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Abstract

The paper presents a novel approach to the use of path integration

for calculating the price of options. In particular, the case of Asian

options is considered. The first step is to write down an Itô stochastic

differential equation for a 2D state space vector process describing the

temporal development of the instantaneous value of the underlying

asset and its time integral. This equation is solved numerically by ap-

plying a special backward-forward time stepping procedure combined

with splines interpolation. This makes it possible to achieve a very

high degree of accuracy in the calculations, which is illustrated by

several example results.

1 Introduction

A financial derivative or an option is a contract whose value is determined by
an underlying instrument. Typical underlyings are stocks and bonds. Such
contracts are often used in the risk management of investment portfolios. The
global derivative market is larger than the gross domestic product of most
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industrialized nations and is thus of fundamental importance in the world’s
financial system. The recent years has seen a significantly increased activity
in the exotic derivative market. Options not traded on an exchange may have
more complicated rules that the usual put and call options written on the
price of a stock. Typical examples of exotic derivatives are options written on
stock price averages over a specified period rather than on the price at the end
of the period. These are also known as Asian options, and they have attracted
a lot of attention over the years, especially in financial mathematical circles.
Recently, some exact solutions have been found [1, 2], which makes it possible
to check and verify approximate numerical procedures. In the following, we
shall develop a numerical method to price Asian options, and our results will
be compared with the corresponding exact results.

2 Model

It is assumed that the price process of a financial asset obeys the following
dynamic model given by the Itô stochastic differential equation (SDE)

dS(t) = µ[S(t)]dt + σ[S(t)]dB(t), (1)

where S(0) = s0 is a specified positive constant. µ(·) and σ(·) are positive
functions satisfying suitable regularity conditions, cf. [3]. B(t) denotes a
standard Brownian motion. Now define the running average process as

Y (t) =
1

t

∫ t

0

S(u)du. (2)

For the version of an Asian call option adopted in this paper, its value with
maturity time T and strike X in a market with riskless interest rate r is then
equal to the discounted expected payoff:

p = e−rT E[(Y (T ) − X)+]. (3)

where (x)+ = max(x, 0). For the numerical analysis, we shall replace Y (t)
by the integral of the price process, that is

Z(t) =

∫ t

0

S(u)du (4)
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For a fixed strike Asian option, X is a constant, X = K say. If the probability
density function (PDF) fZ(T )(·) of Z(T ) is known, then clearly

p = e−rT 1

T

∫ ∞

TK

(v − TK)fZ(T )(v)dv. (5)

In the case of a floating strike Asian option, X = S(T ). Hence, if the joint
PDF fS(T )Z(T )(·, ·) of S(T ) and Z(T ) is known, the price of the call option
can be calculated as follows

p = e−rT 1

T

∫ ∞

0

∫ ∞

Tu

(v − Tu)fS(T ) Z(T )(u, v) dv du. (6)

Both types of Asian options can be priced by using the method developed
in this paper. The reason for this is that our method is based on obtaining
a numerical approximation to the option’s value by calculating the temporal
development of the joint PDF fS(t)Z(t)(s, z) of the price process and its inte-
gral over the time interval (0, T ). Our vehicle is the SDE of the state space
vector process (S(t), Z(t))′, that is

dS(t) = µ[S(t)] dt + σ[S(t)] dB(t) (7)

dZ(t) = S(t)dt (8)

with initial conditions S(0) = s0 and Z(0) = 0 using numerical path integra-
tion, see e.g. [4, 5], a method that rarely appears in the financial literature.
For a thorough explanation of how Feynman’s original path integral concept
from quantum physics can be adapted to solve problems in financial math-
ematics, the reader may consult [6]. A direct implementation of these ideas
into the construction of a numerical algorithm is detailed in [7], but no nu-
merical results are given. Consequently, it is hard to assess the efficiency and
accuracy of the proposed algorithm.

In the present paper we have chosen a different and more direct approach
to the use of the path integration idea in financial engineering, specifically
to the pricing of Asian options. Our approach also differs significantly in the
way the numerical calculations are carried out. By introducing a backward-
forward time stepping procedure combined with spline interpolation, it is
possible to achieve a high degree of numerical accuracy in the calculations.
It should be noted, however, that the final aim of this research is not primarily
to price Asian options. For some standard models they can already be reliably
priced by existing methods. The aim is rather to suggest a more general
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method that may be applied to a wide range of situations, where there may be
no other alternative to Monte Carlo simulations. Verifying that the method
works on Asian options for which there already exist some exact results, is a
step in testing and verifying the method.

