢7(1) +¢*y(0)
and hence

YO0)(1+¢%) —207(1) _ 1462~ 20" _

= =1.
& o2 1— ¢2

Here we have used that (1) = 0%¢/(1 — ¢®). Since the distribution of the innova-
tions is normal the density for X; — X is

s v o ()
6 =———exp| ———
Xi=X; 2mo%rj_q P 202711

and the likelihood function is

: xy — I1)? Ty — B9)?
L((b’UZ):HfXj—Xj:1exp{—%i2(( : 0 1> +( : 71 2) >}
Jj=1
1

(2mo2)2rgry
1 2 _ 2
_ exp{_2 (mmwn»
(2m02)2rory 202 \ rg 1

21



We maximize this by taking logarithm and then differentiate:

To 1

- 7% log(4n®0"/(1 - ¢%)) — %,2(17%(1 — &%) + (22 — ¢11)?)

]. 1 1/'2 To — OT 2
log L(¢, 02) Y IOg(47T204T07“1) - ﬁ( Ly M)

1 1
= —log(2m) — log(0?) + 3 loa(1 — %) — 55 (131~ &%) + (22 — 61)?).
Differentiating yields

(¢, 02 1,1
% =~ + 51 (@1 = 8) + (@2 — 6m1)?),

8l(¢,02)_1
o6 2 1—¢2 ' o2’

Putting these expressions equal to zero gives 02 = %(w%(l — ¢?) + (w9 — d)xl)Q) and
then after some computations ¢ = 2z1x5/(23 + 23). Inserting the expression for ¢
is the equation for o gives the maximum likelihood estimators

52 _ (33% *x%)Q d qu 2219
2(af + 23)

2 2
Ty + x5
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Chapter 6

Problem 6.5. The best linear predictor of Y, 1 in terms of 1, Xy, Y1,...,Y, ie.

Yn—i—l =ap + CXO + CL1Y1 + -+ afnYna

must satisfy the orthogonality relations

COV(YTL+1 — 5}“4,17 1)

0
COV(Yn+1 — Yn+17X0) =0
0,

COV(Yn-H - KL+17 Yj)

7=1...,n.
The second equation can be written as
Cov(Yni1 —Yn+17 Xo)=E[(Yo11—ao+cXo+ a1y 4+ a,Y,) Xo] =cE[X3] = 0

so we must have ¢ = 0. This does not effect the other equations since E[Y;X(] =0
for each j.

Problem 6.6. Put Y; = VX;. Then {Y; : t € Z} is an AR(2) process. We can
rewrite this as Xy41 = Y; + Xy—1. Putting ¢ = n + h and using the linearity of the
projection operator P, gives P, Xp+n = PoYnin + PoXpnin—1. Since {Y; : t € Z} is
AR(2) process we have P, Y11 = 1Y + d2Y_1, PuYnio = 1P, Y11 + @2Y, and
iterating we find P,Y,1n = o1 P Yoin—1+ 02 P Ynin—o. Let ¢0*(2) = (1 —2)¢(2) =
1 — @iz — 522 — 523, Then

(1—2)p(2) =1 — ¢p12 — oz — 2 + $12° + po2?,
ie. ¢] = ¢1+ 1, ¢5 = ¢2 — ¢1 and ¢3 = —¢3. Then

3

PoXnin =Y _ ¢ Xnin_j.
j=1

This can be verified by first noting that
PnYn+h - (i)lpnYnJrhfl + ¢2Pnyn+h72

= Cbl (Pan+h—1 - Pan+h—2) + ¢2(Pan+h—2 - Pan+h—3)
= 01 P Xpin—1+ (92 — ¢1) PaXin—2 — p2Pn X3

and then

Pan+h - PnYn+h + Pan+h71
= (1 + )P Xnin—1+ (92 — ¢1) PaXnin—2 — p2PnXnin—3
= (bTPan—&-h—l + d);PTLXTL-’r}L—Q + ¢§Pan+h—3~

Hence, we have

o(h) = { ¢1g9(h —1) + ¢39(h —2) + ¢39(h =3), h =1,
Xnths h <0.

We may suggest a solution of the form g(h) = a—i—bgfh—l—c{{h, h > —3 where & and

& are the solutions to ¢(z) = 0 and g(—2) = X,,_2, g(—1) = X,,_1 and g(0) = X,,.
Let us first find the roots & and &;.

4 1 1
ti)(z):1—0.82+0.25z2:1—5z+122:0:>22—36z+4:(),
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We get that z = 8/5+ 1/(8/5)2 — 4 = (8 £6i)/5. Then &, =5/(8 4 6i) = --- =
0.4 —0.3¢ and 52_1 = 0.4 + 0.3i. Next we find the constants a, b and ¢ by solving
Xn—2=9g(=2) = a+0§ 7" + e,
Xn1=g(-1) =a+b§" + 65,
X,=9(0)=a+b+ec.

Note that (0.4 — 0.34)% = 0.07 — 0.24i and (0.4 + 0.3i)% = 0.07 + 0.24i so we get the
equations

Xp—2 =a+b(0.07 — 0.247) + ¢(0.07 + 0.243),
Xo1 = a+b(0.4— 0.3i) + ¢(0.4+ 0.30),
X,=a+b+ec

Let a = a1 + agi, b = by + bai and ¢ = ¢; + coi. Then we split the equations into a
real part and an imaginary part and get

X9 =ay +0.07by + 0.24by + 0.07¢c; — 0.24c¢,,
X,_1=a1+0.4by + 0.3b5 + 0.4¢; — 0.4c¢o,
Xn=a1 +b+ci,
0 =as +0.07b5 — 0.24b1 + 0.07c + 0.24c¢;,
0 = ag + 0.4by — 0.3by + 4co + 0.3¢4,
0=ag+ bs + ca.

We can write this as a matrix equation by

1 0 007 024 007 —0.24 ay X2
10 04 03 04 —03 as X1
10 1 0o 1 0 b | | Xa
0 1 —024 007 024 0.07 by |~ o |’
01 —03 04 03 04 ¢ 0
01 0 10 1 Co 0

which has the solution a = 2.22X,, — 1.77X,,_1 + 0.55X,, o, b=¢= —-1.1X,,_o +
0.88X,—1 +0.22X,, + (—-2.22X,,_o + 3.44X,,_; — 1.22X,,)1.
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Chapter 7

Problem 7.1. The problem is not very well formulated; we replace the condition
py (h) — 0 as h — oo by the condition that py (h) is strictly decreasing.

The process is stationary if ji; = E[(X1¢, X24)T] = (u1,p2)” and (¢ + h,t) does
not depend on t. We may assume that {Y;} has mean zero so that

]E[Xl,t} E[Yt] =0
E[X2] = E[Y;_q] =0,

and the covariance function is

D(t+h,t) = E[(X1 01, Xojprn) " (X1,0, Xop)] = ( E[Yiin_aVs] E[Yiin—aYi_d

:< Yy () W(h+d)>
Yy (h—d) v (h) '

Since neither fi; or I'(t 4+ h,t) depend on ¢, the process is stationary. We assume
that py (h) — 0 as h — oo. Then we have that the cross-correlation

_ Y12(h) _w(h+d)
p12(h) = e ) R ) B py (h+d).

In particular, p12(0) = py (d) < 1 whereas p12(—d) = py(0) = 1.

E[YirnY:]  E[YirnYi—d] )

Problem 7.3. We want to estimate the cross-correlation

p12(h) = y12(h)//711(0)722(0).

We estimate

_( mi(h) ma2(h)
L(h) = ( Yo1(h)  722(h) )

by

m={ = P (X — X)) (X = X)T 0<h<n—1
I'T(—h) -n+1<h<0.

Then we get p12(h) = F12(h)/+/711(0)¥22(0). According to Theorem 7.3.1 in Brock-
well and Davis we have, for h # k, that

( Vnpra(h) ) ~ approx. N (0,A)

Vnpa(h)
where
A=A =Y pu(i)p2(h)
Jj=—00
Ao =As1= > pui(i)pa(j+k—h).
Jj=—00

Since {X1 .} and {X5 .} are MA(1) processes we know that their ACF’s are

1 h=0
pxi(h) = { 0.8/(140.82) h=+1

1 h=0
px,(h) = { —0.6/(140.6%) h=+1
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Hence
Z p11(3)p22(7) = pr1(=1)p22(=1) 4 p11(0)p22(0) 4 p11(1) p22(1)
" 0.8 —0.6 0.8 —0.6

= . 1 . ~ 0.57.
140.82 1+40.62 LR 1+0.82 1+0.62

For the covariance we see that p11(j) £ 0if j = —1,0,1 and paa(j + k — h) # 0 if
7+ k—h=—-1,0,1. Hence, the covariance is

Z p11(J)p22(d + k — h) = p11(=1)p22(0) + p11(0)p22(1) ~ 0.0466, ifk—h=1

j=—o0

Z p11(J)p22(j + k — h) = p11(0)paa(—1) 4 p11(1)p22(0) ~ 0.0466, if &k —h = —1

j=—o00

D p(i)pea(i+k —h) = pu(~1)pe(l) & 02152, ifk—h=2

j=—00
Z p11(7)pa2(j +k —h) = p11(1)p2a(—1) = —0.2152, ifk—h= 2.
j=—0o0

Problem 7.5. We have {X, : t € Z} is a causal process if det (P (z)) # 0 for all
|z| <1, due to Brockwell-Davis page 242. Further more we have that if {X; : t € Z}
is a causal process, then