3 Numerical Path Integration

Systems of SDEs like (7) and (8) can be simulated by an arsenal of numerical
methods of varying accuracy [8]. The simplest method is the so-called Euler-
Maruyama method, which is the stochastic generalization of the well-known
Euler method for ordinary differential equations. Let

0 = t0 < t1 < . . . < tN = T

be a partition of the time interval (0, T ), let Si denote S(ti) and Zi denote
Z(ti). The Euler-Maruyama method then reads

Si+1 = Si + µ[Si] ∆ti + σ[Si] ∆Bi (9)

Zi+1 = Zi + Si∆ti (10)

where ∆ti = ti+1 − ti and ∆Bi = B(ti+1) − B(ti). The transition proba-
bility density (TPD) associated with the Markov chain {Si}∞i=0 as given by
equation (9), is denoted by p(s, ti+1| s′, ti), which is the conditional density of
S(ti+1) at s given S(ti) = s′. Since ∆Bi is normally distributed with expec-
tation value zero and variance equal to ∆ti, equations (9) and (10) implicitly
define a transition probability distribution for the two-dimensional Markov
chain {(Si, Zi)

′}∞i=0 as follows

P (Si+1 < a , Zi+1 < b |Si = si , Zi = zi)

=

∫ a

−∞

∫ b

−∞

dδzi+si∆ti

(

z
)

p(s, ti+1|si, ti) ds

=

∫ a

−∞

∫ b

−∞

dδzi+si∆ti

(

z
)

φN(s; µi, σ
2
i ) ds (11)

where µi = si +µ(si) ∆ti, σ2
i = σ(si)

2 ∆ti, and φN(s; µi, σ
2
i ) denotes the PDF

of a normal variate with mean value µi and variance σ2
i , that is

φN(s; µi, σ
2
i ) =

1√
2πσi

exp

(

−(s − µi)
2

2σ2
i

)

. (12)
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and δc denotes the Dirac measure located at c, that is, δc(A) = 1 if c ∈ A for
any set A, and δc(A) = 0 if c /∈ A.

Assuming that the random variables Si and Zi are specified by a joint
PDF fi, the total probability law then implies that the joint probability
distribution function of Si+1 and Zi+1 is given as follows

P (Si+1 < a , Zi+1 < b )

=

∫ ∞

−∞

∫ ∞

−∞

P (Si+1 < a , Zi+1 < b |Si = s′ , Zi = z′) fi(s
′, z′) dz′ ds′ (13)

From this relation and equation (11), it can now be shown that the random
variables Si+1 and Zi+1 are also characterized by a PDF, fi+1, which satisfies
the equation

fi+1(s, z) =

∫ ∞

−∞

p(s, ti+1| s′, ti) fi(s
′, z − s′∆t) ds′

=

∫ ∞

−∞

1
√

2πσ(s′)2 ∆ti
exp

(

−(s − s′ − µ(s′) ∆ti)
2

2σ(s′)2 ∆ti

)

fi(s
′, z − s′∆ti) ds′

(14)

We know that S(t) and Z(t) both have positive values for t > 0 when
S(0) > 0. A scrutiny of the Euler-Maruyama approximation given by equa-
tions (9) and (10) immediately reveals that this condition is violated since
there is a positive probability of negative values for Si+1. Of course, this
probability is in general very small, or even negligible, for small values of
∆ti. Therefore, this approximation, if properly implemented, will give a
good numerical representation of the dynamics of S(t) and Z(t).

There is yet a possibility to improve on equation (14). If we go back to
equation (10), it is clear that an improved approximation is obtained if we
write

Zi+1 = Zi + Si∆ti +
1

2

Si+1 − Si

∆ti
(∆ti)

2 = Zi +
1

2
(Si+1 + Si)∆ti (15)

which is recognized as a trapezoidal integration formula. Equations (9) and
(15) again provides us with a Markov chain {(Si, Zi)

′}, and it is obtained
that

fi+1(s, z) =

∫ ∞

−∞

p(s, ti+1| s′, ti) fi

(

s′, z − 1

2
(s + s′)∆ti

)

ds′ (16)
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With given numerical initial conditions S(0) = s0 > 0 and Z(0) = 0,
the initial joint PDF is not a proper PDF but rather a product of delta
distributions, that is, of singular type. Hence we may write formally

f0(s, z) = δ(s − s0) δ(z). (17)