Xe=) ¥,Zj,
j=0

where

U, =0;+) &%,

k=1

Qy=1

©;=0 for j>¢q

q)j =0 for ] > p

‘I’j =0 for _] <0
and

D(h)=> @, B8], h=0+1,42, ...
=0

(where in this case ¥ = Iy). We have to establish that {X; : ¢t € Z} is a causal
process and then derive T'(h).

det@(z))—det(I—z%)—detq (1) (1) } ‘% { t1) } D

(155 18 )t
Which implies that |z1] = |22| =2 > 1 and hence {X; : ¢t € Z} is a causal process.
We have that ¥; = 0, + ®,¥,_; and
V)= + &0 , =0y =1
U, =0, +8,9,=d7 + &,
Y, =®,¥, for n>1
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From the last equation we get that ¥, = ®7¥; = ®7(®7 + &,) and from the
definition of ®;

(SN
[E—

B~ =

n_l 1 n T 2_
<I>1—2,,{0 1] (21 + @) =

Assume that A > 0, then
(oo} oo
T(h) =) W, ;@] =W, +> ¥, w7
=0 j=1

> . , T
=3 el (@ e (17 (o + )

j=1

0 ) T 2 T
—w, o> o (o + @) (o))
7=0
101 4715 4711 0
h = J |2 =
—‘I’h“I’lZgj{o 1}4{4 5}%{;’ 1]

I~ 1 [ 54854552 4+5)
_ h = =

]:
- n [ 94/27 17/9
_‘I’h“bl{ 17/9  5/3

We have that

I, h=0
Yn=9 ght (87 +@.), >0
which gives that

I )= [ (1) (1) ] + [ 9147//297 157//39 } _ [ 1%%37 187//39 }

and for A > 0

r(n) =@, (o] + @) + @ [ 94/27 17/9 }

17/9  5/3
—a (33 2] 5[0 ] [ )

IR
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Chapter 8

Problem 8.7. First we would like to show that

1 0 Z
Xip1 = [ 9 0 } [ Zl } (8.1)
is a solution to
0 1 1]
Xt+1 == |: 0 0 :|X.t + |: 0 Zt+1. (82)
Let
0 1 1
A= [ 0 0 } and B = 0 ] ,
and note that
2 |0 0
e[00].

Then equation (8.2) can be written as

Xt+1 = AXt + BZt+1 = A (AXt,1 + BZt) + BZt+1 = AQXt,1 + ABZt + BZt+1
e 1 | Z+Z ) |16 )
—[o]zﬁ{a}zﬁl_[ 0Zys | |0 0] 2z |

and hence (8.1) is a solution to equation (8.2). Next we prove that (8.1) is a unique

solution to (8.2). Let Xj_ ; be another solution to equation (8.2) and consider the
difference

Xit1 — Xy = AXy + BZyy1 — AX| — BZi1 = A(X; — X))
=A(AXy_1+BZ, — AX|_, — BZ,) = A* (X4-1 — X|_;) =0,

since A2 = 0. This implies that X;1; = X}, i.e. (8.1) is a unique solution to
(8.2). Moreover, X; is stationary since

0

0

px (t) = { ; g } { El?étzj]l] ]

and
’Yll(t + ha t) 712(1; + h7 t)
I'x (t+h,t) =
X( T ’ ) |: 721(t+h,t) ’YQQ(t—Fh,t)
_ |: COV(Zt+h + 9Zt+h717 Zt + Gthl) COV(Zt+h + 0Zt+h717 GZt) :|

COV(@ZH_}“ Zt + HZt_l) COV(GZt_;,_}L, GZt)
_ 2 |: (1 + 92) 1{0}(h) + 01{,1,1}(h) 91{0}(/1) + 921{1}(h) :|
01103 (h) + 6°1;_13(h) 621403 (h) ’

i.e. neither of them depend on t. Now we see that

Vi=[1 0X;=][1 0]“ gHthl}zu 9][thl}zzt+ezt_1,

which is the MA(1) process.
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Problem 8.9. Let Y, consist of Y;; and Y, 5, then we can write

v, — Yii | _ | GiXen +Wen | _ | GiXyy } + { W, ]
! Y1 GoXio+ Wy G2Xy2 W,

_| G 0 X1 n W1
0 Gy X2 W2 |’

| Gi O | Xt | Wy
G_[O GQ], Xf‘[Xm} and wt_[ }

then we have Y; = GX; + W,. Similarly we have that

X, Xit11 _ 1 X1+ Vi _ X1 " Vi
o+l Xit11 X0+ Vo X0

_ | 0 X1 n Vi
0 F2 Xt,Q Vt,2

| Fr O | Via
B 2] wa ves] Y],

Finally we have the state-space representation
Y, =GX; + W,
Xip1 = FXy + V.
Problem 8.13. We have to solve