However, this kind of initial distribution is not convenient numerically. In-
stead, a proper initial PDF to use in equation (14) or (16) is sought. An
immediate idea is then to try to derive a closed form expression for the first
nonsingular PDF fi by analytical calculation. Now, f1 is still of singular type
for both equations, while f2 is nonsingular. However, in the general case it is
not possible to derive an explicit expression for f2 without making approxima-
tions. If these approximations are too heavy handed, which is hard to avoid,
unwanted loss of accuracy have been observed to occur. Instead, the chosen
approach is to make f1 slightly nonsingular in the following manner. For the
case of equation (16), the random variable Z̃1 = Z1+E = (S1+s0) ∆t/2 + E
is introduced, where E ∼ N(0, e2) and chosen to be independent of S1.
Hence, by choosing e sufficiently small, f1(s, z) ≈ f̃1(s, z) = fS1Z̃1

(s, z) =
fZ̃1|S1

(z|s) fS1
(s) = φN(z; (s + s0) ∆t/2 , e2) · φN(s; s0 + µ(s0) ∆t , σ(s0)

2 ∆t).
Using equations (14) or (16) recursively for i = 1, 2, 3, . . ., an approxima-

tion is obtained for the time-dependent joint PDF associated with the vector
stochastic process

(

S(t), Z(t)
)

. The marginal density function used to value
the option in equation (6) is integrated out of the joint density.

So far the analysis has been based on the Euler-Maruyama approxima-
tion to equation (7), that is, on equation (9), which is tantamount to the
approximation

∫ ti+1

ti
σ[S(t)] dB(t) = σ[Si] (Bi+1 − Bi) = σ[Si] ∆Bi. The ad-

vantage of this approximation is obvious from the preceding analysis, viz.
that the TPD p(s, ti+1| s′, ti) can be represented by a Gaussian density. As
discussed extensively in [8], there are several ways of improving on the sim-
ple Euler-Maruyama approximation, both by weak and strong discretization
schemes. Since the goal of our work is to calculate the probability law of
the state space vector process, we may limit ourselves to the weak schemes.
In particular, we shall consider the simplified weak Taylor scheme of order
2.0. The Euler-Maruyama scheme is of weak order 1.0. According to [8], the
simplified weak order 2.0 Taylor scheme for the conditional random variable
S̃i+1 = {Si+1 |Si = si} may be written as

S̃i+1 = αi + βi ∆Bi + γi ∆B2
i (18)
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Here

αi = si + µ(si) ∆ti −
1

2
σ(si) σ′(si) ∆ti

+
1

2

[

µ(si) µ′(si) +
1

2
µ′′(si) σ(si)

2
]

∆t2i (19)

βi = σ(si) +
1

2

[

µ′(si) σ(si) + µ(si) σ′(si) +
1

2
σ′′(si) σ(si)

2
]

∆ti (20)

and

γi =
1

2
σ(si) σ′(si) (21)

The prime ′ denotes derivation with respect to the argument, that is, µ′(s) =
dµ(s)/ds, and so on. Convergence of the present weak Taylor scheme of order
2.0 is guaranteed if the functions µ(s) and σ(s) satisfy certain regularity
conditions, cf. [8].

Having achieved the representation of equation (18), we may proceed to
calculate p(s, ti+1| s′, ti). This TPD can, of course, still be expressed in closed
form since S̃i+1 is a quadratic expression in the Gaussian variable ∆Bi. Let
ξ±i denote the two solutions of the equation

s = h(ξ) = αi + βi ξ + γi ξ
2 (22)

That is

ξ±i = − βi

2 γi

±
√

s − αi

γi

+
( βi

2 γi

)2
(23)

It is then obtained that

p(s, ti+1| si, ti) =
∑

ε=+,−

φN(ξε
i ; 0, ∆t)

|h′(ξε
i )|

=
(s − αi

γi

+
( βi

2 γi

)2
)−1/2

[

φN(ξ+
i ; 0, ∆t) + φN(ξ−i ; 0, ∆t)

]

(24)

for s−αi

γi

+
(

βi

2 γi

)2
> 0. So even if the TPD p(s, ti+1| si, ti) is more complicated

for the weak order 2.0 approximation above than the previous TPD, which
was simply a Gaussian density, it is still tractable for numerical calculations.
It is therefore of interest to explore the impact of this approximation on the
numerical accuracy of the calculated values for the option price by combining
equations (16) and (24).
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4 Implementation

To calculate the temporal development of fi(s, z), we carry out the recursive
integration of equation (14) numerically. The sequence of joint probability
densities

f1(s, z), f2(s, z), f3(s, z), . . .

are represented by their numerical values on a 200×200 grid which is updated
at each time-step. We carry out 5000 Monte Carlo simulations of (S(t), Z(t)),
keeping records of the highest and the lowest observed value at each time-step
between 0 and T . The grid is delimited by 0.5 times the lowest and 1.5 times
the highest values. Since the joint PDF develops from an initial density that
is almost concentrated in a point in the (s, z)-plane into a smooth surface
covering a larger area, such an adaptive grid contributes to keep the number
of grid points relatively modest, thus saving CPU time.

When carrying out a numerical integration of equation (14) or (16) for
each grid point, it is sufficient to limit the integration to an interval where the
transition probability density has a substantially non-zero value. In practice,
this is done as follows: For a given s, the Euler-Maruyama algorithm with a
negative time-step will define a normal distribution as a function of s′. To
include practically all the probability mass, the integration limits are set to
the center of that distribution plus/minus six standard deviations, though
not exceeding the grid boundaries. A detailed description of this backward-
forward time stepping procedure, which is an essential part of the numerical
implementation, is given in [5].

Simpson’s method with 26 partitions has been used to carry out the
integration. Since the quadrature algorithm in general calls for the PDF value
at locations that are not grid points bicubic interpolation of fi is performed.
This is the most important factor in determining the density of grid points.
On the one hand, to save CPU time, the density of grid points should be
as low as possible. On the other hand, the density must be high enough to
ensure that the interpolation provides sufficient accuracy for the integration
to have the required precision.

Having divided the year into 360 time-steps, this procedure is repeated
until the options maturity time T is reached. The marginal density function
used to value the fixed strike option in equation (5) is integrated out of the
joint density.
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5 Numerical Results

In this paper, we shall carry out calculations for the classical Black and
Scholes model for the dynamics of the underlying asset. That is, equation (1)
is rewritten in the form

dS(t) = r S(t) dt + σ S(t) dB(t), (25)

where r and σ are positive constants. For this model the order 2.0 weak
Taylor approximation has αi = si

[

1 + (r − σ2/2) ∆ti + r2 ∆t2i /2
]

, βi =
σ si (1 + r ∆ti) and γi = σ2 si/2.

It should be said, of course, that for the particular example of the Black
and Scholes model, the TPD for S(t) is well known and can be expressed in
closed form, viz. (s > 0, s′ > 0)

p(s, t| s′, t′) =
1√

2π ∆t σ s
exp

{

−
(

ln s − ln s′ − (µ − 1
2
σ2)∆t

)2

2σ2∆t

}

(26)

where ∆t = t − t′, which is valid for any value of ∆t > 0. Hence, there is no
need for any approximation to p(s, t| s′, t′) in this case. However, since our
focus is on developing a general approach, we have chosen not to use this
exact, special case solution.

Lewis [2] considers a fixed strike Asian call option written on a stock not
paying dividends, for which he gives exact option prices. In his examples,
the underlying initial price S0 and strike K are equal to 2.0. The volatility is
σ = 0.5 and the risk-free interest rate is r = 0.05 and r = 0.20. The numeri-
cal path integration method described above was used to calculate the option
price for various maturity times T in years. The obtained results are reported
in the tables, where PI1 refers to the Euler-Maruyama approximation com-
bined with equation (10), PI2 refers to the Euler-Maruyama approximation
combined with equation (15), and PI3 refers to the order 2.0 weak Taylor
approximation, also combined with equation (15). Calculations were carried
out on a workstation, and one calculation took twenty seconds for PI2 when
the maturity time is equal to a year. PI1 and PI2 calculations took about
the same time to perform, while PI3 calculations took longer by a factor of
about two.