Set

and set

Q2
Q 2_ =0Q
I Q+ 02
which is equivalent to
02 9
m — 0, = 0.
Multiplying with Q + 02 we get
02— Qo2 — 0202 =0,

which has the solutions

1 [od 2+ /ol + 40202
Q:ia?,:t %+Ui0%=au J; TuwT,

Since 2 > 0 we have the positive root which is the solution we wanted.
Problem 8.14. We have that

oY

Q1= 40, — m

and since 02 = Q2/(2 + 02)) substracting €2 yields

0? 0?2

Q+02 Q402
G (u+ol) -7 Q(Q+07) - Q2

Q; + o2, Q+ 02
Vo2 Qo2

- Q+02 Q+02
5 O Q

=0 — .
w Qt—i—O',LQU Q+0121)
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This implies that

Q, 0
(Qip1 — D(Q — Q) =02 <Qt +*0_12” — Q+o—3,> (Q; — Q).

Now, note that the function f(z) = z/(z + 02) is increasing in z. Indeed, f’(z) =
02 /(x+02)? > 0. Thus we get that for 2, > Q both terms are > 0 and for Q; < Q

both terms are < 0. Hence, (441 — 2)(Q — ) > 0.

Problem 8.15. We have the equations for 6:

2 _ 2
fo* = —0o,

o?(1+6%) =202 + o2

From the first equation we get that 02 = —02 /# and inserting this in the second

equation gives
2
Uw

20121) + 012) = _7(1 + 02)a

and multiplying by 6 gives the equation
(202 + 020 + 02 +26% = 0.

This can be rewritten as
2 2
205, + o0

0 +0—"o—"+1=0
which has the solution
0:_201204—03 (205}+03)2_1:_20$U+03:I: ol + 40202
202, 4ot 202, '

To get an invertible representation we choose the solution

202 + 02 — \/od + 40202

9 =
202,

recall the steady-state solution

Q- 02+ /ot + 40202

2

2
Uw
To show that 8 = “oz i

)

which gives

202 + 02 — /ot + 40202

0 =
202,

(203, +o02—\Jod+ 4012,0120) (20120 +o02+ ok + 4030&)

202, (2030 +o2+Jot+ 40303)
4o o

- 403} + 40503, + 03 — afj — 4012}031 -
N 202 (202 + 2Q) 402 (02 +Q) o2 +Q°
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Chapter 10

Problem 10.5. First a remark on existence of such a process: We assume for
simplicity that p = 1. A necessary and sufficient condition for the existence of a
causal, stationary solution to the ARCH(1) equations with E[Z}] < oo is that a3 <
1/3. If p > 1 existence of a causal, stationary solution is much more complicated.
Let us now proceed with the solution to the problem.

We have

p P Z2 )
e? 1+ZaiY},i =e? 1—|—Zai Ot:Z
i=1 i=1 0

hence Y; = Z7/ay satisfies the given equation. Let us now compute its ACVF. We
assume h > 1, then

p
E[Y;Y;_n] =E lef (1 +)° aYt> Yioh

i=1

2 P 2 2

e; 9 eshy  Z;
= b E iZ7' :7:7:Y’
) g <a0+ Aidy Z) g ap !

i=1

p
=E[ef]E |Yin + Y aiYiiYip

=1

p
=E[Yi_p] + Z o E[Y: ;Y p].

=1

Since vy (k) = Cov (Y, Yi—n) = E[Y,Y;—p] — 3 we get

p
Yy (h) + 13 = py + Zai (vy (b —4) + )

i=1
and then
p p
Yy (h) — Zaz"w(h —i) = py + 4y (Zai - 1) :
i=1
We can compute py as

P
ef <1 + Z ozth_i>

i=1

py =EY)] =E

p p
i=1 i=1

From this expression we see that puy = 1/(1 — >°%_; a;). This means that we have

1 leozi—l

+ =0.
(1- f:l @;)?

P
() =Y iy (h—i) = TSV o
i=1 T Zei=1 %

Dividing by vy (0) we find that the ACF py (h) satisfies
PY (O) =1,
P
py(h)—Zaipy(h—i):O, hZ 1,
i=1
which corresponds to the Yule-Walker equations for the ACF for an AR(p) process

Wy=o Wi_1+---+ Ckat,p + Z;.
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