The results in the tables indicate that there is little to gain by using
PI3, that is, a 2. order weak Taylor scheme for the values of ∆t needed
to ensure high accuracy for the integrated process. It is also seen that the
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Table 1: Risk-free interest rate r = 0.05

T Exact PI1 Error PI2 Error PI3 Error

0.1 0.075067 0.073497 −2.090% 0.075096 0.039% 0.075083 −0.021%
0.25 0.120335 0.119339 −0.831% 0.120376 0.034% 0.120354 −0.016%
0.5 0.172296 0.171563 −0.410% 0.172295 0.015% 0.172264 −0.003%
1 0.246416 0.245874 −0.220% 0.246366 −0.020% 0.246319 −0.039%
2 0.350095 0.349436 −0.188% 0.349986 −0.031% 0.349909 −0.053%

Table 2: Risk-free interest rate r = 0.20

T Exact PI1 Error PI2 Error PI3 Error

0.1 0.082117 0.080322 −2.186% 0.082021 −0.005% 0.082024 −0.113%
0.25 0.137038 0.135903 −0.909% 0.136998 −0.029% 0.137003 −0.026%
0.5 0.203184 0.202231 −0.469% 0.203229 0.022% 0.203240 0.028%
1 0.299968 0.299095 −0.291% 0.299831 −0.046% 0.299848 −0.040%
2 0.430616 0.429538 −0.250% 0.430351 −0.062% 0.430381 −0.055%

high accuracy is lost when PI1 is used, that is, when only the crude Euler
approximation is used for the integrated process. Hence, for the subsequent
calculations, only PI2 is used.

Rogers and Shi [9] present tables with calculated prices for fixed and
floating strike Asian call options with a maturity period of one year. Their
expectedly most accurate results are based on numerically solving a partial
differential equation. Although the accuracy of their solutions is unknown, it
appears to be good. It is therefore tempting to match our values with theirs.
Results for the fixed strike option are listed in Table 3, while results for the
floating strike option are shown in Table 4, where R&S refers to the results
of Rogers and Shi.

Acceptable agreement is obtained for all combinations of interest rate
and volatility except for r = 0.15 and σ = 0.1. The significant deviation
observed was very hard to explain if the R&S value was correct, because
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Table 3: Fixed strike Asian option, σ = 0.30

r K R&S PI2 Deviation

0.05 90 13.951 13.953 0.014%
0.05 100 7.944 7.948 0.050%
0.05 110 4.074 4.072 −0.049%

0.09 90 14.981 14.987 0.040%
0.09 100 8.827 8.829 0.023%
0.09 110 4.698 4.696 −0.043%

0.15 90 16.510 16.512 0.012%
0.15 100 10.208 10.209 0.010%
0.15 110 5.731 5.728 −0.052%

Table 4: Floating strike Asian option

σ r R&S PI2 Deviation

0.1 0.05 1.257 1.258 0.080%
0.1 0.09 0.709 0.709 0.000%
0.1 0.15 0.271 0.261 −3.690%

0.2 0.05 3.401 3.405 0.118%
0.2 0.09 2.622 2.622 0.000%
0.2 0.15 1.723 1.710 −0.754%

0.3 0.05 5.628 5.627 −0.018%
0.3 0.09 4.736 4.740 0.084%
0.3 0.15 3.612 3.611 −0.389%

a control calculation for the corresponding fixed strike option showed very
good agreement. And since the two integrations we carry out for the two
cases should give similar accuracy, it was decided to perform a massive MC
calculation to check the correct value. On the basis of 109 MC simulations,
the price was estimated to be 0.262. This gives an accuracy of the PI result
equal to 0.382%, which is quite good. The reason for the discrepancy between
this particular R&S result and the result from the MC simulations may be
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explained by the discussions in [10]
Our best results are very similar in accuracy to results obtained by other

numerical methods that are developed with the sole purpose of pricing Asian
options. However, numerical path integration is more general. It has the
advantage that it can be immediately applied to more complex situations,
like dividend-paying stocks. Compared to Monte Carlo methods, it has the
advantage of always coming up with the same result, and it spends less CPU
time to arrive at a given accuracy.

6 Conclusions and Suggestions

It has been demonstrated that the value of Asian options can be calculated
fairly quickly and with a high degree of accuracy by numerical path inte-
gration. Considering that the results presented in this paper represent our
first efforts to use numerical path integration to the problem of option pric-
ing, it should indeed be expected that improvements in accuracy as well as
computational speed can be achieved.

As already pointed out above, the most important aspect of numerical
path integration is its flexibility. Generalization to large classes of more com-
plex situations is straightforward. The method should be robust with respect
to nonlinearity, time-dependence and the properties of the stochastic process,
at least as long as the process driving the asset dynamics has independent
increments. It is therefore the authors’ intention to test the numerical path
integration method on more complex models of financial instruments that
cannot be easily valuated by traditional methods.
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